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Abstract

Random features is an approach for kernel-based infer-

ence on large datasets. In this paper, we derive perfor-

mance guarantees for random features on signals, like im-

ages, that enjoy sparse representations and show that the

number of random features required to achieve a desired

approximation of the kernel similarity matrix can be signifi-

cantly smaller for sparse signals. Based on this, we propose

a scheme termed compressive random features that first ob-

tains low-dimensional projections of a dataset and, subse-

quently, derives random features on the low-dimensional

projections. This scheme provides significant improvements

in signal dimensionality, computational time, and storage

costs over traditional random features while enjoying sim-

ilar theoretical guarantees for achieving inference perfor-

mance. We support our claims by providing empirical re-

sults across many datasets.

1. Introduction

Random features [26,37,38,43,46] is an approach to per-

form kernel-based inference on very large datasets. In the

traditional kernel approach, we need to construct the kernel-

similarity matrix whose storage and computational time are

quadratic in the size of the dataset; the quadratic depen-

dence on the size of the dataset makes the approach infeasi-

ble for Big Data scenarios. Random features addresses this

problem by explicitly constructing finite-dimensional ran-

dom features from the data such that inner products between

the random features approximate the kernel functions. In-

ference with random features achieves comparable perfor-

mance as those of the kernel-based ones while enjoying the

scalability of linear inference methods. Recently, it also

achieves performance comparable to a convolutional neu-

ral network on datasets like the ImageNet [13].

We show that for signals enjoying sparse representations

(either canonically or in a transform basis), the performance

guarantees of random features can be significantly strength-

ened. Specifically, we prove that the dimension of random
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features required to approximate a stationary kernel func-

tion [42] dominantly depends on the signal sparsity instead

of the ambient dimension. For images, whose ambient di-

mension is often far greater than their sparsity, our analysis

greatly improves the theoretical bounds of random features.

We next show that both computational and storage costs

of random features applied to sparse signals can be signif-

icantly improved by first performing a dimensionality re-

duction using random projection and subsequently, apply-

ing random features to the dimensionality-reduced signals.

There are several advantages to this scheme. First, we show

that the theoretical guarantees in approximating the origi-

nal kernel function are similar to that of random features

applied on sparse signals. This means that the additional

dimensionality reduction step does not hinder our ability

to approximate kernel functions. Second, the dimensional-

ity reduction can be performed optically with compressive

cameras [19]. In regimes where sensing is costly, (for exam-

ple, short-wave infrared and midwave infrared), the use of

compressive cameras enables sensing with low-resolution

sensors [12, 32] with associated savings in cost of the cam-

era. Third, in the context of compressive imaging, infer-

ence tasks such as classification and detection are often sim-

pler than recovery [1, 31, 41] and hence, we can expect to

use high compression ratios in the dimensionality reduction

step. In our experiments, we are able to achieve 10 − 30×
compression with little loss in classification accuracy.

Contributions. In this paper, we propose a scheme called

compressive random features that applies random features

on compressive measurements of signals that enjoy sparse

representations either canonically or in a transform basis

(see Figure 1). Our contributions are three-fold:

• We prove that the number of random features required to

accurately approximate the kernel function depends pre-

dominantly on the sparsity of the signals.

• We show that random features applied to dimensionality-

reduced signals or equivalently, compressive measure-

ments, are able to approximate isometric kernel functions

of the original uncompressed data and provide analytical

guarantees that bound the loss in performance.
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Figure 1: Overview of typical kernel methods, random features, and our compressive random features. N is the number

of training samples, M is the dimension of the random features, d is the dimension of the original uncompressed data, and

m is the dimension of the compressive measurements. In testing computations of typical and compressive random features

schemes, we include the cost to construct random features and to apply classifiers for one test input.

• We also observe that our proposed scheme for com-

pressive inference offers comparable classification per-

formance, across many datasets, to similar approaches

applied directly on the original data while providing re-

duced computational time and storage.

2. Related work

Notations. We use d as the dimension of original uncom-

pressed signals, m as the dimension of compressive mea-

surements, M as the dimension of random features, and N
as the number of training samples. We use lowercase bold-

face letters to denote vectors and uppercase letters to denote

matrices. We say a signal is k-sparse if it has at most k non-

zero entries. All norms in this paper are ℓ2-norm, denoted

by ‖·‖. The element-wise complex conjugate of a vector x

is written as x. We define the diameter and the radius of a

set X as

diam(X ) = max
x,y∈X

‖x− y‖,

radius(X ) = max
x∈X

‖x‖.

2.1. Random feature method

A hallmark of kernel-based inference is the development

of kernel trick, which utilizes kernel function to efficiently

evaluate similarity in infinitely high dimensional spaces;

thereby, kernel-based inference is capable of approximating

any decision boundary or function provided we have suffi-

cient training samples [42]. Despite this attractive ability,

kernel methods are prohibitive for large datasets because

of their high storage and time complexities during both the

training and testing phases. Specifically, with N training

samples, kernel trick usually requires computing and stor-

ing a kernel matrix whose size is N × N . Testing a single

input requires evaluating kernel function between the input

and a large portion of training samples [26].

The goal of random features [38] is to achieve a scal-

able implementation of kernel methods. Given a station-

ary kernel function K(x,y) = f(x − y) := f(δ), its

Fourier transform, p(ω), has only nonnegative entries [40]

due to the positive definiteness of the kernel and hence, can

be treated as a probabilistic density function. The inverse

Fourier transform of the kernel function is given as

K(x,y) =

∫

Rd

p(ω)ejω
⊤(x−y)

dω = Ep[φω(x)φω(y)], (1)

where d is the dimension of the data, and φω(x) := ejω
⊤
x.

The sample mean 1
M

∑M
i=1 φωi

(x)φωi
(y) is thus an un-

biased estimator of K(x,y) when {ωi} are i.i.d. samples

from p. Since f(δ) and p(ω) are real, we can reduce φω(x)
and define a real-valued random feature generating func-

tion, Φ : Rd → R
M , as

Φ(x) =

√

2

M

[

cos(ω⊤
1 x+ b), · · · , cos(ω⊤

Mx+ b)
]⊤

, (2)

where ωi is drawn from the distribution p and b is drawn

uniformly from [0, 2π]. For the commonly used Gaus-

sian kernel K(x,y) = exp(−‖x − y‖2/(2σ2)), p(ω) =
N (0, σ−2Id), where Id is the d× d identity matrix.

Rahimi and Recht [38] showed that the inner prod-

uct of random features uniformly converges to K(x,y)
in probability. In particular, when training samples

are from a compact set X ⊂ R
d, in order to have

P
(

sup
x,y∈X |〈Φ(x),Φ(y)〉 −K(x,y)|> ǫ

)

less than a
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constant q, the dimension of random features

M = O

(

d

ǫ2
log

σp diam(X )

qǫ

)

, (3)

where σ2
p := Ep(ω

⊤ω) is the second moment of p(ω).

2.2. Compressive sensing and compressive inference

Compressive sensing [3] aims to sense a high-

dimensional signal from a low-dimensional measurements.

Specifically, any d-dimensional, k-sparse signal can be ex-

actly recovered from its m-compressive measurements, pro-

vided m = O(k log d
k ).

One of the main results in CS is the restricted isometry

property (RIP) [7, 8] which suggests that distances between

sparse signals are approximately preserved by certain mea-

surement matrices, including random projections and par-

tial Fourier matrices [39]. A m × d matrix P satisfies RIP

(of order 2k) if for all k-sparse signals x,y ∈ R
d, we have

(1 − δ)‖x − y‖2≤ ‖Px − Py‖2≤ (1 + δ)‖x − y‖2 with

some δ ∈ (0, 1). This means that all pairwise distances

between k-sparse signals are approximately preserved after

projected by P . Sub-Gaussian random matrices and random

orthoprojectors are known to satisfy RIP with high proba-

bility [9, 10]. To generate a m × d random orthoprojector,

we first i.i.d. sample its entries from a zero-mean Gaussian

or Bernoulli distribution. Then we run the Gram-Schmidt

process row-wise (assuming its rows are linearly indepen-

dent) and multiply the result by
√

d/m.

The approximate preservation of distances enables in-

ference directly in the compressive domain. This idea —

termed compressive inference — has resulted in many theo-

retical and practical algorithms for estimation [4,25,33,41]

and classification [1, 6, 11, 15, 16, 23, 28, 31, 36] without the

need of an intermediate reconstruction step. This saves the

computation required to recover the signals and thus, low-

ers the computational and memory requirements of the in-

ference algorithm.

The goal of this paper is to provide theoretical guaran-

tees for applying random features onto compressive mea-

surements. We can, therefore, perform non-linear inference

on compressive inference without sacrificing its benefits —

low time and storage complexities.

3. Random features for sparse signals

The theoretical guarantee of random features provided

in [38] is for generic datasets and does not exploit any

model on the data. If we know that our signals enjoys sparse

representations, either canonically or in some transform ba-

sis, can we tighten the bound required for approximating a

kernel function? We address this question in this section.

The following theorem characterizes the performance of

random features approximating stationary kernel functions

for signals that enjoy sparse representations.

Theorem 1. (Fourier random feature with k-sparse data)

Let X be a compact set of k-sparse vectors in R
d. Let the

random features for a stationary kernel function, Φ, be de-

fined as in (2) with σ2
p = Ep[ω

⊤ω] being the second mo-

ment of the Fourier transform of the kernel function. Given

ǫ > 0 and q ∈ (0, 1], there exists a constant c1 > 0, such

that, when

M = c1
k

ǫ2
log

(

σp diam(X )

qǫ

d

k

)

, (4)

the probability

P

(

sup
x,y∈X

∣

∣

∣
〈Φ(x),Φ(y)〉 −K(x,y)

∣

∣

∣
> ǫ

)

≤ q.

The proof for Theorem 1 is provided in the appendix.

As can be seen from the theorem, the dimension of random

features depends predominantly on the sparsity of the sig-

nal, k, instead of its ambient dimensionality, d. Thereby, for

sparse signals, the bound (4) greatly improves the original

one shown in (3). We note that the factor k log d
k commonly

appears in theoretical results of compressive sensing, e.g.,

for constructing m×d random sub-Gaussian matrices satis-

fying RIP [2] and for ensuring stable recovery of sparse sig-

nals [17]. Since the approximation of kernel function with

random features can be considered as constructing a low-

dimensional embedding of the reproducing kernel Hilbert

space associated with the kernel function [5], it is not sur-

prising that k log d
k appears in our results.

The following corollary extends the above theorem to

signals which are not canonically sparse but are sparse in

some transform basis.

Corollary 1. Suppose a stationary kernel function is also

rotationally invariant, i.e, f(Bδ) = f(δ) for any orthonor-

mal basis B. Let X be a compact set in R
d. Given an

orthonormal basis Ψ, if for all x ∈ X , Ψx is k-sparse, then

Theorem 1 holds on X .

Examples of rotationally invariant stationary kernel

functions include those depending only on the ℓ2-norm of

the signal, like the Gaussian kernel and the B-spline ker-

nel [42]. Since images are often sparse in wavelet bases,

this corollary allows us to apply random features on images

with far-fewer features.

4. Compressive random features

We now consider the application of random features to

compressive measurements. We term this scheme com-

pressive random features. By performing inference di-

rectly with compressive random features, we bypass the

computationally-expensive reconstruction step. For images,

which are originally dense but sparse after transformation,

our scheme effectively reduces computational and storage
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costs and enjoys the low signal-acquisition cost provided

by compressive cameras. These benefits make our scheme

compelling in scenarios like Internet-of-things, where de-

vice cost, computation, and storage are of utmost concern.

Can we compute random features directly on the com-

pressive measurements of sparse signals (either canonically

or in a transform basis) without deteriorating its ability to

approximate kernel functions? The following theorem ad-

dresses this question.

Theorem 2. (Compressive random feature) Let X be a

compact set of k-sparse vectors in R
d. Let P : Rd → R

m

be a random orthoprojector constructed as described in

Section 2.2. Let Φ : R
m → R

M be the random fea-

tures of an isometric kernel function, defined as K(x,y) =
f(‖x−y‖), with σ2

p = Ep[ω
⊤ω] being the second moment

of its Fourier transform. Given ǫ > 0 and q ∈ (0, 1], there

exist constants c1, c2 > 0, such that, when m = c1
k
ǫ2 log

d
k ,

m ≤ d, and

M = c2
m

ǫ2
log

(

σp radius(X )

qǫ

d

k

)

, (5)

the probability

P

(

sup
x,y∈X

(|〈Φ(Px),Φ(Py)〉 −K(x,y)|) > ǫ

)

≤ q.

The proof is provided in the appendix. Comparing to

the bound in Theorem 1, we can see that the effect of di-

mensionality reduction before constructing random features

does not significantly impede its ability to approximate iso-

metric kernel functions. By centering the data, we can re-

duce radius(X ) to diam(X ). Thereby, the required M only

increases by an order of 1
ǫ2 log

d
k , but in return we gain the

advantages of reduced device cost, computation, and stor-

age (see Figure 1). In the context of compressive inference,

this theorem provides a guarantee for applying random fea-

tures directly on compressive measurements.

From our experiments in Section 5, we observe that it

is possible to achieve a high compression ratio (m ≪ d)

and still obtain comparable accuracies as those of the typ-

ical random features. The reason may be that Theorem 2

requires all pairwise kernel function values are approxi-

mated; nevertheless, in classification scenarios, we are al-

lowed to heavily compress the data as long as data points

belonging to different classes do not collapse onto each

other [1, 22, 24, 44, 45]. This enables us to use high com-

pression ratios. We leave the analysis as a future work.

4.1. Analysis of storage and time complexity

We now analyze the storage and time complexity for

compressive random features. As can be seen from Fig-

ure 1, if we use compressive cameras, we can get com-

pressive measurements without actual computation, and the

storage costs are O(Nm). Since m = O(k log d), the sav-

ing of storage is large when k ≪ d. For compressive ran-

dom features, it costs O(MNm) to construct and O(MN)
to store; in contrast, typical kernel methods require O(N2d)
computation and O(N2) storage for a kernel matrix. In the

absence of compressive cameras where we obtain random

sketches by computations, the total computational cost to

construct compressive features is O(Ndm+MNm), which

is smaller than the cost to construct typical random features,

O(MNd), when m is small. We note that the accelerated

random feature construction techniques [29] are also appli-

cable to our compressive random features scheme.

Testing time with our scheme are as follows. It takes

O(Mm) to construct compressive features and O(M) to

perform the inner product. To store a linear SVM, we only

need to store the M+1 coefficients of the separating hyper-

plane. Instead, a typical kernel SVM requires the storage

of all non-zero dual variables and their corresponding train-

ing samples. With large datasets, the number of non-zero

dual variables usually grows linearly with N [26]. To test

an image, typical kernel methods require O(Nd) to evaluate

the kernel function between the image and training samples.

This makes kernel methods costly during the testing phase

as well. In summary, with compressive random features,

we can achieve nonlinear-class classification performance

with improved storage and time complexity compared to

both original kernel methods and typical random features.

5. Experiments

We conducted experiments on 5 datasets to examine the

classification performance of linear SVMs using our com-

pressive random features. We compared the performance

against six methods, whose legends are as follows:

• Original linear: Linear SVM trained directly with orig-

inal uncompressed data.

• Original kernel: Typical kernel-based SVM trained di-

rectly with original uncompressed data.

• Compressive linear: Linear SVM trained directly on

compressive measurements, a technique commonly used

in prior work [6, 28, 36].

• Compressive kernel: Typical kernel-based SVM trained

directly with compressive measurements.

• Typical random features: Linear SVM trained with

random features applied to the original data.

• Compressive random features: Linear SVM trained

with our compressive random features.

Among the last three methods, the compressive kernel ap-

proach is expected to achieve highest accuracies, since its

kernel function is computed exactly. Further, in spite of un-

dergoing both dimensionality reduction and kernel function
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compressive random features have similar SVM training and testing time.

Figure 2: MNIST results.

approximation, the proposed compressive random features

is expected to achieve accuracy that is comparable to typi-

cal random features, especially when the dimension of com-

pressive measurements, m, is large enough. We also expect

to achieve accuracies comparable to the kernel-based SVM

when the dimension of random features, M , is large enough

so to precisely approximate the kernel function.

In all experiments, the SVMs are directly trained with

pixel values or their compressive measurements (although

our scheme also supports sparse features, like features

learned by convolutional neural networks). Due to memory

issues, in some instances, we downsampled images. We

use the Gaussian kernel function K(x,y) = exp(−‖x −
y‖2/(2σ2)) in all experiments, with σ kept the same across

different methods. We used C-SVM in LIBLINEAR [21]

with C = 1. Finally, all results are averages over 20 trials.

We briefly introduce the 5 datasets used for validation.

• MNIST [30] contains 60, 000 training images and

10, 000 test images. The 28× 28 gray-scale images con-

tain digits from 0 to 9. We set σ = 10. The results are

shown in Figure 2.

• 8 scene categories dataset [35] contains 256×256 RGB

images of 8 different scenes, like mountain views, streets,

highways, and coast, . . . , etc. There are 2688 images, and

we randomly split them into 2150 training images and

538 test images. We resized images into 32× 32. We set

σ = 8. The results are shown in Figure 3.

• INRIA person dataset [14] contains 128× 64 RGB im-

ages. Each positive image contains a standing person,

and the negative images do not. There are 8506 training

images and 2482 test images. We resized the images to

32×16. We set σ = 5. The results are shown in Figure 4.

• CIFAR-10 [27] contains 32 × 32 RGB images of 10
different objects, like airplanes and horses. Each class

has 5000 training images and 1000 test images. We set

σ = 18. The results are shown in Figure 5.

• Street view house numbers dataset [34] contains 32 ×
32 RGB images. It contains images with different digits

taken from house numbers in Google Street View images.

It has 73257 training images and 26032 test images. We

set σ = 13. The results are shown in Figure 6.

Observations. Across all experiments, compressive ran-

dom features has a performance that is comparable to typ-

ical random features and outperforms compressive linear

SVMs even under high compression ratio (md =0.07). Fur-

ther, as shown in Figure 2d, working with dimensionality-

reduced compressive measurements effectively reduces the
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Figure 3: 8 scene categories dataset results.
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Figure 4: INRIA person dataset results.

time to construct random features. In some datasets, we

observe that when the dimension of random feature M is

small, compressive linear SVMs are able to achieve better

accuracies than both compressive random features and typ-

ical random features. This could be due to poor approxi-

mations of the kernel similarities at small values of M . As

expected, when using larger values of M , both random fea-

ture methods achieve higher accuracies.

Looking at the results of CIFAR-10 and the street view

house numbers datasets, all these methods still have room

for improvement compared with state-of-the-art methods

like convolutional neural networks (CNN). This gap in per-

formance can be attributed, in part, to our reliance on pixel-

values as the underlying features.

6. Conclusion and discussion

We propose compressive random features, a framework

for kernel-based inference on compressive measurements

that enjoys low acquisition, computation, and storage costs,

along with theoretical guarantees on its ability to approxi-

mate kernel similarities. In the context of compressive in-

ference, we introduced a novel method to perform scalable

nonlinear inference. Thereby, for many applications, our

scheme provides an effective solution that provides a trade-

off between inference performance and design considera-

tions like cost, computation, and storage. Finally, we note

that even though we focused on sparse signals and station-

ary kernel functions, we conjecture that similar results can

be derived for low-dimensional smooth manifolds and for

dot-product kernels.

Comparison to the Nyström method. The Nyström

method [18] is another popular method for large-scale

kernel-based inference. By first obtaining a low-rank ap-

proximation of the kernel matrix, the Nyström method ob-

tains eigen-decomposition of the low-rank matrix and gen-

erates features using the eigenvectors. Since this process in-

volves learning from data, the Nyström method can achieve

better performance by exploiting structures specific to the

dataset. However, the dependency on training data also

makes the Nyström method less flexible than random fea-

tures, whose feature construction function can be designed

independent to the overall training-testing process. In this

context, we can view the results in this paper as a potential

approach to incorporate more knowledge of the signal into

random features without having to perform learning.

A. Proofs

As discussed in Section 2.2, random orthoprojectors sat-

isfy RIP with high probability. We state the following theo-

rem which will be utilized to prove our theorem.
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Figure 5: CIFAR-10 dataset results.
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Figure 6: Street view house numbers dataset results.

Theorem 3. Let P : X → R
m be a m × d random

orthoprojector constructed as described in Section 2.2.

If X is the set of k-sparse vectors in R
d and m ∈

[

log(2)+k log(12/δ)+k log(ed/k)
δ2/16−δ3/48 , d

]

, then for δ ∈ (0, 1) we

have

P

{

∀x ∈ X , (1− δ)‖x‖2≤ ‖Px‖2≤ (1 + δ)‖x‖2
}

≥ 1− 2

(

12

δ

)k(

ed

k

)k

exp

(

−

(

δ2

16
−

δ3

48

)

m

)

.
(6)

The proof of the theorem is a simple extension of the

results in [2].

Proof of Theorem 1. The difference of two k-sparse vec-

tors is at most 2k-sparse. Let z := 2k. For any x,y ∈
X , x−y belongs to one of the

(

d
z

)

z-dimensional sub-

spaces, M1, . . . ,M(dz)
. Each Mj , j=1, . . . ,

(

d
z

)

, is com-

pact and has diameter at most twice diam(X ). Thus, we

can construct a ǫ-net in each of Mj , j=1, . . . ,
(

d
z

)

, and

{x−y|∀x,y ∈ X} ⊆ ∪
(dz)
j=1Mj . Each net will have at

most T = (2 diam(X )/r)z balls of radius r [20, Chap-

ter 5]. Denote ∆ as (x,y) and M as {∆|∀x,y∈X}. Let

∆i,j , i = 1, . . . T be the i-th center in the ǫ-net of Mj . De-

fine f : M → R, f(∆) := 〈Φ(x),Φ(y)〉−K(x,y) and let

Lf be the Lipschitz constant of f . By limiting Lf and mak-

ing sure that all f(∆i,j) are small, we can provide a bound

to the overall approximation error:

P

(

sup
∆∈M

|f(∆)|> ǫ

)

≤ P

(

Lf >
ǫ

2r

)

+ P

(

∪
(dz)
j=1 ∪

T
i=1 {|f(∆i,j)|>

ǫ

2
}

)

.

(7)

Let ∆∗ = argmax∆∈M‖▽f(∆)‖. By expanding Φ(x) =
ejWx, where i-th row of W contains ωi, we have

E[L2
f ] = E‖∇f(∆∗)‖2= E‖∇(〈Φ(∆∗),Φ(0)〉)‖2

−E‖∇K(∆∗
,0)‖2≤ E‖∇(〈Φ(∆∗),Φ(0)〉)‖2≤ E‖ω‖2= σ

2
p,

as [38], we use Markov’s inequality and get

P

(

Lf ≥
ǫ

2r

)

= P

(

L2
f ≥

( ǫ

2r

)2
)

≤
E[L2

f ]
(

ǫ
2r

)2 ≤

(

2rσp

ǫ

)2

.

Using a union bound and Hoeffding’s inequality, we have

P

(

∪
(dz)
j=1 ∪

T
i=1 {|f(∆i,j)|>

ǫ

2
}

)

≤ 2

(

d

z

)

T exp

(

−Mǫ2

8

)

.

Because
(

d
z

)

≤
(

ed
z

)z
, we can bound (7) by

P

(

sup
∆∈M

|f(∆)|> ǫ

)

≤

(

2rσp

ǫ

)2

+ 2

(

ed

z

)z (

2 diam(X )

r

)z

exp

(

−Mǫ2

8

)

= 2

[(

2ed diam(X )

z

)z

exp

(

−Mǫ2

8

)]

r
−z +

(

2σp

ǫ

)2

r
2

:= 2αr−z + βr
2
.
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Minimizing the right hand side w.r.t. r results in r =

(αzβ )
1

z+2 . After substituting r, the right hand side becomes

α
2

z+2 β
z

z+2

(

2z
−z
z+2 + z

2
z+2

)

, and we have

P

(

sup
∆∈M

|f(∆)|> ǫ

)

≤

(

edσp diam(X )

zǫ

) 2z
z+2

exp

(

−Mǫ2

4(z + 2)

)

(

2z
−z
z+2 + z

2
z+2

)

≤ 3

(

2edσp diam(X )

zǫ

) 2z
z+2

exp

(

−Mǫ2

4(z + 2)

)

.

The last inequality holds because
(

2z
−z
z+2 + z

2
z+2

)

≤ 3 for

all z ≥ 1. Setting an upper bound for the right hand side

and solving for M will prove the theorem.

Proof of Corollary 1. We use the following property of

multi-variant Fourier transform:

F (f(Bx)) =
1

det(B)
(Ff)(B−T

ω).

Since B is a orthonormal basis and f is rotational invariant,

we have

p(ω) = F (f(x)) = F (f(Bx)) = (Ff)(B−T
ω) = p(Bω).

Therefore, p is rotational invariant. Let α = B⊤
x for all

x ∈ X . We have ω⊤
x = ω⊤Bα = (B⊤ω)⊤α := z

⊤α.

Since p is rotational invariant and ω ∼ p, z ∼ p. So Theo-

rem 1 can be applied to α, which is k-sparse.

The sketch to prove Theorem 2 is as follows. In order to

uniformly bound the approximation of kernel function with

compressive features, we simply need to uniformly bound

the errors caused by compressive sensing and random fea-

ture approximation separately.

Proof of Theorem 2. Let f(‖x−y‖) := K(x,y), ∀x,y.

By triangular inequality, we have

P

{

sup
x,y∈X

(

∣

∣

∣
〈Φ(Px),Φ(Py)〉 −K(x,y)

∣

∣

∣

)

> ǫ

}

≤ P

{

sup
x,y∈X

(

∣

∣

∣
〈Φ(Px),Φ(Py)〉 − f(‖Px− Py‖)

∣

∣

∣

+
∣

∣

∣
f(‖Px− Py‖)− f(‖x− y‖)

∣

∣

∣

)

> ǫ

}

≤ P

{

sup
x,y∈X

(

∣

∣

∣
〈Φ(Px),Φ(Py)〉 − f(‖Px− Py‖)

∣

∣

∣

)

>
ǫ

2

}

+ P

{

sup
x,y∈X

(

∣

∣

∣
f(‖Px− Py‖)− f(‖x− y‖)

∣

∣

∣

)

>
ǫ

2

}

(8)

Let DP be the diameter of PX and D = 2 radius(X ).
Using the result in [38], we can bound the first term:

P

{

sup
x,y∈PX

(

∣

∣

∣
〈Φ(x),Φ(y)〉 − f(‖x− y‖)

∣

∣

∣

)

>
ǫ

2

}

≤ 210
(

σpDP

ǫ

)2

exp

(

−Mǫ2

16(m+ 2)

)

≤ 210
d

m

(

σpD

ǫ

)2

exp

(

−Mǫ2

16(m+ 2)

)

.

The last inequality holds because by the construction of ran-

dom orthoprojector ‖Px‖≤
√

d
m‖x‖ for all x. The second

term can be bounded as follows. Since f is differentiable

and continuous and X is compact, the derivative of f at-

tains its maximum and minimum in X . Therefore, the ker-

nel function is Lipschitz continuous in X . Let L be the

Lipschitz constant. By Theorem 3, we have ∀x,y ∈ X ,

|‖Px−Py‖−‖x−y‖| ≤ δ‖x−y‖≤ δD with probability

at least 1 − 2 exp(−c1δ
2m). By the definition of Lips-

chitz continuous we have |f(‖Px− Py‖)− f(‖x−y‖)| ≤
δDL. Thus, by setting δ = ǫ

2DL , we bound the second term

using (6). Therefore, we have the following result:

P

{

sup
x,y∈X

(

∣

∣

∣
〈Φ(Px),Φ(Py)〉 −K(x,y)

∣

∣

∣

)

> ǫ

}

≤ 210
d

m

(

σpD

ǫ

)2

exp

(

−Mǫ2

16(m+ 2)

)

+ 2

(

24DL

ǫ

)k(

ed

k

)k

exp

[

−

(

ǫ2

64D2L2
−

ǫ3

384D3L3

)

m

]

.

(9)

When m is large enough, the second term is less than

the first term, the right hand side of (9) is less than

211 d
m

(

σpD
ǫ

)2

exp
(

−Mǫ2

16(m+2)

)

. To make it less than a con-

stant probability, we need

M = O

(

m

ǫ2
log

dσpD

mǫ

)

.
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