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Abstract

In this paper, we present a novel framework for finding

the kinematic structure correspondence between two objects

in videos via hypergraph matching. In contrast to prior

appearance and graph alignment based matching methods

which have been applied among two similar static images,

the proposed method finds correspondences between two

dynamic kinematic structures of heterogeneous objects in

videos. Our main contributions can be summarised as fol-

lows: (i) casting the kinematic structure correspondence

problem into a hypergraph matching problem, incorporat-

ing multi-order similarities with normalising weights, (ii)

a structural topology similarity measure by a new topol-

ogy constrained subgraph isomorphism aggregation, (iii) a

kinematic correlation measure between pairwise nodes, and

(iv) a combinatorial local motion similarity measure using

geodesic distance on the Riemannian manifold. We demon-

strate the robustness and accuracy of our method through a

number of experiments on complex articulated synthetic and

real data.

1. Introduction

Building kinematic structures of articulated objects from

visual input data is an active research topic in computer vi-

sion and robotics [27, 11, 17, 3]. The accurately estimated

kinematic structure represents motion properties as well as

shape information of an object in a topological manner, and

it encodes relationships between rigid body parts connected

by kinematic joints. Thus, it can be considered as a mid-level

representation of general objects captured from different sen-

sors such as RGB camera, depth camera, and robot encoders.

Accurate and efficient estimation of kinematic correspon-

dences between heterogeneous objects is beneficial to many

high level tasks such as learning by imitation [38], viewpoint

invariant human action recognition by 3D skeletons [36],

affordance based object/tool categorisation [39], articulated

object manipulation [13, 17], and human motion retarget-

ing to robots [33]. Therefore, in this paper we focus on

finding correspondences between two articulated kinematic

Figure 1. The proposed framework reliably builds up kinematic

structure correspondence matches across heterogeneous objects

captured with different sensors. Our method can for example find

correspondences between a upper-body dancing human in a 2D

grey image sequence, the iCub and NAO humanoid robots in 2D

RGB videos, and a dancing human in depth image sequences.

structures extracted from different objects’ image sequences

using a new hypergraph matching framework.

There have been various approaches to generate accu-

rate kinematic structures from visual data [41, 27, 11, 3].

However, there isn’t much work on utilising the generated

kinematic structures for higher level purposes. Fayad et

al. [11] used the kinematic structure as a basis of 3D recon-

struction. Sturm et al. [31] and Katz et al. [17] applied it

to robot manipulations, but with relatively simple objects.

We propose a new way of utilising the kinematic structure

for matching kinematic correspondences between complex

objects belonging to different categories, which can be ex-

tended to applications with heterogeneous sensory data as

well.

Most of the conventional correspondence finding methods

in the computer vision area are restricted to two static images

[4, 6]. Skeleton corresponding points matching methods be-

tween two objects’ silhouette images have been presented by

Bai and Latecki [1]. Local shape feature and graph matching

based methods [5, 20, 26] have been researched actively for

decades. However, all these approaches are based on object
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appearance and local shape features which do not include

dynamic information.

Graph matching methods have been widely used for the

correspondence matching problem [32, 45]. By introducing

a high order tensor product scheme for the third or even

higher order similarity terms, hypergraph matching methods

can achieve robust matches even under large variations [43,

10, 20, 26]. Hypergraph matching has a wide potential for

finding matches among various applications, but because of

the difficulty in designing the high-order similarity, there are

not many applications using this method.

In this paper, we present a novel hypergraph matching

method capable of finding correspondences between artic-

ulated kinematic structures estimated from two different

image sequences. We propose new similarity measures in

order to consider structural topology (first order), kinematic

correlation (second order) and combinatorial motion (third

order) similarities simultaneously and incorporate them into

the hypergraph matching framework with weight normali-

sation. We introduce a new topologically constrained sub-

graph isomorphism measure for the structural similarity and

a restricted combinatorial motion descriptor for the motion

similarity. Our experiments show that the proposed method

outperforms appearance based and skeleton graph alignment

based methods quantitatively and qualitatively on both, syn-

thetic and real data.

2. Related Work

Kinematic structure building: The kinematic structure

represents kinematic properties between rigid body parts,

whilst the skeleton is generally a framework of bones. Mo-

tion based rigid body part segmentation and building con-

nections between the segments have been a general ap-

proach for the kinematic structure estimation from visual

data. Factorisation based articulated motion segmentation

methods [34, 40] were presented showing that the rank of

the feature trajectory matrix can indicate the kinematic joint

type. Yan and Pollefeys [41] estimated a kinematic chain

based on intersecting motion subspaces. Ross et al. [27]

proposed a probabilistic graphical model learning method

which learned the number of joints and their connections

adaptively. However, as the number of articulation increases,

the computation time grows exponentially. Also, the method

is prone to local minima. An energy based multiple model fit-

ting was proposed by Fayad et al. [11], which performs well

for simple structures by balancing overall model complexity

and local motion errors. However, it finds a moderate struc-

ture rather than an actual detailed structure as the segments

are enforced to be overlapped. Recently, Chang and Demiris

[3] presented a complex structure estimation by combining

motion and skeleton information. They showed state-of-the-

art estimation performance even for complex objects, but

its randomisation of motion segmentation affects structure

consistency.

Structure correspondence matching: A path similarity

based skeleton graph matching was developed by Bai and

Latecki [1] and was applied for shape recognition based on

object silhouettes [29]. Although performing well among

clean silhouette images, the method requires noiseless skele-

tons as input, and can not be readily applied to images of

actual moving objects. The structure correspondence match-

ing is similar to the graph alignment problem in the bioin-

formatics field for the alignment of protein-protein interac-

tions networks [18]. However, the general graph alignment

data are quite different, as very large graphs (thousands of

nodes) are used in conjunction with node similarity based

on chemical properties. Recently, graph structure informa-

tion based alignment methods such as NETAL [25] and

MAGNA++ [37] have been presented, which do not rely on

node similarities.

Motion description methods: Jacquet et al. [15] presented

a relative transformation analysis method based on linear

subspaces, but they focused on detecting the type of articu-

lated motion between two restricted motion parts. Various

metrics for 3D rotations, which can be used to describe

motions, have been reviewed in [14]. Most metrics were

found to be boundedly equivalent, and it was shown that

the geodesic distance on the Riemannian submanifold be-

tween two rotation matrices has more meaning than the other

metrics from a geometric point of view. Hartley et al. [12]

analyse the problem of rotation averaging from the theoreti-

cal side, again emphasizing the importance of the geodesic

distance. In addition, the geodesic distance has been proved

to be effective in practical applications, e.g. for video trajec-

tory estimation and smoothing [16]. Schulz et al. introduced

a framework which employs the geodesic distance to find

deformations within 3D models of real objects [28].

Hypergraph matching: Early second order graph matching

approaches [21, 9] were based on the best rank-1 approxi-

mation of an affinity matrix and energy minimisation [32].

Stochastic sampling was used in [19] to solve the graph

matching problem, whereas a random walk view was pro-

posed in [5]. Other second-order methods include the work

on deformable graphs matching, proposed in [45]. Higher-

order relationships between graphs have been explored to

derive hypergraph matching, which can incorporate more

complex features and representations [43]. A formulation of

the hypergraph matching as a third order tensor optimisation

problem was presented in [10], which has shown significant

improvements over second order methods. An extension to

the third order setting of the reweighted random walk [5]

was proposed by Lee et al. [20]. Recently, a pure discrete

method has been devised [42], accounting for both unary

and higher-order affinity terms and in line with the linear ap-

proximate framework, and a tensor block coordinate ascent

methods was proposed for hypergraph matching [26].
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3. Methodology

Our goal is to find corresponding kinematic joint matches

between two articulated kinematic structures via hypergraph

matching, whilst being accurate and plausible under appear-

ance and motion variations. To this end, we mainly use

2D feature trajectories from two image sequences assuming

that one target subject exists in each scene and the features

are extracted from every part of the object. To build the

kinematic structure from 2D image sequences, we adopt the

state-of-the-art kinematic structure generation method [3].

3.1. Kinematic Structure Formulation

The 2D feature point trajectories of each image sequence

are represented as xf
p , with p as feature point index and

f = 1, ..., F as sequence index. F indicates the number

of frames for each sequence. To indicate motion segments,

we use Si for the disjoint set of points belonging to the ith

segment where i = 1, ..., N , and N as the total number of

segments , and yi denotes the centre position of segment Si

obtained by averaging its points.

In this work, we adopt the same way of representing the

kinematic structure as [41, 3] which use a non cyclic graph

model G = (V,E) to indicate the topological connections

between rigid body parts. Each node1 vi ∈ V is assigned to

the respective motion segment centre yi, and the edge Eij

represents a connection between nodes vi and vj . In this

work, we assume that all kinematic joints are revolute joints,

as prismatic joints are less common and spherical joints can

be easily decomposed into orthogonal revolute joints.

3.2. Hypergraph Matching for Kinematic Structure
Correspondence

In order to estimate the correspondences between two

kinematic structures, we use hypergraph matching meth-

ods. A general hypergraph G = (V, E) consists of nodes

v ∈ V , and hyperedges e ∈ E . Unlike usual graph edges,

hyperedges enclose a subset of nodes from V with size κ(e),
referred to as the order of each hyperedge. In this work, we

generate the hypergraphs based on the two kinematic struc-

tures G and G′. We consider the hypergraph nodes v ∈ V as

the kinematic structure nodes v ∈ V (i.e. V = V), so that

each e ∈ E can represent any tuple of nodes.

The hypergraph matching problem is to find mappings

between nodes of two hypergraphs. Given two hypergraphs

G = (V, E) and G′ = (V ′, E ′), the goal is to find a subset in

the set of correspondences V×V ′. Without loss of generality,

we assume that N ≤ N ′ where N = |V| and N ′ = |V ′|.
The subset of correspondences can be represented by the one-

to-one binary assignment matrix X ∈ {0, 1}N×N ′

, where

X(i, i′) = 1 if vi ∈ V matches v′i ∈ V
′ and X(i, i′) = 0

otherwise. We then define the similarity function F of a

1The terms node and vertex are used interchangeably.

matching subset as the weighted sum of the first, second and

third order similarity terms, as follows:

F(X) = w1

N
∑

i

N ′

∑

i′

F1
(i,i′)Xi (1)

+ w2

N
∑

i,j
i 6=j

N ′

∑

i′,j′

i′ 6=j′

F2
(i,i′)(j,j′)XiXj

+ w3

N
∑

i,j,k
i 6=j 6=k

N ′

∑

i′,j′,k′

i′ 6=j′ 6=k′

F3
(i,i′)(j,j′)(k,k′)XiXjXk

where Xi = X(i, i′), Xj = X(j, j′) and Xk = X(k, k′).
In particular, we define three similarity functions which

are defined in the following sections and are related to the

structure topology (first order F1), the kinematic correlation

(second orderF2), and the combinatorial motion (third order

F3).

The normalising weights w1, w2, w3 play an important

role on balancing the effects of the similarity terms. Previ-

ous hypergraph matching works [44, 26] did not consider

weights for the summation of different order terms. However,

the similarity terms are not well-balanced, as the correspond-

ing number of summation elements increases exponentially

with the order. Consequently, higher order similarity terms

have more impact to the matching result than lower order

terms. Therefore, we propose multi-order similarities with

normalising weights wκ(e) which are inverse proportional to

the number of elements, such that:

wκ(e) =
(N − κ(e))!

N !
×

(N ′ − κ(e))!

N ′!
(2)

where κ(e) = 1 (that is e = {vi}), κ(e) = 2 (that is

e = {vi, vj}) and κ(e) = 3 (that is e = {vi, vj , vk}) for

the first, second and third order correspondences, respec-

tively. The well-balanced combination of all the three simi-

larity functions through the weights w1, w2, w3 allows us to

effectively merge the three different pieces of information

and obtain a more accurate and meaningful correspondence

between kinematic structures.

In our framework, we leverage benefits of the reweighted

random walk hypergraph matching (RRWHM) method [20]

which allows to merge different order similarity information

nicely to obtain topological, kinematic and motion corre-

spondences. RRWHM shows comparable performances to

other state-of-the-art methods [26] and in particular, it has

been shown to achieve better performance in the case of non-

convex functions as in Eq.(1). Thus, we use RRWHM [20]

for solving Eq.(1) in our proposed framework. In the experi-

ment section, we show the performance of other hypergraph

matching methods applied to Eq.(1).
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3.2.1 First Order Similarity: Structure Topology

Each vertex vi of the kinematic structure graph G = (V,E)
is the centre of a body part which is reduced to a single point

yi. Thus, we cannot use classical point feature descriptors

(such as SIFT [22]) to measure a similarity between two body

parts (i.e. vertices) of two kinematic structures. Instead, we

propose a new algorithm based on topologically constrained

subgraph isomorphisms to find the first order node similarity

function F1, which purely relies on the structural topology.

We find all possible subgraphs of G′ which might be

matched to the graph G under local and global constraints.

The local constraint eliminates subgraphs where pairs of

vertices are unlikely to be matched by considering the num-

ber of connected edges (degree). The global constraint is

a threshold on the sum of the difference in degrees for all

vertex pairs. This also serves as quality measurement, as a

lower difference in degree indicates a higher similarity. We

also variate G′ by removing vertices one by one in order

to cope with noise. We define the subgraph isomorphism

following Valiente [35]:

Definition 3.1. A subgraph isomorphism of a graph

G=(V,E) into a graph G′=(V ′, E′) is an injection I ⊆ V

× V ′ such that, for every pair of vertices vi, vj ∈ V and

v′i, v
′
j ∈ V ′ with (vi, v

′
i) ∈ I and (vj , v

′
j) ∈ I, then

(vi, v
′
j) ∈ E′ if (vi, vj) ∈ E.

Importantly, it is guaranteed that a subgraph isomorphism

of G′ has at least as many nodes and edges per node as

G. However, the subgraph isomorphism by itself does not

indicate a perfect match to G, as the subgraph isomorphism

might not only contain more nodes than G, but matched

nodes between the graphs may also have different edges

associated.

We employ the commonly used VF2 algorithm [7, 8]2

to first determine the L subgraph isomorphisms Il ∈
{0, 1}N×N ′

(l = 1, ..., L) of G into G′. The entry Il(i, j) in

the i-th row and j-th column of Il equals 1 if vi is matched

with v′j in the l-th subgraph isomorphism, and 0 otherwise.

Then, we apply the local topological constraint. For

each matching pair of vertices, we extract the degree deg

by counting the number of edges linked to each vertex, as

well as the absolute difference of degrees: δdegi,j (l) =
|deg(vi) − deg(v′j)|, where Il(i, j) = 1. We discard the

subgraph isomorphism candidate Il, if there is a match-

ing pair (vi, v
′
j) for which δdegi,j (l) > θ. The global con-

straint is applied by calculating the total edge difference

∆deg(l) =
∑

δdegi,j (l) for the subgraph isomorphism Il

and discarding the candidate Il if ∆deg(l) > τ . The thresh-

old parameters τ and θ are experimentally determined, and

their impact on the performance is discussed in Section 4.2.

To measure the quality of the subgraph isomorphism Il,

we introduce the subset Ωd which contains all subgraph

2Implemented in the R package ‘igraph’: igraph.org

Algorithm 1: Generating the first order similarity func-

tion using structural topology

Input :G, G′

Output :F1

I ← VF2(G, G′)

M← calculate by Eq.(3) based on I

for j ∈ [1 : N ′] do

I
′

← VF2(G, {G′ \ vj})

M
′

j ← calculate by Eq.(3) based on I
′

F1 ← 1
N ′

∑N ′

j=1

M+M
′

j

2

isomorphisms
(

Ωd
ω

)

of Il, where ∆deg(l) = d. Thus, Ωd

contains subgraph isomorphisms with similar quality, and a

lower difference d indicates a higher similarity. We generate

a probabilistic correspondence matrixM as follows:

M =

τ
∑

d=0

1

d+ 1

|Ωd|
∑

ω=1

Ωd
ω

|Ωd|
. (3)

We normaliseM such that the sum over all entries in one

row equals 1, as each row i contains the probability that vi
matches vertex v′j .

In order to cope with imperfections in the estimated kine-

matic structure, we also consider possible variationsM
′

j of

G′, where j indicates that node v′j is removed along with the

respective edges. The set M
′

= {MG
′

\v
′

1 , ...,MG
′

\v
′

N }
contains all subgraphs which can be found while sequentially

removing one vertex.

The first order similarity matrix F1 based on structural

topology is then found as the mean between the probabilistic

correspondence matrix with and without node removal:

F1
(i,i′) =

1

N ′

N ′

∑

j=1

(

M(i, i′) +M
′

j(i, i
′)

2

)

. (4)

The proposed procedure is described in Algorithm 1.

3.2.2 Second Order Similarity: Kinematic Correlation

We measure the kinematic correlation from a pairwise mo-

tion and skeletal distance between two nodes. As was pre-

sented in [3], the kinematic distance P within a kinematic

structure G can be effectively measured by considering both

relative moving velocity difference and geodesic distance

along the skeleton. Thus, the distance P(i,j) between vi and

vj is calculated based on the segment centre points yi and

yj as follows:

P(i,j) = median
f∈F

{‖(yfi −y
f−1
i )−(yfj−y

f−1
j )‖×ζ(yfi , y

f
j ; Ψ

f )}.

(5)

We take the median value over all frames F in order to be

robust to outliers. The Ψ indicates the skeleton distance map

generated by [3], and the skeletally geodesic distance ζ is
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measured by a shortest path connecting the two node points

within Ψ 3. A large distance value implies that the pairwise

nodes are skeletally apart and move with different velocity.

Thus, the second-order similarity function is calculated as:

F2
(i,i′)(j,j′) = exp(−‖P(i,j) −P(i′,j′)‖). (6)

3.2.3 Third Order Similarity: Combinatorial Motion

We consider characteristic combinatorial local motions,

which are shared between different kinematic structures.

As was discussed in [10, 20], third order feature combina-

tion leads to geometric invariances and better represents

local information. Similarly, we consider the combinato-

rial kinematic rotation ranges of three nodes which capture

local motion characteristics whilst being invariant to scale-

rotation-translation and movement direction. As widely used

in mechanical kinematics, we utilise the joint limits to de-

scribe its dynamic ranges. To characterise the motions which

are executed by a revolute kinematic joint, we extract its mo-

tion range, i.e. the minimum and maximum rotation angle in

respect to another joint.

To build the combinatorial motion range descriptor, we

first need to find the joint positions. The location of a joint

between two motion segments can be approximated as the

point where two segments Si and Sj encounter each other, as

shown in the left half of Figure 2. For each frame f , we find

the M nearest points of Si to the segment centre vj and vice

versa, and denote them as neighbouring points Ni→j (and

Nj→i respectively). The joint position Ji−j is then defined

by Ji−j = 1
2M

∑M

m=1 (Ni→j(m) +Nj→i(m)). Note that

Ni→j 6= Nj→i, but Ji−j = Jj−i for i 6= j.

Our novel combinatorial motion range descriptor is then

built as follows. We consider three body parts (i, j, k) at

frame f with segment centres y
f
i , y

f
j , y

f
k and their respective

revolute joint positions J
f
i−j , J

f
j−k and J

f
i−k. We find the

vectors between all joints and their respective centre points,

i.e. v
f
i,i−j = y

f
i − J

f
i−j , v

f
j,i−j = y

f
j − J

f
i−j . Then, we find

the directed angle α
f
i−j between the two vectors (see also

right half of Figure 2):

α
f
i−j = ∠(vf

i,i−j ,v
f
j,i−j) = arctan





‖vf
i,i−j × v

f
j,i−j

T
‖

v
f
i,i−j · v

f
j,i−j

T



 .

(7)

Finally, we build the rotation matrix R
f
i−j based on α

f
i−j .

In the next step, we calculate the geodesic distance on the

Riemannian manifold between all pairwise rotation matrices

which describe combinatorial movements of three body parts.

The geodesic distance measure has been shown to be a highly

meaningful metric to describe 3D rotations [14, 16]. For

combinatorial body parts (i, j, k), we define the geodesic

distance vector of pairwise rotation matrices as follows:

3We use the code available at http://www.imperial.ac.uk/

PersonalRobotics to calculate each distance term.

Neighbouring 

Points

Neighbouring 

Points

Figure 2. Visualization of the joint estimates and motion range

descriptor. The left half shows the segment centre positions y, and

the neighbouring points N to find the joint positions J . The right

half visualises the vectors v which are used to calculate the angles

α (Eq.7). Best viewed in colour.

d
f

(i,j,k) = ‖logm(Rf
i−j

T
R

f
j−k)‖F (8)

where logm is the principal matrix logarithm, and ‖ · ‖F is

the Frobenius norm.

We then merge the sequence of geodesic distances d
f

(i,j,k)
and form a 6 dimensional feature vector Υ(i,j,k). The en-

tries of the vector are the minimum and maximum distances

found over all frames for body parts (i, j, k). This corre-

sponds to the minimum and maximum range of all possible

combinatorial motions of body parts i, j and k. Thus, the

feature vector to describe the combinatorial local motion is

built as:

Υ(i,j,k) =[min
f∈F

d
f

(i,j,k),max
f∈F

d
f

(i,j,k),

min
f∈F

d
f

(j,k,i),max
f∈F

d
f

(j,k,i),

min
f∈F

d
f

(k,i,j),max
f∈F

d
f

(k,i,j)]. (9)

To compare two feature vectors Υ(i,j,k) and Υ(i′,j′,k′),

we define the third order similarity measure as:

F3
(i,i′)(j,j′)(k,k′) = exp(−‖Υ(i,j,k) −Υ(i′,j′,k′)‖). (10)

We want to highlight that the presented metric is super-

symmetric, and thus can be represented as a tensor product.

The local combinatorial motion metric has various bene-

fits over other metrics. Using the geodesic distance on the

Riemannian manifold has been found to be geometrically

meaningful to describe 3D rotations [14]. The geodesic dis-

tance is invariant to the absolute rotation, as only the relative

rotation between the body parts is captured [24]. Further-

more, it is invariant to scale, as the translation between the

body parts is not considered in the geodesic distance.

4. Experiments

We evaluated our method on synthetic benchmarks and

real image sequences generated from various objects by com-

paring it with state-of-the-art structure alignment methods

and appearance based correspondence matching methods. In

particular, we used the following graphical structure align-

ment approaches: NETAL [25] and MAGNA++ [37]. For
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Figure 3. Performance according to outlier tests (left), kinematic deformation ratio (centre) and symmetry order changes (right). The

kinematic structures in the top row are generated in 2D and the bottom row’s results are from 3D structures. It can be observed that our

method achieves the best performance over all other algorithms in most cases.

the appearance based approaches, we used Agglomerative

Correspondence Clustering (ACC) [4], Reweighted Random

Walks for Graph Matching (RRWM) [5], and Progressive

Graph Matching (PGM) [6]. For all comparisons, the au-

thors’ original implementations were used. Also, we set

τ = 3 and θ = 1. To encourage more following researches

on this newly proposed problem we release our code along

with our new dataset. All experiments were performed using

a PC with a Intel Core i7-4770 CPU @ 3.40GHz (x8) and

32GB of RAM.

4.1. Synthetic Dataset

In this experiment we performed various comparative

evaluations on synthetically generated kinematic structures

in both 2D and 3D. For each trial, we randomly constructed

a kinematic structure graph G and created a second graph G′

by perturbing G. Then, we compared state-of-the-art graph

alignment algorithms [25, 37] trying to find correspondences

between the two structures. Each quantitative result in these

experiments is acquired from averages of 100 random trials.

For the first structure G, we randomly generated node posi-

tions, their movements and kinematic correlations, and the

kinematic structure is built based on them. The kinematic

range of each node is assigned by a uniform random distri-

bution U(0, σm) and used to simulate dynamic movements.

The kinematic joints are located in the middle of the con-

nected nodes following the structure. The number of frames

and the parameter σm do not affect the result, and are set to

F = 100 and σm = 50.

First, we increased the number of outlier nodes in G′ and

randomly set their kinematics while preserving the kinemat-

ics of all other nodes. As shown in Figures 3(a) and 3(d),

Figure 4. The proposed method can establish kinematic correspon-

dences between RGB video and depth video.

even though there are severe topology changes, our proposed

method finds matches more accurately than graph alignment

methods, as our method benefits from the kinematic and

motion terms.

Second, we increased each node’s kinematic range in G′

while not changing the structure topology. To generate G′,

we perturb G by adding newly generated random motions

from U(0, ρ ∗ σm), where ρ induces a motion perturbation

ratio. The results are shown in Figures 3(b) and 3(e). Even

though the motion terms are deteriorated by the motion

perturbation, the first term helps to establish correct matches

robustly, resulting in an overall high accuracy.

Third, we tested the robustness to structures having sym-

metric topology but non-symmetric motions. The symmetry

order indicates a number of possible symmetric axes. As

we can see in Figures 3(c) and 3(f), the graph alignment

methods were easily confused by structure symmetry, but

our method can find correct matches using the motion infor-

mation. Through this test we have validated that the kine-

matic and motion information are characteristic properties

for dynamic structures as much as structural topology and

the proposed kinematic correlation term and combinatorial

motion term are effectively designed.
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4.2. Real Kinematic Structure Dataset

The Imperial-PRL-Dataset [3] has been used for testing

the complex kinematic structure generation performance. It

contains from simple structures to highly complex structures

such as a human upper body and a human hand. However,

the kinematic structures are not diverse enough to validate

the correspondence matching performance. Thus, we newly

constructed more sequences using various humanoid robots4

and human motion, and have performed many tests with var-

ious combinations5. We generated the kinematic structures

G and G′ using [3] with manually set segment numbers,

and they are used as input pairs for the proposed method and

the graph alignment methods.

For the object appearance based matching methods, we

used the first image of each sequence as input. Initial can-

didate feature correspondences were generated using the

MSER detector [23] and the SIFT descriptor [22] as was de-

scribed in [6]. Then, ACC [4], RRWM [5] and PGM [6] are

applied separately using the codes provided by the authors.

As shown in Figure 5, our method clearly outperforms

other methods for finding accurate kinematic correspon-

dence. Especially the graph alignment approaches often

failed to distinguish symmetric matches. It is clear that the

appearance based correspondence matching approaches can

not be applied to heterogeneous objects. These results on

real image data are in line with the tests on synthetic data.

Our method is able to establish similar kinematic structure

matches even between visually totally different appearances

and in the presence of strong motion variations.

Figure 6 shows more correspondence matching results

between heterogeneous objects. Even though there are many

outlier nodes in G′, it finds accurate matches. Especially, the

bottom left matching result is interesting. The matches are

upside-down, as the left iCub is moving its hands downwards,

whilst the right iCub is waving its hands upwards. This

shows that the combinatorial motion term can distinguish

motion directions.

In Table 1, we show the quantitative matching accuracy

based on manually generated ground truth matchings by

applying the proposed similarity function (Eq.(1)) to vari-

ous hypergraph matching methods. It can be seen that our

method outperforms other methods when used in conjunction

with RRWHM [20]. This is because the stochastic scheme

of RRWHM can update the correspondence matrix more

robustly than other optimisation-based methods, especially

when the graph structure is dynamic and largely deformed

by motions. Furthermore, Table 1 shows that the proposed

term normalisation weights wκ(e) play an important role by

making a balance between the structural topology and mo-

4We utilised three robots: iCub (www.icub.org), NAO (www.

aldebaran.com) and Baxter (www.rethinkrobotics.com)
5The extended dataset is available at www.imperial.ac.uk/

PersonalRobotics.

Table 1. Performance on the real kinematic structure dataset.

Methods Accuracy (%)

Proposed F to HGM [43] 35.06(±30.73)
Proposed F to TM [10] 29.76(±21.65)
Proposed F to BCAGM+MP [26] 69.09(±20.65)
NETAL [25] 67.72(±39.59)
MAGNA++ [37] 63.42(±33.66)
Proposed F to RRWHM [20]

without weight normalisation Eq.(2)
88.23(±13.07)

Proposed F to RRWHM [20]

with weight normalisation Eq.(2)
92.99 (± 10.41)

tion similarity. We have observed that most failure cases

of RRWHM without the normalisation term were due to

mismatched nodes having similar motions.

Furthermore, we consider the kinematic structure as a

mid-level representation, so the proposed method can be

applied to any kind of input device as long as the kinematic

structure can be produced. As shown in Figures 1 and 4, the

proposed method can even find kinematic structure matches

across different sensors.

We evaluated our method on the MPI Dexter 1 hand

dataset [30] in order to validate whether it can be used

for matching similar actions. The dataset consists of 7 se-

quences of hand motions of a single actor. Because all

sequences are from one actor’s motion, we measured correct

hand joints matching accuracy between similar motion pairs:

‘fingercount’-‘fingerwave’, ‘pinch’-‘tigergrasp’ etc. The

kinematic nodes and joint positions are estimated from the

provided fingertip positions and depth images. We achieved

an accuracy of 86.67% (no parameter tuning), compared to

25.56% (NETAL [25]) and 31.11% (MAGNA++ [37]). This

demonstrates the robustness of our third order motion term,

as the dataset’s hand topological structure is ambiguous.

4.3. Experimental Analysis

Time complexity analysis: On our proposed real

dataset, it takes 1.69±1.09s, 0.11±0.07s, and 2.20±1.70s

for 1st, 2nd and 3rd order respectively (non-optimized

Matlab implementation), as well as 0.02 ± 0.001s for the

RRWHM hypergraph matching [20] (C++ implementation).

As most kinematic structures contain only few nodes (in our

real dataset from 4 to 11), VF2 is fast enough in our applica-

tion. Furthermore, the time complexity of VF2 is similar to

other state-of-the-art subgraph isomorphism algorithms [2].

Validations on the parameters of VF2: If the local

constraint θ ≥ 3, the performance decreases as the con-

straint is rarely triggered. For the global constraint τ , a low

value of τ ≤ 2 decreases performance as it does not allow

enough noise. For τ ≥ 3, the impact of τ is low, as Eq.(3)

weights subgraphs inverse proportionally to the total differ-

ence in degree of the graphs. Detailed experimental results

are provided as a supplementary document.
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(a) Proposed (b) Graph alignment: NETAL [25] (c) Graph alignment: MAGNA++ [37]

(d) Appearance feature matching: ACC [4] (e) Appearance feature matching: RRWM [5] (f) Appearance feature matching: PGM [6]

(g) Proposed (h) Graph alignment: NETAL [25] (i) Graph alignment: MAGNA++ [37]

(j) Appearance feature matching: ACC [4] (k) Appearance feature matching: RRWM [5] (l) Appearance feature matching: PGM [6]

Figure 5. Experiments on real image datasets. Two static images are used for the appearance based methods (best viewed in colour).

Figure 6. Various kinematic structure correspondence matching results using the proposed method (best viewed in colour).

5. Conclusion and Future Works

We have presented a novel approach to find kinematic

structure correspondences between heterogeneous objects

via the hypergraph matching method. Our method estab-

lishes both structural topology correspondences and their

kinematics-based matches, effectively eliminating outliers

from structure and motion variations. To find the structural

topology similarity, we proposed a topologically constrained

subgraph isomorphism aggregation which is robust to noise

in the kinematic structures. For motion similarity, we em-

ployed the logarithm of the rotations between motion seg-

ments, which results in the geodesic distance between the

kinematic joints. This has the advantage of being invariant

to scale, orientation, and translation; leading to an universal

combinatorial motion descriptor. Under variations of the

structure topology, kinematics and symmetry, it can be ob-

served that our method achieves the best performance over

all other algorithms in most cases. As this is the first work

on kinematic structure correspondence, we provide a chal-

lenging dataset containing the ground truth correspondences

of various kinematic structures. Using this dataset, we have

shown that our proposed method outperforms other existing

approaches which are based on either solely structural topol-

ogy, or object appearance. We plan to apply our method to

learning by imitation tasks in robotics. There, finding corre-

spondences between the kinematic structures of the human

and the robot is one of the main problems, which can be

effectively addressed using our method.
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