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Abstract

Using fiducial markers ensures reliable detection and

identification of planar features in images. Fiducials are

used in a wide range of applications, especially when a re-

liable visual reference is needed, e.g., to track the camera

in cluttered or textureless environments. A marker designed

for such applications must be robust to partial occlusions,

varying distances and angles of view, and fast camera mo-

tions. In this paper, we present a robust, highly accurate

fiducial system, whose markers consist of concentric rings,

along with its theoretical foundations. Relying on projective

properties, it allows to robustly localize the imaged marker

and to accurately detect the position of the image of the

(common) circle center. We demonstrate that our system

can detect and accurately localize these circular fiducials

under very challenging conditions and the experimental re-

sults reveal that it outperforms other recent fiducial systems.

1. Introduction

The term fiducial marker, or simply fiducial, refers to a

set of (coplanar) points encoded in a planar pattern allow-

ing a reliable detection and identification across views. A

fiducial marker system is a (set of) fiducial marker(s) cou-

pled with dedicated computer vision algorithms solving the

detection and identification problems. This is used in a va-

riety of applications, both in computer vision and robotics,

ranging from camera calibration to augmented reality or vi-

sual SLAM. The choice of fiducials is of crucial importance

within this framework as markers must provide reliable vi-

sual references in the scene that can be used to estimate,

e.g., the camera position or its motion. Such framework

requires that the fiducial marker system be robustly and ac-

curately detectable even under very challenging conditions,

such as, e.g., when the markers are partially or largely oc-

cluded, or seen under highly skewed angles or from long

(a) (b)

(c) (d)
Figure 1. (a,c) Synthetic images of circular fiducials under very

challenging shooting conditions i.e., perturbed, in particular, by a

(unidirectional) motion blur of magnitude 15px. (b,d) Using the

proposed fiducial system, markers are correctly detected and iden-

tified with an accuracy of 0.54px and 0.36px resp. in (a) and (c) for

the estimated imaged center of the outer ellipse whose semi-major

axis (in green) is equal to 31.9px and 34.5px resp.

distances, when the illumination is very poor or irregular,

or when the camera undergoes very fast motions generating

blur.

In this paper, we present a robust, highly accurate and

theoretically-founded fiducial system, which is highly tol-

erant to all of the mentioned challenges, as shown in Figure

1. Its markers are based on concentric black rings on a white

background, extending the one-ring markers introduced by

Gatrell et al. in [10]. The geometric properties of the con-

centric circles delivered by their edges are exploited to ac-

curately detect the image of the circle common center, thus

providing a highly reliable feature point that can be used

for tracking and motion estimation. The thickness of the

rings can be used to encode the information of the marker,

typically a unique ID, thus providing a simple and reliable
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method for recognizing the different markers placed in the

scene.

The detection method proposed in this work relies on

the flow conservation property: the ingoing amount of gra-

dient magnitudes through an arc of the outermost ellipse

must be equal to the outgoing amount of gradient magni-

tudes through an arc of the innermost ellipse. This property

also holds in presence of motion blur since, as described in

[16], the image of a circular fiducial is not affected by the

blur along the line perpendicular to the direction of the mo-

tion blur. Consequently, the proposed circular fiducial can

be detected and identified without explicitly un-blurring the

image before the detection stage. Furthermore, since any

concentric circle-pair encodes –through the circular points–

the Euclidean structure of its supporting plane, the perspec-

tive distortion can be removed by estimating its rectifying

homography. While reaching the performance of other re-

cent fiducial systems under favorable conditions, we show

that the proposed fiducial system clearly outperforms these

systems under highly challenging (i.e., more realistic) con-

ditions.

The paper presents the system theoretical foundations

and describes both the circular fiducial detection step and

its subsequent validation, the latter simultaneously deliver-

ing the position of the imaged center along with the marker

ID. A comparison of its performance with a variety of re-

cent marker system under conditions of varying difficulties

is finally provided.

2. Related work

The most widely used fiducial systems use bitonal pat-

terns, usually made of two main components: low fre-

quency elements for marker detection, e.g. a square black

border [8, 12, 18], and high frequency elements for informa-

tion encodage, e.g. an internal region filled with 6×6 grid

of black and white cells [8, 18].

Thanks to the relatively simple detection algorithms al-

lowing fast detection at high frame rates even on mo-

bile phones, these systems have gained popularity in many

augmented reality applications, supported by many freely

available libraries, such as ARToolkit [12] and ARToolkit-

Plus [18].

However, this conventional approach suffers in presence

of motion blur. Whereas low frequency components remain

localizable to some extent, high frequency components are

not preserved, which prevents the extraction of the marker

identity. A trivial solution for this problem is to increase

the size of the markers in the scene. However, for many ap-

plications, this can be invasive and therefore unacceptable.

When processing video streams, temporal continuity can be

exploited to improve the detection performance and robust-

ness: the markers can be tracked across the frames, e.g. as

implemented in ARToolkit [12]. However, such tracking al-

ARTKPlus[18] RuneTag[2] PRASAD[16] Proposed

Figure 2. Prior fiducials and our proposal. From left to right, the
last two are designed to be detected under motion blur conditions.
Only the proposed detection algorithm is able to exactly match
a feature point (its center) across a collection of images, even in
presence of motion blur.

gorithms fail when the camera moves rapidly, and require

re-initialization whenever the imaged marker is no longer

detected.

Lately, fiducial systems that are robust to motion blur

have been proposed. The mono-spectrum marker [17] con-

sists of low frequency components in the form of coloured-

“degraded” dots lying on a black square background. Re-

gions of the markers are distinguished from other regions

by means of a frequency spectrum specific to the marker.

At the end of the localization process, the four marker cor-

ners are extracted as the centers of the dots located at each

corner. A drawback of such an approach is that it is assumed

that the image of a dot center corresponds to the center of

the imaged dot. However, this underlying assumption is not

valid under a projective camera model, thus preventing fea-

ture matching across a collection images. In practice, this

can significantly affect the accuracy of the retrieved pose,

because the error due to the center assumption increases

with the size of the circle, and consequently the error of

the computed pose grows as the camera gets closer to such

a marker. This remark also holds for the methods proposed

in [7] and [16]. In [7], a marker consists of four black dots,

forming a square, located on a white background. In this

approach, the marker detection is performed through ma-

chine learning techniques and it is to some extent capable

of handling the presence of motion blur.

The fiducial markers proposed in [16] and [14] are the

most similar to the one presented in this work. In [16], the

authors propose a marker made up of concentric white rings

on black background. However, even in this case, the image

of the marker’s center is incorrectly assumed to be at the ge-

ometrical center of the marker’s image. Another drawback

of this method is a very low information-coding capacity,

which leads to a library size of only four different markers,

thus dramatically limiting the number of possible applica-

tions. In [14], a fiducial system robust to motion blur is

proposed. It relies on self-similar templates defined by a

2D rotationally invariant, bitonal intensity function. How-

ever, the self-similarity property only holds in theory for

fronto-parallel acquisitions by calibrated cameras, even if

it is empirically observed robustness to perspective distor-

tions. While not discussed in [14], any identification task
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should run the detection algorithm as many times as the

number of IDs, drastically reducing the identification power

and/or increasing the computational time.

The problem of strong occlusion is addressed in Rune-

Tag [2], where a marker is composed of rings of circular

dots. The authors have shown that such a marker allows an

accurate estimation of the camera pose while being robust

to severe occlusion. The PiTag fiducial markers [3], which

are also made up of circular dots but arranged in rectangles,

have shown a similar robustness to occlusion, although with

an even smaller number of circular dots.

3. The Proposed Circular Fiducial System

The proposed circular fiducial is a planar pattern consist-

ing of a set of concentric black circular rings on a white sup-

port. Every circular fiducial naturally encodes three points

two of which being the circular points of its supporting

plane, which are complex conjugate points at infinity [15].

The circular point-pair encodes the 2D Euclidean structure

of this plane naturally, allowing to determine from its image

a metric rectification that removes the projective distortion

on the imaged marker. In the case of a calibrated camera, it

also allows to compute the camera pose with respect to the

supporting plane, up to an unknown planar rotation. An-

other benefit of circular fiducials is their known resiliance

to severe occlusions [19, 13] as well as linear motion blur

[16]. In terms of their information-coding capacity, a cir-

cular fiducial can be seen as a circular bar-code which en-

codes data by varying the widths and spacings of circular

rings. Consequently, one of its (relative) shortcomings is

the limited amount of information that can be encoded in

this bar-code compared to some other fiducials. This short-

coming can be overcome, for example, by reusing IDs but

combining them in unique patterns. Overall, despite such

an high potential for being the ‘ideal’ fiducial, the circular

ring pattern has received relatively little attention in the lit-

erature. An explanation of this lack of popularity may be

the absence of code released under a public license.

We have recently reported [4, 5] how to integrate circular

fiducials within a unified Structure-from-Motion paradigm,

where we describe how images of circular point-pairs can

be combined with images of natural points.

We assume that all views capture a cluttered scene in

which M circular fiducials with N rings are visible. The

gray-scale intensity of one image is represented by a differ-

entiable function I : [1,m] × [1, n] ⊂ R
2 → [0, 1], whose

discretized representation is the sampling of I on the do-

main [1,m] × [1, n] ⊂ N
2. The image gradient field is de-

note by ∇I : I → R
2 . We assume to be given the set

of edge points that correspond to maxima of the gradient

magnitude (e.g., using Canny’s edge detector [6]).

We use the Matlab-like notation M(1:r,1:c) for denoting

the r×c-submatrix of M selected by the row range [1, r] and

the column range [1, c]. Similarly M(:,1:c) (resp. M(1:r,:)),

selects the first c (resp. r) columns (resp. rows) of M.

3.1. Circular fiducial detection

The problem of detection is formulated as that of seeking

regions in the image that can potentially support a portion

of the external contour of the imaged circular fiducial, so-

called outer elliptical arc. To be candidates, the regions

must obey some loose geometric constraints, as convexity

and smoothing, as well as more specific photometric con-

straints derived from differential properties of the gray-scale

intensity, related to the gradient field ∇I within an imaged

circular fiducial, as reported in the next paragraphs.

There are three different selection steps which can sum-

marized as follows.

Pixel selection (§3.1.2): We create paths in the image

in the form of sequences of 2N linked edge pixels (when a

fiducial has N rings) such that the direction of the path seg-

ment starting at pixel p is given by the image gradient at p.

Then, we select pixels which appear as path ending points

the greatest number of times (through a vote procedure).

Region-pair grouping: We group into ‘inner’ regions

the selected ending points to form polygonal approxima-

tions of convex arcs and we group into ‘outer’ regions the

associated starting points.

Region-pair selection (§3.1.3): We select only region-

pairs which satisfy the ‘conservative constraint’ which ba-

sically ensures that the ingoing amount of gradient magni-

tudes through the outer region must be equal to the outgoing

amount of gradient magnitudes through the inner region.

3.1.1 Theoretical foundations of detection

At this step, in order to provide the theoretical foundations

of our approach in a simple form, we will only consider cir-

cular fiducials with one ring, delimited by its outer and inner

circles. Both circles are centered at the origin with radii 1
and r < 1, and associated with closed and open disks, B1[0]
and Br(0) in R

2. Thus , Ω = B1[0]\Br(0), defines the sur-

face of the ring between the two circles, in the following re-

ferred to as the interior of the ring. Exceptionally, the ring is

not painted black but (again for pedagogic purposes) with a

continuous gradation of gray hues (black is hue 0 and white

is hue 1) as defined by the function α : [−1, 1]2 → [0, 1] we

have α(x) = 1− ‖x ‖
2

for all x ∈ Ω (interior of the ring),

α(x) = 1 for all x /∈ Ω. This is seen in figure 3(b).

Consider a view of the scene under an imaging process

H : [−1, 1]2 → [1,m]× [1, n] ⊂ R
2 through some homo-

graphic mapping that restricts the central projection to the

ring’s supporting plane [11]. Under the assumptions that (i)

the scene is illuminated by a uniform parallel light beam,

(ii) the surface supporting the fiducial is Lambertian, (iii)

the chirality constraints are ensured, the intensity value for
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(a) (b) (c) (d) (e)

Figure 3. (a) A circular fiducial with four black rings. (b) A circular fiducial with one single ring painted with a continuous gradation of
gray hues (the inner circle has a near infinitesimal radius). Note that the circles of the fiducial in (a) are equipotentials in (b). (c) An imaged
pattern. (d) The gradient map of the imaged pattern. (e) The field lines of the gradient map.

an image point u ∈ H([−1, 1]2) is given by (see figure 3(c))

I(u) = α
(

H−1(u)
)

(1)

For u /∈ H([−1, 1]2), I(u) is simply the luminance related

to the corresponding projected scene point. Note that since

the ring can be seen as an “infinite” set of concentric circles

associated with the equipotentials of α, their images under

H are the equipotentials of (1), the outer and inner equipo-

tentials coinciding with the images of the outer and inner

circles (see figure 3(c)) .

Assuming there are no edge points in H(Ω) except a

few outliers, we now shift our first problem of determin-

ing the points of the outer ellipse into the one of linking

each point of the outer ellipse to some point of the inner el-

lipse. Our idea for achieving this is to follow –if possible–

for each edge point ue the field line of the gradient field

∇I through ue and to stop as soon as another edge point is

encountered (see figures 3(d-e)). This field line is the pla-

nar curve passing through ue and whose tangent at each of

its points u is collinear to the vector ∇I(u), or more for-

mally, the curve has parameterization φ : U ⊂ R 7→ R
2,

solution of the differential system

{

φ′(t) = ∇I(φ(t))
φ(t0) = u0

where (t0,u0) ∈ Ω× R
2 defines an initial condition.

Two key results are now given (cf. figure 3(e)):

Proposition 1. In the continuous image,

• Through any point in H(Ω), except the image of the
circle centre, passes one and only one field line of ∇I ;

• Any field line necessarily converges to one point on the
inner ellipse.

The proofs are omitted here due to lack of space (the proof

of the latter result relies on the fact that, when the inner

radius of the ring is 0, any field line converges to the image

of the circle center).

3.1.2 Pixel selection

Here, circular fiducials can have N rings, that is 2N con-

centric circles. The idea is to chose an adequate number N

of rings in order to guarantee a good approximation of the

field lines in the discrete image.

We call linked sequence (or path) a polygonal line with

2N edge points {ui1 , ..,uiP } as vertices, when all pairs

(uij ,uij+1), j ∈ [1, 2N − 1] are pairs such that uij is an

edge point and uij+1 is the closest edge point to uij , out-

side the neighbourhood of uij , that lies on the line pass-

ing through uij with (−1)j∇I(uij ) as direction. Assum-

ing K linked sequences, for any k ∈ K, let S be the

K × 2N -matrix where the row S(k,:) concatenates the in-

dices of edge points for the sequence number k and Vi =
{

l ∈ K | S(l,2N) = i
}

is the set of indices of all linked se-

quences in which ui is the 2N -th (i.e., last) point. Note that

card(Vi) can be seen as the number of ‘votes’ for ui as last

point in a sequence.

If E denotes the set of indices of all edge points, then we

can state the following pixel selection rule. The set F ⊂ E
with card(F ) = T , containing the indices of the T edge

points with the T highest votes i.e., of the ui with i satis-

fying mini∈F card(Vi) ≥ maxj∈E\F card(Vj), is the set

of indices of points selected as point candidates for the in-

ner ellipses while S(∪i∈FVi, 1) yields the set of indices of

points selected as point candidates for the outer ellipses.

In practice, we have implemented this algorithm in the

discrete image as follows. An edge pixel is first (arbitrarily)

selected. We can see it as having a voting intention. It yields

a valid vote only if it is possible to build from it a polygonal

line {ui}i∈S(k,:)
, whose vertices are 2N edge points satis-

fying some conditions (see below). If it is the case, the vote

is confirmed. The purpose is to create polygonal lines that

connect edge points of the outer ellipse to edge points of

the inner ellipse. The two conditions for a polygonal line to

approximate a field line arc are the following. For all j ∈
{1, ..., 2N − 1}: (i) uS(k,j+1)

= uS(k,j)
+aS(k,j)

∇I(uS(k,j)
),

where aS(k,j)
< 0 if j is uneven and aS(k,j)

> 0 other-

wise; (ii) any segment with endpoints uS(k,j)
, uS(k,j+1)

does

not include edge points other than vertices. It is worth of

mentioning that we empirically verified that the underlying

assumption holds in practice: defining a pixel as a square

whose sides have length 1, through the pixel uS(k,1)
and
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(a)

(b)

(c)

Figure 4. (a) Three images of circular fiducial. (b) Binary edge
images returned by the edge detection on which has been plotted
a set of linked sequences. (c) Images of resulting votes.

uS(k,2N)
it passes at least one field line in the continuous

image. The voting procedure applied on real images is il-

lustrated in figure 4.

3.1.3 Region-pair selection

At this step, a candidate is any pair of regions (R1, R2) in

the discrete image such that R2 is a convex chain of pixels q
with a number of votes card(V (q)) ≥ 2, while R1 is the set

of pixels p such that p is the first pixel in the linked sequence

of which q is the last pixel. The issue here is to validate R2

as a support of an arc of the inner ellipse by checking the

average number of received votes.
It is assumed to have fitted all the pixels in Ri to the

parameters of some elliptical arcs Ei using some robust
technique1, and, in particular, to have estimated L(Ei), the
length of Ei. Note that if any of the two regions does not
‘fit well’ with a portion of an ellipse, then the pair is elimi-
nated. In the next paragraph, we show that the total number
card(V (R2)) of received votes by R2, i.e., in the region
candidate to support an inner arc E2, must satisfy, for some
threshold ǫ > 0,

|card(V (R2))− L(E1)| < ǫ (2)

Principle of flow conservation for validation. For the

moment, we deal again with a theoretical circular fiducial

with one ring painted with a continuous gradation of gray

hues, as detailed in previous paragraphs.

Let T1 and T2 be two line fields of the gradient map

∇I defined on H(Ω) i.e., inside the imaged ring. Let A1

and A2 be the arcs of the outer and inner ellipses respec-

tively, such that the curve delimited by A1, T1, A2 and T2

1The outer ellipse is estimated using the ‘ellipse growing’ technique of
[13], where multiple arcs can be assembled.

is closed, as shown in figure 5. We denote by Ai, with

i ∈ {1, 2}, the arclength-parameterized curve modeling the

arc Ai with L(Ai) denoting the length of Ai.

The flux (or total flow) through the arc Ai is defined as
∫

Ai

(∇I · ni) ds =

∫

Ai

‖∇I‖ ds (3)

since ∇I and ni, the unit normal to Ai, both evaluated at

Ai(s), are collinear vectors.

The proposed conservative constraint in our validation

step relies on the principle of conservation.
∫

A1

‖∇I‖ ds =

∫

A2

‖∇I‖ ds (4)

which says that the total ingoing flow though arc A1 is ex-

actly the same than the total outgoing flow through arc A2.

This follows from the fact that the gradient field is, by def-

inition, a conservative vector field. In terms of vocabulary,

we will say that (A1,A2) is a conservative arc-pair.

(a) (b)

Figure 5. (a) Flow conservation in a continuous image.. (b) Flow
conservation in a discrete image.

In the discrete image, under the hypothesis that R1 is a

region (set of pixels) that supports an arc E1 of the inner

ellipse, one aims at determining whether the associated re-

gion R2 supports an arc E2 of the outer ellipse such that the

arc-pair (E1, E2) is a conservative arc-pair i.e., a pair like

(A1,A2) which satisfies (4). This is achieved by checking

the total number of received votes by R2.

Let us deal now again with bitonal circular fiducials with

multiple rings while assuming, that the principle of flow

conservation holds for its image. The voting procedure cre-

ates paths (in the form of the so-called linked sequences)

in the image gradient field whose endpoints are assumed to

lie on a single field line. An important property of conserva-

tive vector fields is that the line integral is path-independent.

Thus, the flows carried between the endpoints are the same

for either any path or the line field. On the other hand, one

can say that the paths created by linked sequences have the

property that the incoming flow for the starting pixel of the

path is 1 (a starting pixel initiates a vote). Hence, we can

conclude that the outgoing flow of the inner arc is equal

to card(V (R2)), the total number of received votes by the

pixels of R2, cf. figure 5(b).
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3.2. Circular fiducial validation

In the discrete image, let (R1, R2) be two regions sup-

porting two elliptical arcs (A1,A2), respectively outer and

inner, which satisfy the necessary condition (2) of the con-

servative constraint. We seek the image c of the circle cen-

tre (detected at sub-pixel accuracy) such that the image re-

gion delimited by the elliptical sector formed by c and R2

can be validated as the image of a sector of a circular fidu-

cial or not. For this purpose, our idea is to check the appear-

ance similarity of ‘metric rectifications’ of different cross

sections through c.

We first describe the geometric component of our vali-

dation process. We call any homography G of the image

onto itself a canonical rectifying homography such that, by

applying G to the two image ellipses corresponding the pro-

jections of two concentric circles, we obtain two concentric

circles centred at the origin with radius 1. In other words,

we recover the original Euclidean geometry of the plane

supporting the circles up to a 2D rotation and scaling. It is

well-known [15] that the two image ellipses corresponding

to the projections of two concentric circles (or, equivalently,

one of these ellipses plus the image of the centre) are suffi-

cient to determine of an exact solution for a canonic recti-

fying homography. In this work, we describe in proposition

2 a minimal parameterization of a canonical rectifying ho-

mography with only two degrees of freedom which are the

coordinates of the image of the circle centre (the proof is

omitted).

40 60 80 100

10

20

30

40

50

α
t

j

40 60 80 100

10

20

30

40

50

α
t

j

(a) (b) (c)

Figure 6. (a) Estimated image of the centre at each iteration (b)
The signal collected on the cross sections before the optimization
(c) Rectified signal after optimization.

(a) (b)

Figure 7. (a) Selected edge points with associated gradient direc-
tions. (b) Cross sections.

Proposition 2. Consider an adequate 2D affine represen-
tation of the image plane such that the (elliptical) image of

a circle has simplified equation Q11u
2 +Q22v

2 = 1. Then,
for any variable point u = (u, v)⊤, the matrix function 2

G(u) =

([

−1 Q22uv −u
0 −Q11u

2 + 1 −v
−Q11u Q22v 1

][

r 0 0
0 −1 0
0 0 s

])−1

with r =

(

−
Q22

Q11
(Q11u

2 +Q22v
2 +Q33)

)1/2

, (5)

s =
(

−Q22(1−Q11u
2)
)1/2

defines an homography of the image plane onto itself such
that G(c) is a canonical rectifying homography, providing

c = (uc, vc)
⊤ represents the image of the circle centre.

To check the appearance similarity of the candidate, we

proceed as follows. Let x be a point located inside the

inner ellipse and uj a pixel in R1, the region support-

ing the outer ellipse. Let us designate by cross section at

uj the line segment in the image joining uj and x. Let

{αtmj | αt =
t−1
T−1 , t = 1..T} be the discretization into T

equally spaced points of the canonical metric rectification

of the cross section at uj , i.e., where mj = gx(uj) is the

image of uj by G(x).
The optimization of the image of the circle centre con-

sists in seeking a solution of :

min
c

∑

(j1,j2)∈J
j1 6=j2

T
∑

t=1

{

I
(

g−1
c

(αtmj1)
)

− I
(

g−1
c

(αtmj2)
)}2

(6)

where J indexes a set of sections and I
(

g−1
c

(αtmjk)
)

, k ∈
{1, 2}, is the intensity of the image of αtmjk which is a

point of a discretized rectified cross section.

This non-linear least-square optimization uses as initial

solution for c the centre of the outer ellipse (which is usually

very close to the image of the centre). A solution is found

using (few) quasi-Newton iterations. This is illustrated in

figure 6. The outer ellipse is validated if the residual of

optimization is below a given threshold.

4. Experiments

We conducted a large number of experiments with syn-

thetic images to quantify the performance of the proposed

fiducial system. We use a combination of several metrics.

These are the (1) false positive rate, (2) misidentification

rate and (3) false negative rate. The false positive rate re-

ports the rate at which a marker is detected where none

is present. The misidentifiation rate expresses the rate at

which a marker is successfully detected, but misidentified

as another marker with another ID. The false negative rate

measures the rate at which no marker is detected although

2 We write it as the inverse of some matrix form because we actually
use (G(u))−1 in the optimization step described in the sequel..
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one is present. Reducing the false negative rate increases

the risk of false positives and misidentifications. Metrics

(1) and (2) related to the proposed fiducial system are re-

ported in Table 1 whereas the metric (3) is reported in Fig-

ure 8, from (a) to (c). All three metrics are influenced by

the conditions under which the fiducial systems achieves a

reported performance, and here in particular, the systems (i)

scaling tolerance, (ii) occlusion tolerance, (iii) motion blur

tolerance and (iv) depth of field blur.

Scaling tolerance is the ability to detect and identify

markers at a very small or very large size in pixels. A wide

scaling tolerance allows a larger usable range of cameras as

well as a more opportunities for placing markers in a scene.

Figure 8 shows results for the tolerance from (i) to (iii)

(Figure 8 from (a) to (c)) while Figure 8.(d) shows the ob-

tained imaged center accuracy. The distance from the cam-

era to the marker is used to evaluate the scaling tolerance

(i) (Figure 8(a)). The percentage of occlusion represents

the percentage of area of the fiducial which is not visible

(i.e. occluded) over the total aera of the fiducial (reported

in Figure 8.(b)). Finally, the amount of blur can be ex-

pressed by two different quantities representing respectively

the amount of blur due to depth of field and the amount

of motion blur (supposed unidirectional in accordance with

our assumptions)

The results delivered by the proposed solution has been

compared to the ones delivered by the three following fidu-

cial marker systems: i) ARTKPlus [12]: this system re-

mains, yet not recent, a reference in the publicly available

solution; ii) PRASAD [16]: this system is the closest to our

proposal as using concentric rings in order the propose a

fiducial detection resiliant to motion blur; iii) RuneTag [2]:

as we want to demonstrate the robustness of our system to

severe occlusions, we also decided to conduct a comparison

against this recent solution.

Scene. The following evaluation is conducted on a scene

consisting of a single marker. The size of each “category”

of marker in the scene is defined so that they all cover the

same area of the supporting plane and that a circular marker

is of unit radius. The supporting plane belongs to the xy-

plane while the marker center corresponds to the scene ori-

gin. The marker center is located at (xm, ym, D) w.r.t.

the camera coordinate system, where (xm, ym) is randomly

distributed in [−0.5, 0.5]2 and D is the distance from the

marker center to the camera optical center whose unit is the

circular marker radius. If not specified, the angle between

the optical axis and the supporting plane normal is randomly

distributed in [0, 75] degrees.

Camera. The synthesized cameras obey a pinhole cam-

era model with square pixels; the principal point is at the

center of the image and the focal length is of 800 pixels

while the image resolution is 640× 360 pixels.

Image signal corruption. As we are dealing with

binary patterns, pixels take their values in {0, 255}, resp.

black or white. In order to vary both the contrast and the

signal to noise ratio, once the original image is rendered, all

its pixel values are divided by the scalar value c randomly

distributed in [1, 6], thus simulating different lighting condi-

tions. A first blur component related to the depth of field is

simulated by applying a gaussian filtering of standard devi-

ation σ randomly distributed in [0, 2]. Then a unidirectional

motion blur of length l (whose magnitude is 0 pixel if not

specified) is applied in a random direction. Finally, a noise

of ngray pixels randomly distributed in [0, 5] is added on

every pixel of the obtained image.

Results. All the results in Figure 8 are expressed in

terms of detection rate, i.e. τd = 1 − τn where τn is the

false negative rate. We can see that even without any occlu-

sion and motion blur, the proposed system already outper-

forms the other ones. This can be mainly justified by the

following: extensive experiments have shown that our sys-

tem perform quite well even in the case where the marker is

strongly inclined relatively to the pixel plane. This comes

mainly from the fact that there are always image cuts along

which the concentric circles are “minimally distorted”, and

identical information content is equally readable along any

single direction. Markers that require the extraction of data

from one or more dedicated directions to extract encoded

information (including a classical barcode as well as 2D

patterns) pay their much higher information-coding capac-

ity with an increase in misidentifications with distortion in-

creases. Tolerance to distortion must then be countered by

mechanisms that avoid ID collisions, but these increase the

Hamming distance and reduce their information-coding ca-

pacity. It is also important to mention that the RuneTag so-

lution presents very poor performance as the solution relies

on the performance of an ellipse detection algorithm used

to detect the imaged circular dots whose performance dras-

tically drop down while the size of the imaged marker is

decreasing.

Accuracy under very challenging shooting conditions. In

the last experiment, whose results are illustrated in Figure

8(d), the tests have been run in very challenging conditions

in term of lighting, noise, distance and motion blur. In such

conditions, no fiducial system used for comparison has been

able to detect any marker out of 800 images apart from the

proposed one, which has been able to detect 506 of them,

(i.e. 63 %). This experiment has been conducted with c = 5,

i.e. pixels values ranking between 0 and 51 pixels, a noise

randomly distributed in [0, 10] pixels and with a camera to

marker distance D = 30.

We want to emphasize two important points with these

experiments. The first one is that, even in such very chal-

lenging conditions, we obtain a high detection rate, i.e.

94%, 80%, 57% and 22% for a magnitude of motion blur

of 0, 5, 10 and 15 pixels respectively. The second point is
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Figure 8. Detection rate (a) vs. the distance D (b) vs. the percentage of occlusion (c) vs. motion blur magnitude (d) Accuracy of the imaged
center estimation vs. the motion blur magnitude. See text for details.

to emphasize that, even under these challenging conditions,

with an increasing motion blur magnitude, the overall accu-

racy of the imaged center estimation is less than one pixel,

while its median is less than 0.4 pixels for a motion blur

magnitude less than l = 10 pixels.

False negative and confusion. Lastly, Table. 1 shows the

results of the evaluation of the false positive and the inter-

confusion marker rate. In the current implementation, a ring

(black or white) holds a 1-bit information, its width being

0.10 or 0.15 (w.r.t. the outer circle of unit radius). In such

a way, a library of fiducial markers composed of N rings

has 22N−1 unique markers. We use N = 3 rings markers

in our experiments, e.g. a total number of 32 IDs. Once a

fiducial marker has been detected and its 1D signals along

the cross sections have been rectified via the homoraphy (5)

obtained through the optimization (6), the latter are read in a

robust manner via the distance proposed in [9] then deliver-

ing the marker ID associated to a marker profile. The false

positive rate evaluation has been performed on five video

sequences whose the image resolution is 640 × 360 pixels.

All the systems but PRASAD present a false positive rate of

0%. However, our system presents a misidentification rate

of 2.8% which is more than the ones delivered by ARTK-

Plus but still negligible for a large number of applications

such as automatic 3D reconstruction via Structure-from-

Motion techniques or also camera localization for which

constraints brought by the geometry can be used for ID dis-

ambiguation (e.g. through guided matching techniques) as

long as a subset of imaged fiducial are correctly detected

and identified in the image.

Time performance. The current CPU implementation de-

livers a frame rate of 4fps on one CPU (i5-4590, 3Ghz) core

on a 1280 × 720 image (showing up to 5 markers), which

has been raised to 11 fps using a preliminary GPU (NVidia

GTX 980 Ti, CUDA 7.0) implementation.

5. Conclusion

In this work we presented a new fiducial system based

on concentric circles and we showed that our system

Prop. PRASAD RuneTag ARTKPlus
Nb.

frames
Garden 1 51 0 0 1268

False pos. 0% 4% 0% 0%
Indoor 0 21 0 0 1685

False pos. 0% 1.3% 0% 0%
Street 0 80 0 0 1153

False pos. 0% 6.9% 0% 0%
Stripes 0 172 0 0 762

False pos. 0% 22.6 0% 0%
Text 0 23 0 0 525

False pos. 0% 4.4% 0% 0%
Total 1 347 0 0 5393

False pos. 0% 6.4% 0% 0%
Nb. detect. 744 221 72 351 800
Fig. 8 (a) 93% 27.6% 9% 44%
Nb. conf. 21 71 0 0 800
Fig. 8 (a) 2.8% 32% 0% 0%

Table 1. False positive and misidentification evaluation. See text for de-
tails.

Figure 9. Detection and matching of fiducial across two images under
challenging shooting conditions: the left image is correctly focused con-
trary to the right image which is acquired by a fast moving camera which
generates motion blur. The ARToolkitPlus system correctly detects and
identifies its markers (surrounded in magenta) only in the sharp (left) im-
age whereas no one is detected in the blurred view. The proposed system
correctly detects and identifies the imaged markers in the two images.

provides an high detection accuracy as well as a good

recognition rate in many challenging conditions, ranging

from severe occlusions to motion blur to illumination

changes. The code will be released in open source, avail-

able at http://github.com/lcalvet/CCTag.
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