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Abstract

In recent years, the task of estimating the 6D pose of

object instances and complete scenes, i.e. camera localiza-

tion, from a single input image has received considerable

attention. Consumer RGB-D cameras have made this fea-

sible, even for difficult, texture-less objects and scenes. In

this work, we show that a single RGB image is sufficient

to achieve visually convincing results. Our key concept is

to model and exploit the uncertainty of the system at all

stages of the processing pipeline. The uncertainty comes

in the form of continuous distributions over 3D object coor-

dinates and discrete distributions over object labels. We

give three technical contributions. Firstly, we develop a

regularized, auto-context regression framework which iter-

atively reduces uncertainty in object coordinate and object

label predictions. Secondly, we introduce an efficient way

to marginalize object coordinate distributions over depth.

This is necessary to deal with missing depth information.

Thirdly, we utilize the distributions over object labels to de-

tect multiple objects simultaneously with a fixed budget of

RANSAC hypotheses. We tested our system for object pose

estimation and camera localization on commonly used data

sets. We see a major improvement over competing systems.

1. Introduction

This work considers the task of estimating the 6D pose

of object instances from a single RGB image. A solution to

this problem is of high relevance in a variety of application

scenarios such as robotics and augmented reality. The range

of applications is even broader when considering camera lo-

calization as a special case of object pose estimation, where

the object represents the entire 3D scene.

For sufficiently textured objects, pose estimation is,

more or less, considered to be solved. Solutions are based

on the work of Lowe [17], where objects are represented

Figure 1. (Left) Result of our method. The pose of the lamp is

estimated sufficiently well for augmented realty. (Right) Result

of a state-of-the-art system [13] that uses an RGB-D input image.

The pose is less well suited for augmented reality.

by a sparse set of features. With the arrival of depth cam-

eras, solutions have been developed for texture-less objects

[7] or difficult scenes with repetitive or texture-less struc-

tures [23]. Many of these approaches are based on machine

learning. In this work, we revisit the scenario of having

RGB information only, and show that we can transfer the

success story of machine learning-based approaches to this

setting. This is especially interesting for practical applica-

tions, since many mobile devices are only equipped with a

single RGB camera. Furthermore, current consumer depth

sensors do not work with direct sunlight and reflective ma-

terials. Fig. 1 shows a result of our system, with augmented

reality. This is a challenging case and the state-of-the-art

method of [13], which operates on an RGB-D image, is not

able to get a visually pleasing result. We show experimen-

tally that our method can deliver a visually pleasing quality

in 74% of test cases. Our approach surpasses competing

RGB-based systems. Furthermore, an RGB-D variant of

our system exceeds the state-of-the-art for object pose esti-

mation and is on-par for camera localization.

Our method is inspired by the learning-based approaches

[2] and [29], which achieve state-of-the-art results for

RGB-D images. The idea is to utilize an intermediate repre-
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sentation for objects, known as object coordinates, which is

a dense, continuous object-part labeling. Object coordinates

and object labels are jointly regressed for every pixel in the

input image. This allows us to deal with multiple objects

within one regressor. Object coordinates and labels are re-

quired at different processing stages, and instead of storing

one single, optimal estimate we model their approximate

distributions. We will see that this is crucial for applying

our technical contributions, and achieving good results. The

idea of modeling object coordinate distributions has also

been explored in the recent work [29], in the context of cam-

era localization from a single RGB-D image. We go beyond

their work in various aspects. Firstly, their approach cannot

directly be used in an RGB setting, since it relies on the

calculation of pixel coordinates in camera space. We solve

this problem by efficiently marginalizing object coordinate

distributions along the pixel ray. Our approach is suitable

for mixtures of anisotropic Gaussians and incorporates per-

spective effects. Secondly, by exploiting the uncertainty of

object labels we are able to process any number of objects,

known to the system, with a fixed budget of RANSAC hy-

potheses. This results in an efficient and scalable system

with respect to the number of objects. A core part of our

pipeline is an efficient regressor which iteratively reduces

the uncertainty of object coordinate and class label predic-

tions. Previously, a standard random forest has been used

for this task [23, 29, 2, 14, 13]. Our approach builds upon

the insight that the dense object coordinates contain a sub-

stantial amount of “structural” information, i.e. neighbor-

ing object coordinate predictions are statistically dependent.

This makes it ideal for building the prediction step into an

auto-context framework [28]. However, directly using an

auto-context random forest hampered test performance, due

to noisy outputs. We demonstrate that a new robust regu-

larization of the multi-dimensional, dense labeling gives a

major boost in performance.

Contributions. We give four contributions:

1. We present a generic 6D pose estimation system for

both object instances and scenes (textured or texture-

less), which only needs a single RGB image as input.

Our approach exceeds the state-of-the-art.

2. In order to deal with the missing depth information of

the sensor, we present an efficient way to marginalize

the object coordinate distributions over depth.

3. By exploiting label uncertainty we are able to process

multiple object instances jointly with a fixed budget of

RANSAC hypotheses.

4. A new robust (L1-loss) regularization of the multi-

dimensional, continuous output, such as object coor-

dinates and labels, is crucial to get good performance

with our auto-context regression forest approach.

We believe that the technical contributions, items 2 − 4,

are relevant for various related research projects. The ques-

tion of how to deal with missing depth information, i.e. item

2, is of general interest to all works that deal with object

coordinates, e.g. [2, 14, 23, 6, 29, 26], and would like to

use an RGB camera. The idea of applying a fixed-budget

RANSAC for multi-object estimation, i.e. item 3, is of in-

terest to all methods where the final optimization depends

on variables (explicitly or latent) such as object instance [2],

person height [25] or object part [19]. Our L1-loss regular-

ization of object coordinates, i.e. item 4, is of general inter-

est to other auto-context regression frameworks, e.g. auto-

context Hough forests [11].

2. Related Work

Object Instance Pose Estimation. For instances with suf-

ficient texture, accurate pose estimation from RGB images

has been shown by matching sparse features [17, 5, 23]. Re-

cently, research focused on texture-less objects and RGB-D

images [7, 22, 27, 2]. Hinterstoisser et al. were especially

successful with LINEMOD [7], a template approach that re-

lies on stable gradient and normal features. It was recently

further improved by discriminative learning [22]. However,

pose estimation from RGB images was not presented in [7]

nor [22]. In the robotics community some approaches ex-

ist, e.g. [33], with the goal to grasp objects which requires

medium accuracy. Some authors presented pose estimation

for both textured and texture-less objects [27, 13, 32, 15, 1]

but always based on RGB-D footage. Shotton et al. [23] in-

troduced the concept of scene coordinates for camera local-

ization. They learn a mapping from camera coordinates to

world coordinates, and then fit a rigid body transform. This

work has been extended in [29] by using full distributions

of scene coordinates for refinement. However, the approach

cannot be applied to RGB images because no camera co-

ordinates can be calculated. Brachmann et al. [2] extended

the scene coordinate framework by jointly predicting object

labels and object coordinates. However, their pipeline also

depends heavily on the depth channel. In [31], a CNN was

shown to learn a descriptor which distinguishes object poses

from each other for RGB-D and RGB images. However, its

performance was not demonstrated in a full pose estima-

tion pipeline. Kendall et al. [10] trained a CNN to directly

regress the 6D pose of a scene from an RGB image but with

moderate accuracy. In contrast to the approaches above we

achieve accurate 6D pose estimation from RGB only.

Auto-Context Framework. Auto-context has been intro-

duced in the work of Tu and Bai [28]. The idea is to train

stacked classifiers where early classifiers provide input for

subsequent classifiers, resulting in a substantial gain in per-

formance. Auto-context has been widely used for segmen-

tation [28, 24, 20, 12], detection [11], and human pose esti-

mation [21, 3], etc. Montillo et al. [20] presented an auto-
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Figure 2. An RGB image is processed by our pipeline (left to right). We visualized two, out of three, stages of our method. In the first stage,

the auto-context random forest processes the entire image to predict object labels (shown as probabilities) and object coordinates — zoom

in on ape. The key to make the auto-context forest work well is to apply L1-loss regularization to the multidimensional data, after each

layer. The output of the first stage are pixel-wise distributions of object labels and object coordinates. In the second stage, the distributions

over object labels are used to sample hypotheses for all objects at once. Preliminary pose estimates are found with pre-emptive RANSAC.

In the third stage, these poses are refined using the object coordinate distributions.

context variant where a random forest has access to its own

intermediate predictions for increased efficiency. In [12],

this was extended by smoothing the intermediate predic-

tions. This couples predictors of neighboring pixels, re-

sulting in locally consistent output. We extend this idea

further to multi-dimensional continuous data. Auto-context

features usually access preliminary probabilities of discrete

classes. Kontschieder et al. [11] showed that auto-context

can also be deployed for intermediate multi-dimensional

continuous output in a Hough forest for pedestrian detec-

tion, but they did not smooth the intermediate output. In

this work, we show that robust smoothing of the multi-

dimensional continuous object coordinates is essential for

good performance.

Multi-Object RANSAC. The simultaneous detection of

multiple objects (e.g. planes) in data with many outliers is

an active field of research [34, 9, 18]. However, these meth-

ods try to fit multiple objects to points in the same coordi-

nate space. While we similarly wish to find multiple ob-

jects within the same image, we have a regressor that pre-

dicts points in a separate coordinate space for each object.

The fitting takes place within these separated spaces. One

straight-forward solution for this task is to iterate through

all objects and search for the best solution in each object

coordinate space, as it has been done in [2, 23]. In contrast

to this sequential procedure, we show how RANSAC can

efficiently process multiple objects at once according to the

evidence in the image.

3. Method

Our method consists of three individual stages, which

are conceptually similar to [2]. In the first stage, a ran-

dom forest predicts object labels and object coordinates

jointly for every pixel of the input image (Sec. 3.1). In or-

der to reduce the uncertainty of the predictions as much as

possible, we extend the random forest to an auto-context

random forest (Sec. 3.2) with L1-loss regularization. In

the second stage, we estimate the poses of multiple ob-

jects from the predicted 2D-3D correspondences using pre-

emptive RANSAC guided by the uncertainty in object la-

bels (Sec. 3.3). Finally, in the third stage, the poses are

refined by exploiting the uncertainty of object coordinate

predictions (Sec. 3.4). Fig. 2 shows an overview of our

pipeline.

3.1. Joint Classification­Regression Forest

In this subsection, we briefly describe our classification-

regression forest, which is a variant of recent works in this

area [23, 2]. For each object c ∈ N, present in the image, we

aim at estimating the 6D pose Hc = [Rc|tc] (i.e. rigid-body

transformation). Here, Hc maps a 3D coordinate in object

space to a 3D coordinate in camera space. The set C ⊆ N

contains all objects known to the system, including back-

ground. To make this task simpler, we employ a random

forest that predicts for each pixel i in the image, the distri-

bution over object labels, i.e. Pi(c). Furthermore, given an

object c and pixel i, we also want to predict a distribution of

coordinates in object space y ∈ Y ⊆ R
3, namely Pi(y|c).

We train both distributions jointly using one classification-

regression forest, whose suitability for this problem has

been shown in previous works, e.g [2].

Testing. A pixel i is passed down a tree T of forest T , until

it reaches a leaf node. For feature tests, we use standard

pixel-value difference in RGB. This is similar to previous

works [24, 23, 2], but we omit normalization of feature-
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scale by depth. Each leaf stores distributions PT (y|c) and

PT (c). Predictions of individual trees are merged as follows

Pi(c) =

∏
T∈T PT (c)∑

c′∈C

∏
T∈T PT (c′)

. (1)

This results in a high contrast soft segmentation. Object

coordinate distributions PT (y|c) are averaged.

Training. During training, features are selected which

have the highest information gain of the joint distribution

P (ỹ, c), where ỹ are quantized object coordinates, serv-

ing as proxy classes. The quantization is done by nearest

neighbor assignment to random cluster centers (we choose

random object coordinates in the training data). The use of

information gain and proxy classes has shown to be superior

to unimodal regression scores in [26]. Each leaf stores the

empirical distributions PT (y|c) and PT (c) of training sam-

ples reaching this particular leaf. The distribution of object

coordinates is stored as a Gaussian-Mixture model (GMM),

PT (y|c, l) =
∑

(m,µ,Σ)∈M

mN (y;µ,Σ), (2)

where M is the set of mixture components, found via mean-

shift. We calculate the support weight m, the mean µ and

full covariance Σ for each mode. We dismiss modes with

weights m < 50% of the highest weight in M.

3.2. Object Coordinate Auto­Context

We now describe the extension of the random forest to

an auto-context random forest, and in particular the effi-

cient use of regularized object coordinates as a feature. In-

stead of one forest, we train a stack of forests T d, where

d ∈ {0, . . . , D} denotes the stack level. The first level, T 0,

is trained exactly as described above. All subsequent forests

T d+1 have access to the output of the previous forest T d,

namely object probabilities P d
i (c) and object coordinate

predictions P d
i (y|c) of pixel i. Inspired by the “Geodesic

Forests” approach [12], we enforce the coupling of outputs

of neighboring pixels by smoothing the predictions before

passing them to the next forest. In [12] a geodesic filter for

object probabilities was used, because in their application

a gradient in the input signal was often a strong indication

for an object boundary. We do not observe this correlation

in our application scenario, since strong gradients can very

well appear within the same object. Instead, we deploy a

median filter in a local neighborhood of each pixel. Thus,

we define median-smoothed object probabilities P d
i (c) as

gdC(c,pi) = argmin
P̃i∈R

∑
j∈Ni

|P d
j (c)− P̃i|, (3)

where pi is the position of pixel i and Ni is a small

neighborhood around pixel i. The definition of a feature for

this output, to be used in forest T d+1, is straight forward,

fC(pi,θ) = gdC(c,pi + δ). The parameter vector θ con-

sists of pixel offset δ and the object index c. We define the

smoothing of the object coordinate prediction P d
i (y|c) in a

similar fashion. The median filter is robust to outliers since

it optimizes the L1-loss. This property is crucial for the

object coordinate prediction as well, since outliers are very

likely to occur (see Fig. 2). If the local smoothing is not

robust, outliers will have a strong influence on the result.

Unfortunately, the median filter is not directly applicable

to data with dimensionality larger than one. However, the

optimum under L1-loss can be calculated in any Euclidean

space, resulting in the geometric median. Thus, similar to

Eq. 3, we define our regularized object coordinate output as

gd
Y(c,pi) = argmin

y∈Y

∑
j∈Ni

∑
T∈T d

||µj,T − y||2, (4)

where µj,T is the mean with the highest mixture weight

of distribution P d
j,T (y|c) for tree T at pixel j. Hence,

gd
Y(c,pi) is a spatial smoothing, but also a combination of

the predictions of trees T ∈ T d. Note that the geometric

median minimizes the sum of distances as opposed to the

sum of squared distances, hence we optimize a L1-loss. To

calculate gd
Y(c,pi) we use the iterative algorithm of [30].

We define the following feature on the smooth object coor-

dinate output: fY(pi,θ) = [gd
Y(c,pi+δ)]j . The parameter

vector θ consists of offset δ, object index c, and dimension

index j ∈ {x, y, z}. Function [y]j returns the entry of y in

dimension j. The training of forests T d, d ∈ {1, . . . , D}
adheres to the same procedure as described in Sec. 3.1, but

the set of feature types is increased by fC and fY .

3.3. RANSAC Pose Sampling

In the second stage of our pipeline, we efficiently find a

preliminary pose for all objects present in the image. These

poses are refined in stage three (Sec. 3.4). We first describe

a standard procedure for pose estimation of a single object

c′, which is a combination of the pre-emptive RANSAC of

[23] and the hypotheses sampling schema of [2]. Then, we

formulate a new approach for handling multiple objects at

once with a fixed budget of RANSAC hypotheses.

Single Object RANSAC. The auto-context forest pre-

dicts for each pixel i the object label distribution PD
i (c)

(where D is the last level), and the 2D-3D correspondences

(pi, P
D
i (y|c)), i.e. the pixel position pi and the uncertain

object coordinate y. We start by approximating the distri-

butions PD
i (y|c′) by its main modes {µi,T |T ∈ T D}. As

before, µi,T denotes the mean with highest mixture weight

of PD
i,T (y|c

′) of tree T . Thus, the correspondences sim-

plify to (pi,µi,T ). We now define the re-projection error as

||pi − CHc′µi,T ||2 where C is the camera matrix, and Hc′

is the pose we are searching. We assume normalization of

the homogeneous vector before calculating the L2-norm. A
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correspondence is an inlier when the re-projection error is

below τin. At this stage, we aim at finding the pose which

maximizes the inlier count:

H∗
c′ = argmax

H
c′

∑
i∈W(H

c′
)

∑
T∈T D

✶[||pi−CHc′µi,T ||2 < τin],

(5)

where function ✶[·] is 1 if statement is true, otherwise 0. We

restrict the calculation of inliers to window W(Hc′), which

is the projection of the 3D bounding box of object c′.

The objective function is maximized using locally opti-

mized pre-emptive RANSAC [23]: Firstly, we draw a set

of nH pose hypotheses. A hypothesis Hc′ is drawn by

choosing four correspondences (i,µi,T ) and solving the

perspective-n-point problem (PnP) [4, 16]. We draw the

four initial pixels locations according to probability PD
i (c′),

which is an un-normalized distribution over all locations i

in the image. Furthermore, pixels 2-4 are drawn within a

box centered on the first pixel, which depends on the ob-

ject size (see the supplement for details). The tree T from

which to draw µi,T is chosen randomly. In an initial va-

lidity check, a hypothesis is dismissed and redrawn if the

re-projection error of the initial 4 pixels is too large. For

all valid hypotheses, we draw a batch of nB pixels within

their respective windows W(Hc′), and calculate the num-

ber of inliers. The hypotheses are ranked according to their

inlier count and the lower half is dismissed. The remaining

hypothesis are coarsely refined by re-solving PnP on the in-

creased inlier set. This is repeated with additional batches

of pixels drawn in each iteration. Finally, one hypothesis re-

mains, which we use as preliminary pose estimate for object

c′, denoted by H̃c′ with inlier set I(H̃c′).
Multi-Object RANSAC. Often, it is unknown which ob-

jects are present in the given image. The procedure above

could be repeated for all objects C and the final hypotheses

could be filtered based on inlier count. However, this scales

poorly when the number of potential objects |C| becomes

large. We present now a new method for processing all ob-

jects at once, within the pre-emptive RANSAC framework.

Instead of drawing nH hypotheses for each object indepen-

dently, we draw one shared set of hypotheses. During the

sampling of a hypothesis we decide on the fly which object

it belongs to. This decision is based on the object label pre-

diction of the first pixel sampled. In detail, each hypothesis

is created as follows: Assuming background as c = 0 we

draw the first pixel location i according to
∑|C|

c=1 P
D
i (c),

which is an un-normalized distribution over i. Then we

draw the object index c′ of the local distribution at pixel i,

i.e. PD
i (c). The remaining three pixel positions are drawn

according to the un-normalized distribution PD
i (c′), subject

to the bounding box constraint mentioned above. Finally,

we perform pre-emptive RANSAC separately for each ob-

ject which was elected by at least one hypothesis. Note that

Image
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Figure 3. During pose refinement we need to marginalize the 3D

object coordinate distribution P
D

i (y|c) over depth. We show that

an approximation can be computed in closed-form for the projec-

tion pyramid at position pi. This is done by integrating along the

ray (dashed line) while taking perspective effects into account.

no hypotheses will be drawn for objects without sufficient

evidence in the image. Furthermore, each hypothesis has to

pass the initial validity check, which requires some consis-

tency of the object coordinate predictions drawn.

3.4. Pose Refinement

The preliminary poses H̃c of RANSAC minimize the

(truncated) re-projection error of a set of inlier correspon-

dences (i,µi,T ), see Eq. (5). Note that in the objective

function each of the correspondences is treated with equal

weight. However, we have access to full distributions

PD
i (y|c), which model uncertainty information in the ob-

ject coordinate prediction. We aim to exploit this infor-

mation for pose refinement, which is the third stage in our

pipeline. To achieve this, we now introduce a novel proce-

dure for efficiently computing the (approximated) marginal-

ized object coordinate distribution in the image.

The basic idea for pose refinement is that we want

to maximize the pose probability under the distributions

PD
i (y|c). In [29], this idea was explored by scoring hy-

potheses based on the log-likelihood of inlier correspon-

dences:

H∗
c = argmax

Hc

∑
i

logPi(H
−1
c ei|c), (6)

where ei is the camera coordinate of pixel i. Note, the trans-

formation H−1
c ei yields an object coordinate. However, un-

like [29], we do not have access to depth information, and

thus cannot recover ei. We only know that the true ei must

lie within the projection volume of pixel i (see Fig. 3). We

denote this volume by Ri. We can now substitute the like-

lihood of ei in Eq. (6) with the probability of Ri:

H∗
c = argmax

Hc

∑
i∈I(H̃c)

logPD
Ri

,where

PD
Ri

=

∫∫∫
Ri

PD
i (H−1

c [x, y, z]T |c) dx dy dz .

(7)
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For robustness, we calculate the likelihood only over the

inlier set I(H̃c) of the current, preliminary pose H̃c. We

now explain how to approximate PD
Ri

efficiently. Instead

of integrating over all dimensions, we integrate along the

ray cast from the camera origin to the pixel center (see Fig.

3). Since the shape of the volume is a pyramid, we add a

quadratic factor during integration. Because we would like

to integrate in camera coordinate space, we first transform

the Gaussian mixture components of PD
i (y|c) (which is de-

fined in terms of object coordinate space) to camera coor-

dinates using Hc = [Rc|tc]. Furthermore, we apply rota-

tion Rxy which maps the pixel with position pi to (0, 0)T .

Thus, we transform the mean of each mixture component

to µe = Rxy(Rcµ + tc) and the covariance matrices to

Σe = Rxy(RcΣR
T
c )R

T
xy . After these transformations, the

pixel ray aligns with the z-axis, keeping x and y constant in

the integral. This allows us to approximate

PD
Ri

≈
∑

(m,µ,Σ)∈MD

i

m

∫ ∞

−∞

z2N ([0, 0, z])T ;µe,Σe) dz

(8)

where a closed form solution exists for the integral. Note

that the factor z2 is crucial since volume Ri is a pyramid

with the camera origin as its tip. By plugging this approx-

imation into Eq. (7) and optimizing, we are able to refine

preliminary poses H̃c, to yield our final pose estimates H∗
c .

4. Experiments

We evaluate our work on three publicly available data

sets. First we demonstrate pose estimation performance for

a single object given an RGB image (Sec. 4.1). Here, we

also report results for RGB-D input images. Next, we eval-

uate our system with respect to detection of multiple objects

(Sec. 4.2). Finally, we consider the scenario of camera lo-

calization (Sec. 4.3).

4.1. Single Object Pose Estimation

Hinterstoisser et al. [7] published an RGB-D data set of

texture-less objects in a cluttered scene (see Fig. 2 for an

example). Each image of the data set is annotated with the

ground truth 6D pose of one object and the ID of this object

is assumed to be known. Colored 3D models of the objects

are available for the generation of training images. How-

ever, learning from synthetic images is beyond the scope of

this work. Instead, we follow the setup of Brachmann et al.

[2], and apply various methods to this setting for compari-

son. For the sake of comparability with these methods we

only report results for 13 objects (out of 15) where proper

3D models exist. Each object sequence is split in training

and test data. Training images are selected such that the

associated object poses have a minimum angular distance

of 15◦. Doing so selects ≈ 15% of the images for training.

The remaining images serve as test set. We segment training

images so that the scene context cannot be learned. During

training, we sample patches with random scales according

to an object distance between 65cm and 115cm (the range

given for training in [7]). For pose estimation from RGB

we simply omit the depth channel of each test image.

Parameters. We train 3 trees (max. depth 64) per auto-

context layer and 3 layers in total. The inlier threshold is set

to τin = 3px and we sample nH = 256 hypotheses during

pose optimization. A complete list of parameters and details

on the implementation can be found in the supplement.

Metrics. We measure the percentage of images where the

object pose was estimated correctly. Different measures

have been proposed in the past. Hintertoisser et al. [7] de-

fine a threshold on the average distance of transformed 3D

points. The exact tolerance to translational and rotational

error depends on object size and shape. Shotton et al. [23]

define this tolerance explicitly and accept a pose if the error

is below 5cm and 5◦. While appropriate for some applica-

tions, these two measures are not very well suited when ap-

plying visual effects to the 2D image, e.g. augmented real-

ity. For example, pose accuracy in z direction is far less im-

portant for the visual impression than precision in x and y.

Therefore, we additionally propose the following measure

(see the supplement for a formal definition). We project the

object model into the image using the ground truth pose and

the estimated pose. We accept the estimated pose, if the av-

erage re-projection error of all model vertices is below 5px

(we call this 2D Projection). See Fig. 1 for a comparison

of metrics. With the measure of Hinterstoisser et al. both

results are correct, but only the left result is correct with

the 2D projection measure. Finally, to evaluate 2D detec-

tion performance, we calculate the 2D bounding box over-

lap and accept it if the intersection over union (IoU) > 0.5
(we call this 2D Bounding Box).

4.1.1 RGB Setting

Baselines.1 The template-based approaches LINEMOD

(for RGB-D images) and LINE2D (for RGB-images) have

been introduced in [8] for object detection2. LINEMOD

was extended to perform pose estimation in [7]. We created

a variant of [7] based on LINE2D for pose estimation from

RGB images. Of the various post-processing steps of [7]

we apply only the color check because the other steps are

based on depth.

1We were not able to compare to the method of [22]. The authors were

not able to provide us source code or binaries, or to run the experiment for

us. This method extends [8, 7] by discriminative learning of templates.
2Unfortunately, implementations of LINEMOD and LINE2D [8, 7] are

unavailable. We used the code in OpenCV, which was optimized for syn-

thetic images. To make it work well for real images we activated sampling

of strong gradients in the object interior. We tested the detection perfor-

mance of our LINE2D on the data set of [22] and achieve same results as

in [22]. Testing on [8] is not possible due to unavailable data.
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Table 1. Pose estimation results on the data set of [7] for a single object where the object ID is known in advance. AC means auto-context.

RGB RGB-D

Ours

L1 reg.

Ours

L2 reg.

Ours

w/o reg.

Ours

w/o AC
LINE2D[8]

Ours

L1 reg.

Krull

et al. [13]

Brachmann

et al. [2]

2D Projection 73.7% 68.6% 38.0% 59.3% 20.9% 95.7% 82.6% 81.7%

2D Bounding Box 97.5% 97.1% 90.3% 96.2% 86.5% 99.6% 98.8% 99.1%

6D Pose (Metric of [7]) 50.2% 46.0% 19.6% 30.1% 24.2% 99.0% 93.9% 97.4%

6D Pose (5cm 5◦[23]) 40.6% 34.1% 11.0% 22.6% 8.1% 82.1% 73.1% 52.1%

Figure 4. Pose estimation from an RGB image. (Left) Four objects,

partially overlaid with 3D models with the estimated pose. (Right)

Detecting multiple objects at once. Six out of ten objects have

been detected (We accept hypotheses with at least 400 inliers).

The bounding box color encodes the object ID.

Results. Results are shown in the left half of Table 1. In

73.7% of test images our approach delivers an accuracy

which is suitable for visual effects. See Fig. 4 for quali-

tative results. The high accuracy is reflected in low median

errors for translations and rotation, i.e. 2.3cm and 5.9◦. The

translational error occurs predominantly in z-direction. Our

final refinement step, using uncertainty (see Sec. 3.4), helps

reducing this error. Without this step we loose 4.2% with

the 2D projection measure and 17.9% with the measure of

Hinterstoisser et al.

Our auto-context (AC) framework boosts performance

substantially e.g. by 14.4% with the 2D projection measure

(see Ours w/o AC in Table 1). We observe that regulariza-

tion of the intermediate auto-context feature channels was

absolutely essential. Omitting this step leads to unstable

results and performance was actually worse than omitting

auto-context altogether (see Ours w/o reg.). Using L2 regu-

larization, compared to L1, results in a loss of 5.1%.

LINE2D detects objects relatively well (see 2D Bound-

ing Box score) but fails to reliably estimate the correct

poses. Without depth information it relies mostly on gra-

dients on the object silhouette. This makes accurate estima-

tion of rotation very difficult.

4.1.2 RGB-D Setting

Our pipeline can be easily altered to make use of a

depth channel. In this case, forest features can be depth-

normalized, perspective-n-point is substituted by the Kab-

sch algorithm, inliers are defined in 3D camera space, and

final refinement is based on camera coordinates as in [29].

Baselines. We compare to the state-of-the-art RGB-D pose

estimation pipeline of Brachmann et al. [2]. We used the

publicly available binaries to measure accuracy with our

metrics. We also compare to the very recent method of

Krull et al. [13] which is an extension of the pipeline of

Brachmann et al. [2] by utilizing a CNN in the final pose

optimization stage.

Results. Results are shown in the right half of Table 1.

With the measure of Hinterstoisser et al. [7] multiple meth-

ods approach the limit of 100% correctly estimated poses.

The measure of Shotton et al. [23] is more sensitive with

respect to rotation. With this measure, our approach esti-

mates 82.1% of poses correctly, which is considerably more

than Krull et al. (-9%) or Brachmann et al. (-30%). We

attribute this to the robust inlier-based pose optimization

which is different from the general purpose CNN in [13]

and the hand-crafted energy of [2]. In particular the en-

ergy in [2] has a higher emphasis on model fitting, while we

rely on the discriminative power of the random forest. In

the RGB-D setting, the use of auto-context results only in

a small improvement (+2.4% with L1 reg. under 5cm 5◦,

+1.9% with L2 reg., and -8.9% w/o reg.). With the 2D

projection measure, our approach estimates 95.7% of poses

correctly, which is again a large improvement compared to

the baselines (+13.1%, +14% respectively). This confirms

the suitability of our approach for applying visual effects.

4.2. Multi­Object Detection

The previous experiments performed pose estimation of

a single object. We now evaluate the detection performance

of our approach, i.e. we do not know upfront which objects

are present in a test image. We use the data set published

by Brachmann et al. [2]. The authors annotated one image

sequence of the data set of Hinterstoisser et al. [7] with the

poses of all 9 objects present. The amount of occlusion can

be very large making this data set extremely challenging.

We search for all 13 objects (even those not present)

in all images and keep the strongest response per object.

We accept a response if the IoU is at least 0.5. We rank

all results according to response score (inlier count for our

method and matching score for LINE2D), and plot preci-

sion vs. recall (see Fig. 5, left). We compare two variants of

our method: Firstly, we divide the budget of 256 RANSAC

hypotheses evenly among objects (Ours w/o sharing). Sec-
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ondly, we apply the method described in Sec. 3.3, i.e. we

sample hypotheses according to the object label distribu-

tion (Ours w/ sharing). It is important to note that the 256

hypotheses have to be valid (see middle of Sec. 3.3). Hence,

the run-time can vary depending on the difficulty of finding

a valid hypothesis.

Results. LINE2D achieves 0.21 average precision (AP),

due to its sensitivity to occlusion. The two variants of our

method score 0.49 AP (Ours w/o sharing) and 0.51 AP

(Ours w/ sharing). As a further experiment, we re-train the

auto-context random forest with additional objects to a to-

tal of 25 and 50 objects. We repeat the experiment above

and measure AP and processing time3, see results in Fig. 5

(right). With more objects, the performance of the sched-

ule w/o sharing drops more rapidly while its run-time in-

creases. Processing time is predominately spent on search-

ing for valid hypotheses where objects are occluded or miss-

ing. Sampling hypotheses according to the label distribu-

tion scales much better. RANSAC processes all 50 objects

in ca. 1s. Note that our implementation runs on CPU and is

not optimized. We expect a large boost for a GPU port.
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Figure 5. Detection experiment on the data set of Brachmann et

al. [2]. (Left) Precision-recall plot for 13 objects. (Right) Average

precision and run-time for increasing object count.

4.3. Camera Localization

Shotton et al. [23] published an RGB-D data set of 7

scenes with annotated camera poses. Multiple image se-

quences are given per scene, which were split by [23] in

training and test set. We used the depth channel to calculate

object coordinate labels for the training set. This labeling

can also be rendered using the available 3D models. Oth-

erwise, we ignored depth channels and estimate the cam-

era pose from RGB only. We kept parameters largely un-

changed with respect to Sec. 4.1, up to a few exceptions due

to the large difference in object size (see the supplement).

Baselines. We compare to a state-of-the-art sparse-feature

based approach from [23]. Furthermore, we compare to the

3We omitted final refinement. It had little impact on the detection per-

formance but would have dominated run-time (ca. 100ms per object).

very recent PoseNet [10] work, which is a CNN that directly

regresses the 6D camera pose.

Table 2. Results on the 7 scenes data set using RGB only. The Avg.

Error is calculated by averaging the median pose error per scene.

Pose (Scene Known) 5cm 5◦ Avg. Error

Sparse RGB[23] 40.7% -

PoseNet[10] - 46.9cm, 5.4◦

Ours 55.2% 6.1cm, 2.7◦

Pose (Scene Unknown)

Ours w/ sharing 50.0% 8.5cm, 3.3◦

Ours w/o sharing 33.1% 15.0cm, 8.5◦

Results. In a first experiment we follow Shotton et al. and

assume that it is known, which of the 7 scenes is present in

the test image (see top part of Table 2). In 55.2% of test

cases we estimate the pose correctly, i.e. within the 5cm

5◦ threshold. This is an improvement of 14.5% over the

sparse feature baseline. Our auto-context framework boosts

performance by 3.2% and refinement using uncertainty by

1.0%. Compared to PoseNet, our results have a translational

error that is one order of magnitude smaller. Applying the

RGB-D variant of our pipeline, we have 88.1% of correct

poses, which is on-par with the results of the state-of-the-

art RGB-D method [29] (89.5%).4

In a second experiment, we estimate the pose and scene

ID jointly from an RGB image (see bottom part of Table 2).

We train one auto-context random forest for all scenes, and

let RANSAC sample 256 object hypotheses per image, ac-

cording to the object label distributions (see Ours w/ shar-

ing). Despite the increased difficulty, we observe only a

medium loss in performance, i.e. 5.2%. Furthermore, this

is substantially better than evenly distributing the budget of

hypotheses over the 7 scenes and adjusting parameters to

achieve equal run-time (see Ours w/o sharing).

5. Conclusion and Future Work

We presented scalable object detection and 6D pose es-

timation from a single RGB image. The system is broadly

applicable, ranging from small objects to entire scenes. It

can be easily adapted to exploit a depth channel if available.

It would be interesting to explore the limits of the approach

w.r.t. the number of objects. Also, the auto-context forest

could be trained in a way to be robust w.r.t. occlusion, which

we did not consider in this work.
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4We observed no improvement when applying auto-context in the

RGB-D setting, although the intermediate prediction quality of the forest

increased.
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