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Abstract

Tolerance to image variations (e.g., translation, scale,

pose, illumination, background) is an important desired

property of any object recognition system, be it human or

machine. Moving towards increasingly bigger datasets has

been trending in computer vision especially with the emer-

gence of highly popular deep learning models. While be-

ing very useful for learning invariance to object inter- and

intra-class shape variability, these large-scale wild datasets

are not very useful for learning invariance to other parame-

ters urging researchers to resort to other tricks for training

models. In this work, we introduce a large-scale synthetic

dataset, which is freely and publicly available, and use it to

answer several fundamental questions regarding selectiv-

ity and invariance properties of convolutional neural net-

works. Our dataset contains two parts: a) objects shot on

a turntable: 15 categories, 8 rotation angles, 11 cameras

on a semi-circular arch, 5 lighting conditions, 3 focus lev-

els, variety of backgrounds (23.4 per instance) generating

1320 images per instance (about 22 million images in to-

tal), and b) scenes: in which a robotic arm takes pictures

of objects on a 1:160 scale scene. We study: 1) invariance

and selectivity of different CNN layers, 2) knowledge trans-

fer from one object category to another, 3) systematic or

random sampling of images to build a train set, 4) domain

adaptation from synthetic to natural scenes, and 5) order

of knowledge delivery to CNNs. We also discuss how our

analyses can lead the field to develop more efficient deep

learning methods.

1. Introduction

Object and scene recognition is arguably the most im-

portant problem in computer vision and while humans do

it quickly and almost effortlessly, machines still lag be-

hind humans. In some cases, where variability is relatively

low (e.g., frontal face recognition) machines outperform hu-

mans but they do not perform quite as well when variety is

high. Hence, the crux of the object recognition problem is

tolerance to intra- and inter-class variability, lighting, scale,

in-plane and in-depth rotation, background clutter, etc [9].

Thanks to big data and deep neural networks, computer

vision has recently enjoyed a rapid progress, witnessed

by high accuracies over the ImageNet dataset (top-5 er-

ror rate between 3-10% over 1,000 object categories). Re-

cent models (e.g., Alexnet [31], VGG [54], Overfeat [50],

GoogLeNet [57], and ResNet [23]) have surpassed previ-

ous scores in several benchmarks such as generic object and

scene recognition [31, 54], object detection [50, 20], seman-

tic scene segmentation [6, 20], face detection and recog-

nition [66], texture recognition [7], fine-grained recogni-

tion [39], multi-view 3D shape recognition [56], activity

recognition [53, 28], and saliency prediction [32].

One chief concern regarding the wild large-scale bench-

marks and datasets, however, is the lack of control over data

collection procedures and deep comprehension of stimulus

variety. While existing large-scale datasets are very rich in

terms of inter- and intra-class variability, they fail to probe

the ability of a model to solve the general invariance prob-

lem. In order words, natural image datasets (e.g., Ima-

geNet [8], SUN [64], PASCAL VOC [14], LabelMe [48],

Tiny [61], and MS COCO [38]) are inherently biased in the

sense that they do not offer all object variations [60]. To

remedy this, some works (e.g., [45, 35, 41]) have resorted

to synthetic datasets where several object parameters exist.

Ideally, we would like models to be tolerant to identity-

preserving image variations (e.g., variation in position,

scale, pose, illumination, occlusion). To probe this, some

researchers have used synthetic home-brewed datasets ei-

ther by taking pictures of objects on a turntable (e.g.,

NORB [35], COIL [41], SOIL-47 [29], ALOI [19],

GRAZ [42], BigBIRD [55]) or by constructing 3D graphic

models and rendering textures to them (e.g., Pinto et al.[45],

Peng et al. [43]). While proven to be beneficial in the past,

these datasets are very small for training deep neural net-

works with millions of parameters. Further, they usually

have small number of classes, instances per class, back-

ground variability, in plane and in-depth rotation, illumi-

nations, scale, and total number of images. Here, to remedy

these shortcomings, we introduce a large-scale controlled

object dataset with rich variety and a larger set of images.
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Dataset Ref Domain Object Objects Backgrd Views per Bounding Object Total
Classes per Class per obj obj+bg Box? Contours? Images

COIL [41] Handheld 100 1 1 72 Implicit No 7,200
SOIL-47 [29] Handheld — 47 1 42 Implicit No 1,974
Pascal [14] Misc 20 790-10,129 1 1 Yes Partial 11,540
Caltech-101 [15] Google 102 31-800 (µ = 90) 1 1 No No 9,144
Caltech-256 [22] Google 257 80-827 (µ = 119) 1 1 No No 30,607
LabelMe [48] Misc 900 ? ∼1 ∼1 Partial Partial 62,197 (a)
NORB [35] Toys 5 10 1 (b) 1,944 Implicit No 48,600 (b)
FERET [44] Faces 1 1,199 1 1-24 Yes No 14,051
MNIST [34] Digits 10 6,000 1 1 Implicit No 60,000
ETHZ [17] Natural 5 32-87 1 1 Yes Yes 255 (c)
TINY [61] Web 75,062 ? 1 (?) 1 Implicit No 79,302,017 (d)
CIFAR-100 [30] Web 100 600 1 1 Implicit No 60,000 (d)
ALOI [19] Handheld 1,000 (e) ∼1 1 108 Implicit No 110,250
GRAZ [42] Photographs 4 311-420 1 1 No Partial 1,476
CoPhIR [3] Flickr ? (f) ? 1 (?) 1 (?) No No (f) 106,000,000
ImageNet [8] Misc 21,841 ∼1 ∼1 ∼1 Yes No 14,197,122
SUN [64] Misc 3,819 (g) 1 1 Yes Yes 131,067
MS COCO [38] Misc 91 ∼5,000 1 1 Yes Yes 328,000 (a)
RGB-D [33] Household 51 ∼6 1 250 Yes No 250,000
Big-BIRD [55] Household 100 1 1 600 Yes No 250,000
iLab-20M – Toy vehicles 15 25-160 14-40 1,320 Implicit No 21,798,480

Table 1. Overview of some popular object recognition datasets. The last one proposed here avoids the dreaded entry of “1” in any column of the table.

Implicit bounding box means that it can be trivially computed (e.g., objects are centered within images). Notes: (a) Still growing. (b) Many additional

images were created by digitally jittering objects and compositing various backgrounds. (c) 289 objects in 255 images. (d) Image resolution 32× 32. Note

that CIFAR is a subset of the TINY dataset. (e) 1,000 objects total, not grouped by categories. (f) MPEG-7 and Flickr user tags (e.g., summer, Paris, China)

available. (g) The number of instances per object category shows the long tail phenomenon: a few categories have a large number of instances (window:

16,080, chair: 7,971, wall: 20,213) while a majority of them have a relatively modest number of instances (airplane: 179, floor lamp: 276, boat: 349).

2. Related work

Several controlled datasets have been introduced in the

past which have dramatically helped progress in com-

puter vision (Table 1). Two famous examples are FERET

face [44] and MNIST digit [34] datasets. Nowadays, we

have face and digit recognition systems that perform either

at the level of humans (e.g., [58]) or superior (perhaps not

as robust due to variations and noise). Similar datasets are

available for generic object recognition but lack character-

istics of a large-scale representative dataset covering many

sorts of invariance (e.g., background clutter, shape, occlu-

sion, size). For example, the COIL dataset [41], which also

used a turntable to film 100 objects under various lightings

and poses, contains one object instance per category (e.g.,

one telephone, one mug). The larger ALOI dataset [19]

contains 1,000 objects but few instances per category. The

NORB dataset [35] has 50 small toy objects (10 instances in

each of 5 categories). Almost all available turntable datasets

are small scale and not very rich in terms of variations.

Previous research using controlled datasets, such as

turntables images, has been mainly focused on inspecting

models or brewing concepts and ideas. Some recent works

have attempted to show that there is a real benefit of these

datasets in transferring knowledge to large-scale natural

scene datasets [26, 67]. This has been studied under the

names of domain adaptation, task transfer, or multi-task

learning. The idea here is that knowledge gained from a

controlled dataset (or task), via turntables or graphic mod-

els, can be transferred to real-world naturalistic datasets

with even different statistics (e.g., texture). For example,

Peng et al. [43] trained models on an augment of syntheti-

cally generated images (using a 3D graphics object model)

and natural scenes (from ImageNet and PASCAL) and re-

ported an improvement in accuracy over the latter datasets.

They, however, did not probe whether the improvement was

due to learning better invariance or instance level variety

and richness. Some other works have also advocated simi-

lar directions [21, 49, 11, 16].

Another motivation for utilizing controlled datasets

comes from neuroscience and cognitive vision literature.

CNNs were initially inspired by the hierarchical structure

of the visual ventral stream [18]. They were later used

to explain some physiological and behavioral data of hu-

mans and monkeys (e.g., [46, 52, 65, 51]). It has been

asserted that humans learn invariance with few exemplars

a.k.a. zero- or one-shot learning. This is the opposite of the

way that CNNs currently learn recognition. These models

need an enormous amount of labeled data. In this work, we

explore the ways a large-scale controlled dataset, contain-

ing rich information regarding various object parameters,

can be utilized to improve object recognition performance.

It is important to be aware of human performance to gauge

the progress [4]. Just recently, He et. al. [24] reported a

top-5 error rate of 4.9% on ImageNet which is lower than

5.1% human error rate on this dataset [47]. This raises some

questions: Have models surpassed humans? If yes, in what

aspects? Is it theoretically possible to achieve a better per-

formance than humans on these problems? etc.

Another related area to our work, which naturally fits

well to turntable setups, is the manifold embedding and di-
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mensionality reduction. These techniques try to preserve

and leverage the underlying low dimensional manifold in

data in supervised or unsupervised manners (e.g., [69, 59]).

For instance, Weston et al. [63] introduced an embedding-

based regularizer to impose the same labels for the neigh-

boring training samples to benefit from the structure in the

data. They used gradient descent to optimize the regular-

izer and adopted it for CNNs. Another classic example is

Siamese Networks [5] which are two identical copies of the

same network, with the same weights, fed into a ‘distance

measuring’ layer to compute whether the two examples are

similar or not. Given the labeled data, the network encour-

ages similar examples to be close, and dissimilar ones to

have a certain minimum distance from each other. While

these techniques have been applied to controlled datasets,

their usefulness over large-scale controlled datasets still re-

mains to be explored. Our proposed dataset can be help-

ful in this direction as it combines the best of the two

worlds: instance-level variety of large-scale datasets and

rich parametrization of controlled synthetic images which

are precious to study probing the behavior of CNNs.

3. The iLab-20M dataset

Many image datasets have been proposed to assist ma-

chine vision algorithm development and testing (Table 1).

Those datasets which have provided large collections of

training exemplars per well-defined object category have

been useful in advancing the state of the art. Excellent

examples include FERET for face recognition [44], with

14,051 images of 1,199 individuals in one class (human

faces), or MNIST for handwritten digits [34], with 60,000

images in 10 classes from 500 writers. Today, recognizing

faces or handwritten digits is considered a reasonably well

solved problem, although of course improving tolerance to

noise and other nuisance parameters is always possible.

In other domains, including recognition of objects from

generic categories, most efforts have focused on providing

very useful test sets and performance challenges (e.g., Ima-

geNet [8]), but these often lack in the sheer volume of train-

ing exemplars provided within each object category and for

each object instance, lack pose information, and often con-

tain occlusions. This limits their usefulness for training.

For example, the ‘calculator’ category of Caltech-256 [22]

contains 100 images of what appears to be 100 different cal-

culators with no pose data. While this is highly appropriate

for testing, we hypothesize that training can be greatly im-

proved by using many different views of different instances

of objects in a number of categories, shot in many different

environments, and with pose information explicitly known.

Indeed, biological systems can rely on object persistence

and active vision to obtain many different views of a new

physical object. In humans and monkeys, this is believed

to be exploited by the neural representations [37], though

c) d) camera
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Figure 1. Turn-table photo shooting setup. a) turntable with 8 rotation

angles, 11 cameras on a semicircular arch, 4 lighting sources (generating 5

lighting conditions), 3 focus values and random backgrounds (overall 8×

11× 5× 3 = 1320 images for each instance per background). Recording

parameters are: resolution 960× 720, color mode YUYV, brightness 128,

contrast 32, saturation 32, gain 30, auto white balance off, manual white

balance temperature 3100K, sharpness 72, auto exposure off, auto focus

off, focus base value 97-119. b) robotic-assisted arms, one holding the

camera, the other taking wide-field pictures from random viewpoints and

distances. c) a sample instance of a car from 5 consecutive rotations and 5

consecutive arch cameras. d) a sample instance from each object category

(same lighting, rotation and focus; all set to zero) presented in the order

shown in Table 2. e) an instance of a boat under different illuminations.

the exact mechanisms remain poorly understood. Although

adult humans can learn new object instances from a sin-

gle view, one should not forget that this ability might only

emerge at the culmination of a long evolutionary process

plus 20-some years of individual training.

Popular datasets fall short in at least one dimension, be

it the number of classes, objects per class, number of back-

grounds/environments, or views per object, as shown in Ta-

ble 1. Particularly relevant to our effort are: 1) COIL [41],

which also used a turntable to film 100 objects under var-

ious lighting and poses; however, COIL only contains one

object instance per category and only black backgrounds

(similar to the larger ALOI dataset with 1,000 objects and a

few per category [19]), and 2) NORB [35] with 50 small toy

objects similar to the ones we used (10 instances in each of

5 categories); however, all objects were painted uniformly

and shot in grayscale on blank backgrounds (different back-

grounds were later composited digitally).
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Parameter

Category Boat Bus Calib- Car Equip- Military Tank Train UFO Van Semi Plane Pickup Heli- F1-car Monster
ration ment Truck Truck copter Truck

Num objects 27 25 13 160 64 54 31 25 40 29 33 85 40 25 40 40

Num bg (mean) 20 21.3 1 26.1 21.6 18.5 30.3 37 29 29.4 23.1 18.4 30.1 23.2 14 21.5

Num bg (std) 0.0 1.5 0.0 1.3 1.3 0.9 7.8 0.0 4.4 0.9 5.0 3.3 4.9 10.6 0.0 4.8

Num bg (min-max) 20-20 20-23 1-1 24-28 20-23 18-20 20-36 37-37 26-37 28-30 17-27 17-26 25-35 14-35 14-14 14-25

Total images (K) 713 704 17 5518 1822 2611 1432 462 739 933 1113 1907 1505 660 950 1426

Size (GB) 551 545 11 4300 1500 2100 1200 363 565 724 874 1400 1200 495 722 1100

Used here ✓ ✓ - - - - ✓ ✓ ✓ ✓ - - - - ✓ -

Table 2. Summary statistics of iLab-20M dataset. There are 21,798,480 images in total from 16 categories (one used for calibration purposes only) with

25 to 160 instances per category. Five parameters include: 11 cameras on an arch, 4 lighting sources on 4 corners (5 conditions), 8 horizontal rotations,

132 backgrounds (7 solid color) and 3 focus values. Average number of backgrounds per object instance is 23.39. There are 46 unique backgrounds per

category (average backgrounds per object 145.76 with std = 162.62; min = 25, max = 731). Total size of the dataset with resolution 960 × 720 is 17.65TB.

The cropped version of the images (256 × 256 pixels) is also available with 2.2TB in size. Total number of images per category is rounded to save space.

3.1. Turntable setup

The turntable consists of a 14”-diameter circular plate

actuated by a robotic servo mechanism. A CNC-machined

semi-circular arch (radius 8.5”) holds eleven Logitech C910

USB webcams which capture color images of the objects

placed on the turntable (Fig. 1.a). A micro-controller sys-

tem actuates the rotation servo mechanism and switches on

and off four LED lightbulbs (Ecosmart ECS 16 WW FL,

295 lumens each, color rendering index 87, correlated color

temperature 3000K). Lights are controlled independently,

in 5 conditions: all lights on, or one of the four lights on.

Cameras were connected to a Linux computer (6-core

AMD Phenom CPU, 16GB RAM) with 11 independent

USB controllers. Camera settings were as follows, using

the Linux V4L2 driver: resolution 960 × 720, color mode

YUYV, brightness 128 (default for these cameras), contrast

32 (default), saturation 32 (default), gain 30, auto white bal-

ance off, manual white balance temperature 3100K, sharp-

ness 72 (default), auto exposure off, manual exposure 125

(all lights on) or 450 (one light on), autofocus off, focus

base value 97 - 119 depending on the camera. Objects were

mainly Micro Machines toys (Galoob Corp.) and N-scale

model train toys, as shown Fig. 1.d. These objects present

the advantage of small scale, yet demonstrate a high level

of detail and, most remarkably, a wide range of shapes (i.e.,

many different molds were used to create the objects, as

opposed to just a few molds and many different painting

schemes). Backgrounds were 125 color printouts of satel-

lite imagery from the Internet, and 7 plain solid-color back-

grounds (white, red, blue, yellow, etc). Every object was

shot on all solid-color backgrounds, for possible later com-

positing of additional digital backgrounds, and for possible

reconstruction of 3D models. Every object was shot on at

least 14 backgrounds, in a relevant context (e.g., cars on

roads, trains on railtracks, boats on water).

In total, 1,320 images were captured for each object and

background combination: 11 azimuth angles (from the 11

cameras), 8 turntable rotation angles, 5 lighting conditions,

and 3 focus values (-3, 0, and +3 from the default focus of

each camera). Each image was saved with lossless PNG

compression (∼1 MB per image). The complete dataset

hence consists of 704 objects, each shot on 14 or more back-

grounds, with 1,320 images per object/background combi-

nation, or almost 22M images (See Table 2). The dataset is

freely available and distributed on 3 8TB hard drives.

3.2. Robotics­assisted model scenes

In addition, we created robotics-assisted model scenes to

record broader scenes where objects were placed in variable

contexts. The long-term motivation for this larger scenery is

to collect many images which can be used to test algorithms

both on their ability to first locate and then to recognize

objects, and on their possible ability to exploit larger scene

contexts to aid recognition (see, for example [12, 25]).

The robotics-assisted scenes (Fig. 1.b) consist of a

40”×29” table onto which 1:160 poster prints of satellite

images (e.g., Google maps) are placed (corresponding to

a real-world area of 195m×118m). One 8-axis robot arm

holds a camera (Microsoft LifeCam Cinema, 1280×720,

YUYV) which can be placed and oriented at any location

and pose reachable by the arm. A second arm holds a light

source (Jingsam LED 7W, 437 lumens, 3000K).

The robots are programmed in two ways: 1) pseudo-

random motion, generating flybys, 2) point to specific lo-

cations on the table and shoot objects from different view-

points and distances. An interactive user interface assists in

configuring a scene for robotics-assisted filming.

4. Experiments and results

To start exercising the dataset, we tested it on small sub-

sets of the available data. To understand generalization

across image variations (object shape, object viewpoint,

lighting, etc), CNNs are evaluated by taking slices of the

dataset. We utilize pre-trained Alexnet [31] (on ImageNet)

and fine-tune it on iLab-20M. The behavior of off-the-shelf

features is investigated in our analyses as well. We use 7 ob-

ject categories (out of 16) and avoid data augmentation as

we have flipped versions of the objects from the turntable.

The label layer contains several units depending on the task
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(2, 4 or 7 for object categorization; variable number of units

for parameter prediction). We report average accuracies and

standard deviations where there is randomness in the exper-

imental procedure. Experiments are performed using the

publicly available Caffe toolkit [27] ran on a Nvidia Titan

X GPU and Ubuntu 14.04 OS.

We aim to answer these questions: Can a pre-trained

CNN model predict the setting parameters such as lighting

source, degree of azimuthal rotation, degree of camera ele-

vation, etc? Can it transfer the learned knowledge from one

object category to another? Which parameters are more im-

portant in the transfer? How much knowledge can a model

transfer from iLab-20M to the ImageNet? Which one is a

better strategy to make an object dataset: random or system-

atic image harvesting? How the order of learning parameter

invariance influences overall network parameter tolerance

and accuracy? Some of these questions have been addressed

in the past to some extent [1, 68, 70, 10, 40].

4.1. Selectivity and invariance

Humans are very good at predicting the category of an

object and also telling about its parameters. Human visual

system is selective to object category and invariant to pa-

rameters and variations. In this experiment, we aim to sys-

tematically investigate this competition for two layers of the

Alexnet: pool5 and fc7. We probe the expressive power of

these layers for object category and parameter prediction.

Four categories from iLab-20M (out of 16) were chosen

for this analysis including boat, bus, tank and ufo. Images

were lumped to train a SVM classifier. All features were

normalized to have zero-mean before feeding to the classi-

fier. The dimensionality was reduced to N-dimensions us-

ing SVD, where N refers to the number of instances in the

training set. The reported results are average accuracy over

random 5-fold cross validation test sets, each of size 2K. We

trained two SVMs, one for category prediction and another

for parameter prediction. Results are shown in Fig. 2.

As expected, we see that fc7 features result in a high clas-

sification accuracy, however, the surprising salient result is

the shoulder-to-shoulder performance of pool5 and fc7 lay-

ers. Relying on this outcome, it seems that both fc7 and

pool5 representations convey useful discriminative infor-

mation for object recognition. Comparing the performance
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Figure 2. Selectivity and invariance. Expressive power of Alexnet pool5

and fc7 layers for category and parameter prediction on a 4 class problem.

fc7 (7 Categories) - with Fine-tuning pool5 (7 Categories) - with Fine-tuning

pool5 (7 Categories) - without FTfc7 (7 Categories) - without FTboat
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f1car

tank

train

ufo

van

Figure 3. t-SNE representation of the Alexnet layers. The fc7 representa-

tion works remarkably well at recognizing objects as they are mutually

linearly separable after fine-tuning. Further, pool5 representation does

not contain discriminative information compared to fc7. This figure also

demonstrates the effect of fine-tuning. Distribution of samples for different

categories tend to become very compact after fine-tuning. Fine-tuning does

not seem to add more discriminative power to the pool5 representation.

over parameter prediction, one can notice the superiority of

pool5 layer over fc7. This is consistent with the work by

Bakry et al. [2] where they analytically found that fully con-

nected layers make effort to collapse the low-dimensional

intrinsic parameter manifolds to achieve invariant represen-

tations. However, only view manifold was taken into con-

sideration in Bakry et al.’s work, while here we analyze the

behavior of more common parameters.

In brief, our results suggest that the feature space

spanned by pool5 layer contains more information than fc7

layer for parameter prediction. At the same time, the very

representation forces different categories to be highly apart

from each other (thus keeping the structure of manifolds

as linearly-separable as possible for different categories).

The representation by fc7 sensibly discards parameter infor-

mation to become invariant while keeping the categories as

separable as possible. We observe that the layer just before

fully connected layers provides better compromise between

categorization and parameter estimation.

Parameter prediction accuracies for lighting (5 classes),

turntable rotation (4 classes), and camera view (6 classes) in

order are 100%, 62%, and 77%. These figures suggest that

camera view (considering the normalized-to-chance accu-

racy) has the most complex structure for parameter predic-

tion whereas the lighting is simpler. This is somewhat sen-

sible since changing camera view leads to geometric shape

variations, and ports the prediction task into a much more

difficult problem to address. In contrast, lighting variations

do not alter the shape of the object, and are thus easier to

capture. Note that this result is on our data and may not

necessarily scale to natural scenes.

We use the t-SNE dimensionality reduction method

in [62] to visualize the learned representations over seven
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Figure 4. Knowledge transfer over object categories with one parameter

changing. Alexnet is trained over four object classes and is tested on the

same or different object classes (over different instances).

categories of iLab-20M along with variation parameters

(See Figure 3). The fc7 representation works remarkably

well at recognizing objects as they are mutually linearly

separable after fine-tuning. Further, pool5 representation

does not contain discriminative information compared to

fc7. Please see also the supplement for more details.

4.2. Knowledge transfer

Humans are very efficient at estimating and transferring

parameters of a seen object to another unseen object in com-

plicated scenarios. For example, they can reliably estimate

the lighting source direction of an object and tell whether

another object has been subject to the same lighting expo-

sure. Complementary to our previous analysis, in this ex-

periment, we aim to assess the power of CNNs in transfer-

ring the learned parameter over one object category to an-

other. We focus on pool5 layer here since as we discussed

above, fc7 layer is invariant to parameters and is thus less

useful for discriminating between different parameters.

All parameters were fixed except one (i.e., slicing the

dataset along only one parameter). We included instances

from four categories (boat, bus, tank, ufo) in the training

set, and tested the learned knowledge on instances from an

unseen category (f1car) as well as 4 seen categories (but dif-

ferent instances). We utilized the pool5 representation and

reduced the dimensionality to N , where N refers to number

of samples. The 5-fold cross validation average accuracy

for parameter prediction is shown in Fig. 4.

Results show a decent degree of knowledge transfer. As

Fig. 4 exhibits, the lighting parameter is relatively eas-

ier to be transferred to unseen categories. It has a head-

to-head accuracy across seen and unseen categories. On

the other hand, knowledge transfer for rotation and camera

view parameters is accompanied with sensible degradation

in performance. In summary, we see that the knowledge is

promisingly transferable across seen and unseen categories.

The degradation in rotation and camera prediction is intu-

itively justifiable as these parameters are highly dependent

on the 3D properties of the object shape (See also [36]).

4.3. Systematic and random sampling

Large-scale datasets have been so far constructed by har-

vesting images randomly from the web. The major reason-
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Figure 5. Analysis of two sampling strategies over a 4-class classification

problem (boat, bus, tank, ufo). Left: category prediction accuracy using

fc7 features. Right: Parameter prediction accuracy using pool5 features.

ing for doing so is to include as much variability (mainly

intra- and inter-class variation) as possible in the dataset.

It has not yet been systematically studied whether this is a

good strategy compared to controlled strategies conducted

in turntable setups. In this analysis, we consider two strate-

gies to find the answer: i) Random strategy where n samples

(across all parameters and instances) are chosen randomly

and are used to train an SVM to predict the object category,

and ii) Systematic (or exhaustive) strategy, in which an ob-

ject instance is chosen randomly and then other images from

that object are added to our training set, by scanning all pa-

rameters, until n samples are reached. We assume avail-

ability of a fixed limited budget (time or cost) enough for

processing only n samples.

We addressed a 4 class problem (boat, bus, tank, ufo)

by increasing n starting from 12 up to 10,000 samples. In

each experiment, n/4 samples were chosen randomly from

all 4 categories across all parameters, and were fed into the

Alexnet to get the fc7 (or pool5) representation. Then, we

trained a linear SVM classifier on this data. A fixed test set

of size 500 was randomly selected from all categories with

all parameters and was kept fixed during the analysis. We

measured category prediction at fc7 and parameter predic-

tion at pool5, reducing the dimensionality to 2,500 for all

values of n in the latter. Results are shown in Fig. 5.

We observe that random sampling strategy performs bet-

ter in category prediction. This makes sense since randomly

choosing images offers more instance level variety (bet-

ter than systematic) leading to better recognition. Interest-

ingly, and counter-intuitively, we see that random strategy

works better in parameter prediction as well. We believe

that the parameter prediction is somewhat dependent on the

3D properties of object shape, and since in the systematic

strategy, the learner is not faced with sufficient instances,

it fails to predict parameters compared to random strategy.

Overall, what we learn is that instance level variation is of
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P
P
P
P
P
P

train

test Without fine tuning With fine tuning

Natural iLab-20M Natural iLab-20M

Natural 95 75 93 ↓ 65 ↓

iLab-20M 78 97 70 ↓ 100 ↑

Table 3. Domain adaptation on boat vs. tank classification (in percentage).

P
P
P
P
P
P

train

test Without fine tuning With fine tuning

Natural iLab-20M Natural iLab-20M

Natural [2000] 96.48 (0.5) 55.6 (2.7) 95.56 (0.6) 68.06 (2.0)

iLab-20M [2000] 66.92 (3.2) 96.90 (0.2) 65.22 (1.4) 99.72 (0.1)

iLab-20M [1000] 94.42 (0.8) 93.94 (0.4) 92.52 (0.2) 98.70 (0.2)

+ Natural [1000]

Table 4. Domain adaptation over a 4-class problem (boat, tank, bus, and

train). Numbers in parentheses are standard deviations.

high importance for both category and parameter prediction

and this is perhaps why the systematic sampling strategy

is hindered. Thus, in dataset creation, it is vitally advanta-

geous to have as much instance level variation as possible.

4.4. Domain adaptation

Currently, there is a gap in relating results learned over

synthetic datasets to results learned on large-scale datasets.

We train models on iLab-20M and apply them to natural

scenes (and vice versa) to see how much knowledge they

can transfer from one dataset (source domain) to another

(target domain). This way, we can also discover along

which dimension(s) a dataset varies the most and whether

it offers sufficient variability for learning invariance. In

other words, we can somehow indirectly measure dataset

bias [60]. Ultimately, it is desirable to generalize what is

learned from synthetic datasets to natural scene datasets.

We consider two scenarios: i) a binary classification

problem boat vs. tank, and ii) a 4-class problem including

boat, tank, bus and train. In each scenario, we train a SVM

(using fc7 representation) from either natural scenes (se-

lected from ImageNet) or iLab-20M and apply it to the other

dataset. We also merge images from the two datasets and

measure the accuracy on each individual dataset. We con-

sider both off-the-shelf features of the Alexnet (pre-trained

over ImageNet) and fine-tuned features over iLab-20M.

Augmenting data along all parameters: Here, we choose

images along all parameters. Results in Table 3 show that

training on each type of image, expectedly works the best

on the same type of test image (95% from ImageNet to Ima-

geNet and 97% from iLab-20M to iLab-20M). Cross appli-

cation of models results in lower (but above 50% chance)

accuracy. We observe that fine tuning the Alexnet on iLab-

20M boosts the performance on iLab-20M to 100% while

hindering the accuracy over ImageNet as CNN features are

now tailored (and are hence selective) to our images.

Table 4 shows domain adaptation results over 4 classes.

Results align with accuracies over 2 classes, although accu-
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Figure 6. Confusion matrices of Alexnet over seven categories of the

iLab-20M dataset without (left) and with fine tuning (right).

racies are lower here. Here, again combining images from

datasets hinders performance over each individual dataset

due to contamination of features. The reason why perfor-

mance is low when applying a model trained on iLab-20M

to ImageNet is mainly because objects in these two datasets

have different textures and statistics which demand more

sophisticated ways of domain adaptation.

Accuracies over 2-class and 4-class problems are very

high (> 95%). To further investigate accuracy of Alexnet,

we increased the number of classes to 7. As seen in the con-

fusion matrices in Fig. 6, fine tuning the network increases

the accuracy from 92.5% to 99.9% with only two mistakes1.

Augmenting data along a single parameter: Here, we

investigate which parameter is more effective in domain-

adaptation (from synthetic to natural images.). Two cate-

gories, existing in both datasets, are considered: boat and

tank. To form a training set, we vary only one parameter at

a time while keeping all others fixed. Then, fc7 features are

computed for the training set and a linear SVM is trained.

The same features are computed for natural images and the

learned model on synthetic samples is tested on them. For

each parameter, we had 275 synthetic images for training

and a fixed set of 3,000 images from ImageNet for testing.

In a complementary experiment, all parameters were al-

lowed to vary except one (opposite of the above). A set

of 2,000 samples were randomly selected (complying with

the conditions) and a linear SVM was trained on them (us-

ing fc7). The parameter whose absence drops the accuracy

more is considered to be more dominant. 5-fold cross vali-

dation accuracies are reported in Fig. 7.

As shown in the bar chart in Fig. 7, the camera-view is

of the highest importance as it leads to the highest accu-

racy on the fixed natural test set. This is reasonable since

real world objects are often viewed from angles at different

degrees of elevation (in-depth rotation). We thus speculate

that camera-view might be the dominant varying parameter

in natural scenes. The (in-plane) rotation is the next impor-

tant parameter as it gains the next top accuracy on natural

images. Surprisingly, the lighting source is ranked as the

1Please see the supplementary material for t-SNE visualization [62] of

without- and with fine-tuned fc7 and pool5 features.
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Figure 7. Domain adaptation with a single parameter change.

least effective parameter in our analysis. The absence of

camera-view drops the recognition accuracy more than the

other two parameters (the right side bars in Fig. 7).

4.5. Analysis of parameter learning order

In this analysis, we study whether/how the order of

knowledge delivery to CNNs matters. First, we prepare two

datasets (training with 40K images, validation with 10K)

from four categories (boat, bus, tank and train) and anno-

tate them with rotation labels. Alexnet is fine tuned on the

training set. We set the learning rate for all the layers to

0.001, except fc8 layer which is set to 0.01. All other param-

eters are set to their default values. Next, we prepare a new

training set including 40K images from the same four ob-

ject categories and annotate them with camera view labels.

A validation set of size 10K is also constructed. Obtained

weights from the first step are loaded to the network and are

treated as a promising initialization point for another round

of fine tuning over the new data.

We assess the performance of the network for camera

view and rotation prediction using the pool5 representa-

tion. As fine tuning with low learning rate slightly changes

weights within the network, we are interested to see which

order of changes in weights (before fully connected layers)

gives the superior performance in our desired task. To hunt

what we are looking for, prepared datasets are delivered

to the network in reverse order (i.e., camera first, rotation

next). We denote the two orderings as follows: 1) rotation-

camera, and 2) camera-rotation for simpler reference. In

the evaluation phase, 2,000 samples are randomly selected

from four categories, and pool5 features are extracted. After

mean subtraction and dimensionality reduction, 5-fold cross

validation accuracies of models are reported in Table. 5.

Counter-intuitively, we find that order of data delivery is

very important to the network such that when the network

is fed with samples with rotation labels prior to camera la-

bels, it ostensibly performs better in parameter prediction.

We also find that when the network is firstly fine tuned on

rotation, the second stage (i.e., fine tuning on camera la-

bels) does not impair the weights for rotation prediction.

In contrast, when the camera labels are seen first, rotation

prediction accuracy is expectedly better than the previous

ordering. This boost, however, causes dramatic degradation

in camera prediction performance.

❳
❳
❳

❳
❳

❳
❳❳

Parameter

Order
1 [rotation-camera] 2 [camera-rotation]

Camera 89.20% (1.47) 77.05% (1.18)

Rotation 93.75%(1.66) 95.30% (1.00)

Table 5. Influence of data delivery order on parameter prediction.

As in the previous experiments, camera view variation

is a more ill-structured parameter to predict. When the net-

work sees the camera labels in the second stage, the adapted

weights are more biased towards learning this parameter.

This bias does also try to keep the pre-seen knowledge for

rotation unchanged. We thus conclude that when there is the

option for stage-wise training, it would be better to learn pa-

rameters following a simple to complex order. This way, the

last steps are devoted to manage the difficulties in complex

parameters, while imposing less damage to weights adapted

for simpler parameters (thus maintaining the structure).

5. Discussion

We challenged the solitary use of uncontrolled natural

image datasets in guiding the object recognition progress

and introduced a large-scale controlled object dataset of

over 20M images with a rich parameter variety. By cut-

ting slices through our dataset, we systematically studied

the invariance and generalization properties of CNNs by in-

dependently varying the choice of object instances, view-

points, lighting conditions, or backgrounds between train-

ing and test sets. Progressively extending these results on

increasingly larger subsets of our dataset may help gain new

insights on how the algorithms can be modified to show

greater invariance and generalization capabilities.

In summary, we learn that: i) the representation learned

in pool5 layer is selective to parameters while fc7 layer is

not, ii) the knowledge obtained from some parameters is

easier to be transferred to unseen object categories, iii) ran-

dom sampling strategy leads to better generalization since

more instance level variations can be captured, iv) simple

cross application of one dataset to another results in above

chance accuracy but does not improve performance, and v)

it would be advantageous to feed the network with data that

has been sorted according to complexities of different di-

mensions. This can lead to layer-wise training of CNNs for

learning different invariances in different layers.

In the future, we will attempt to evaluate the accuracy of

recent deep learning architectures on our dataset. In partic-

ular, we will consider techniques such as feature embedding

and loss regularization [63, 5] and joint prediction of cam-

era parameters and object categories [13, 53].
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