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Abstract

Weakly supervised learning of object detection is an im-

portant problem in image understanding that still does not

have a satisfactory solution. In this paper, we address this

problem by exploiting the power of deep convolutional neu-

ral networks pre-trained on large-scale image-level classi-

fication tasks. We propose a weakly supervised deep detec-

tion architecture that modifies one such network to operate

at the level of image regions, performing simultaneously re-

gion selection and classification. Trained as an image clas-

sifier, the architecture implicitly learns object detectors that

are better than alternative weakly supervised detection sys-

tems on the PASCAL VOC data. The model, which is a sim-

ple and elegant end-to-end architecture, outperforms stan-

dard data augmentation and fine-tuning techniques for the

task of image-level classification as well.

1. Introduction

In recent years, Convolutional Neural Networks (CNN)

[21] have emerged as the new state-of-the-art learning

framework for image recognition. Key to their success is

the ability to learn from large quantities of labelled data the

complex appearance of real-world objects. One of the most

striking aspects of CNNs is their ability to learn generic vi-

sual features that are generalise to many tasks. In particular,

CNNs pre-trained on datasets such as ImageNet ILSVRC

have been shown to obtain excellent results in recognition

in other domains [8], in object detection [12], in semantic

segmentation [13], in human pose estimation [33], and in

many other tasks.

In this paper we look at how the power of CNNs can be

leveraged in weakly supervised detection (WSD), which is

the problem of learning object detectors using only image-

level labels. The ability of learning from weak annotations

is very important for two reasons: first, image understand-

ing aims at learning an growing body of complex visual

concepts (e.g. hundred thousands object categories in Im-

ageNet). Second, CNN training is data-hungry. Therefore,

being able to learn complex concepts using only light super-
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Figure 1. Weakly Supervised Deep Detection Network. Our

method starts from a CNN pre-trained for image classification on

a large dataset, e.g. ImageNet. It then modifies to reason effi-

ciently about regions, branching off a recognition and a detection

data streams. The resulting architecture can be fine-tuned on a

target dataset to achieve state-of-the-art weakly supervised object

detection using only image-level annotations.

vision can reduce significantly the cost of data annotation in

tasks such as image segmentation, image captioning, or ob-

ject detection.

We are motivated in our research by the hypothesis that,

since pre-trained CNNs generalise so well to a large num-

ber of tasks, they should contain meaningful representa-

tions of the data. For example, there exists evidence that

CNNs trained for image classification learn proxies to ob-

jects and objects parts [37]. Remarkably, these concepts

are acquired implicitly, without ever providing the network

with information about the location of such structures in

images. Hence, CNNs trained for image classification may

already contain implicitly most of the information required

to perform object detection.

We are not the first to address the problem of WSD with

CNNs. The method of Wang et al. [36], for example, uses

a pre-trained CNN to describe image regions and then learn

object categories as corresponding visual topics. While this

method is currently state-of-the-art in weakly supervised

object detection, it comprises several components beyond

the CNN and requires signifiant tuning.

In this paper we contribute a novel end-to-end method

for weakly supervised object detection using pre-trained
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CNNs which we call a weakly supervised deep detection

network (WSDDN) (fig. 1). Our method (section 3) starts

from an existing network, such as AlexNet pre-trained on

ImageNet data, and extends it to reason explicitly and effi-

ciently about image regions R. In order to do so, given an

image x, the first step is to efficiently extract region-level

descriptors φ(x;R) by inserting a spatial pyramid pooling

layer on top of the convolutional layers of the CNN [14, 11].

Next, the network is branched to extract two data streams

from the pooled region-level features. The first stream as-

sociates a class score φc(x;R) to each region individu-

ally, performing recognition. The second stream, instead,

compares regions by computing a probability distribution

φd(x;R) over them; the latter represents the belief that,

among all the candidate regions in the image, R is the one

that contains the most salient image structure, and is there-

fore a proxy to detection. The recognition and detection

scores computed for all the image regions are finally ag-

gregated in order to predict the class of the image as a

whole, which is then used to inject image-level supervision

in learning.

It is interesting to compare our method to the most com-

mon weakly supervised object detection technique, namely

multiple instance learning (MIL) [7]. MIL alternates be-

tween selecting which regions in images look like the ob-

ject of interest and estimating an appearance model of the

object using the selected regions. Hence, MIL uses the ap-

pearance model itself to perform region selection. Our tech-

nique differs from MIL in a fundamental way as regions are

selected by a dedicated parallel detection branch in the net-

work, which is independent of the recognition branch. In

this manner, our approach helps avoiding one of the pitfalls

of MIL, namely the tendency of the method to get stuck in

local optima.

Our two-stream CNN is also weakly related to the recent

work of Lin et al. [22]. They propose a “bilinear” architec-

ture where the output of two parallel network streams are

combined by taking the outer product of feature vectors at

corresponding spatial locations. The authors state that this

construction is inspired by the ventral and dorsal streams

of the human visual system, one focusing on recognition

and the other one on localisation. While our architecture

contains two such streams, the similarity is only superficial.

A key difference is that in Lin et al. the two streams are

perfectly symmetric, and therefore there is no reason to be-

lieve that one should perform classification and the other

detection; in our scheme, instead, the detection branch is

explicitly designed to compare regions, breaking the sym-

metry. Note also that Lin et al. [22] do not perform WSD

nor evaluate object detection performance.

Once the modifications have been applied, the network

is ready to be fine-tuned on a target dataset, using only

image-level labels, region proposals and back-propagation.

In section 4 we show that, when fine-tuned on the PASCAL

VOC training set, this architecture achieves state-of-the-art

weakly supervised object detection on the PASCAL data,

achieving superior results to the current state-of-the-art [36]

but using only CNN machinery. Since the system can be

trained end-to-end using standard CNN packages, it is also

as efficient as the recent fully-supervised Fast R-CNN de-

tector of Girshick et al. [11], both in training and in testing.

Finally, as a byproduct of our construction we also obtain

a powerful image classifier that performs better than stan-

dard fine-tuning techniques on the target data. Our findings

are summarised in section 5.

2. Related Work

The majority of existing approaches to WSD formulate

this task as MIL. In this formulation an image is interpreted

as a bag of regions. If the image is labeled as positive, then

one of the regions is assume to tightly contain the object of

interest. If the image is labeled as negative, then no region

contains the object. Learning alternates between estimating

a model of the object appearance and selecting which re-

gions in the positive bags correspond to the object using the

appearance model.

The MIL strategy results in a non-convex optimization

problem; in practice, solvers tend to get stuck in local op-

tima such that the quality of the solution strongly depends

on the initialization. Several papers have focused on de-

veloping various initialization strategies [19, 5, 32, 4] and

on regularizing the optimization problem [31, 1]. Kumar et

al. [19] propose a self-paced learning strategy that progres-

sively includes harder samples to a small set of initial ones

at training. Deselaers et al. [5] initialize object locations

based on the objectness score. Cinbis et al. [4] propose

a multi-fold split of the training data to escape local op-

tima. Song et al. [31] apply Nesterov’s smoothing tech-

nique [23] to the latent SVM formulation [10] to be more

robust against poor initializations. Bilen et al. [1] propose a

smoothed version of MIL that softly labels object instances

instead of choosing the highest scoring ones. Addition-

ally, their method regularizes the latent object locations by

penalizing unlikely configurations based on symmetry and

mutual exclusion principles.

Another line of research in WSD [31, 32, 36] is based on

the idea of identifying the similarity between image parts.

Song et al. [31] propose a discriminative graph-based algo-

rithm that selects a subset of windows such that each win-

dow is connected to its nearest neighbors in positive images.

In [32], the same authors extend this method to discover

multiple co-occurring part configurations. Wang et al. [36]

propose an iterative technique that applies a latent seman-

tic clustering via latent Semantic Analysis (pLSA) on the

windows of positive samples and selects the most discrim-

inative cluster for each class based on its classification per-
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formance. Bilen et al. [2] propose a formulation that jointly

learns a discriminative model and enforces the similarity of

the selected object regions via a discriminative convex clus-

tering algorithm.

Recently a number of researchers [25, 26] have proposed

weakly supervised localization principles to improve classi-

fication performance of CNNs without providing any anno-

tation for the location of objects in images. Oquab et al.

[25] employ a pre-trained CNN to compute a mid-level im-

age representation for images of PASCAL VOC. In their

follow-up work, Oquab et al. [26] modify a CNN archi-

tecture to coarsely localize object instances in image while

predicting its label.

Jaderberg et al. [16] proposed a CNN architecture in

which a subnetwork automatically pre-transforms an image

in order to optimize the classification accuracy of a second

subnetwork. This “transformer network”, which is trained

in an end-to-end fashion from image-level labels, is shown

to align objects to a common reference frame, which is a

proxy to detection. Our architecture contains a mechanism

that pre-select image regions that are likely to contain the

object, also trained in an end-to-end fashion; while this may

seem very different, this mechanism can also be thought as

learning transformations (as the ones that map the detected

regions to a canonical reference frame). However, the na-

ture of the selection process in in our and their networks are

very different.

3. Method

In this section we introduce our weakly supervised deep

detection network (WSDDN) method. The overall idea con-

sists of three steps. First, we obtain a CNN pre-trained on a

large-scale image classification task (section 3.1). Second,

we construct the WSDDN as an architectural modification

of this CNN (section 3.2). Third, we train/fine-tune the WS-

DDN on a target dataset, once more using only image-level

annotations (section 3.3). The remainder of this section dis-

cusses these three steps in detail.

3.1. Pre­trained network

We build our method on a pre-trained CNN that has been

pre-trained on the ImageNet ILSVRC 2012 data [28] with

only image-level supervision (i.e. no bounding box annota-

tions). We give the details of the used CNN architectures in

section 4.

3.2. Weakly supervised deep detection network

Given the pre-trained CNN, we transform it into a WS-

DDN by introducing three modifications (see also sec-

tion 3). First, we replace the last pooling layer immediately

following the ReLU layer in the last convolutional block

(also known as relu5 and pool5, respectively) with a layer

implementing spatial pyramid pooling (SPP) [20, 15]. This

results in a function that takes as input an image x and a

region (bounding box) R and produces as output a feature

vector or representation φ(x;R). Importantly, the function

decomposes as

φ(x;R) = φSPP(·;R) ◦ φrelu5(x)

where φrelu5(x) needs to be computed only once for the

whole image and φSPP(·;R) is fast to compute for any given

region R. In practice, SPP is configured to be compatible to

the first fully connected layers of networks (i.e. fc6). Note

that SPP is implemented as a network layer as in [11] to

allow to train the system end-to-end (and for efficiency).

Given an image x, a shortlist of candidate object re-

gions R = (R1, . . . , Rn) are obtained by a region pro-

posal mechanism. Here we experiment with two meth-

ods, Selective Search Windows (SSW) [34] and Edge Boxes

(EB) [38]. As in [11], we then modify the SPP layer to

take as input not a single region, but rather the full list

R; in particular, φ(x;R) is defined as the concatenation of

φ(x;R1), . . . , φ(x;Rn) along the fourth dimension (since

each individual φ(x;R) is a 3D tensor).

At this point in the architecture, region-level features are

further processed by two fully connected layers φfc6 and

φfc7, each comprising a linear map followed by a ReLU.

Out of the output of the last such layer, we branch off two

data streams, described next.

Classification data stream. The first data stream per-

forms classification of the individual regions, by mapping

each of them to a C-dimensional vector of class scores,

assuming that the system is trained to detect C different

classes. This is achieved by evaluating a linear map φfc8c

and results in a matrix of data x
c ∈ R

C×|R|, containing the

class prediction scores for each region. The latter is then

passed through a softmax operator, defined as follows:

[σclass(x
c)]ij =

ex
c
ij

∑C

k=1
ex

c
kj

. (1)

Detection data stream. The second data stream performs

instead detection, by scoring regions relative to one an-

other. This is done on a class-specific basis by using a sec-

ond linear map φfc8d, also resulting in a matrix of scores

x
d ∈ R

C×|R|. It is then passed through another softmax

operator, but this time defined as follows:

[σdet(x
d)]ij =

ex
d
ij

∑|R|
k=1

ex
d
ik

. (2)

While the two streams are remarkably similar, the intro-

duction of the σclass and σdet non-linearities in the classifica-

tion and detection streams is a key difference which allows
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Figure 2. Weakly-supervised deep detection network. The figure illustrates the architecture of WSDDN.

to interpret them as performing classification and detection,

respectively. In the first case, in fact, the softmax opera-

tor compares, for each region independently, class scores,

whereas in the second case the softmax operator compares,

for each class independently, the scores of different regions.

Hence, the first branch predicts which class to associate to

a region, whereas the second branch selects which regions

are more likely to contain an informative image fragment.

Combined region scores and detection. The final score

of each region is obtained by taking the element-wise

(Hadamard) product xR = σclass(x
c)⊙ σdet(x

d) of the two

scoring matrices. The region scores are then used to rank

image regions by likelihood of centring an object (for each

class independently); standard non-maxima suppression is

then performed (by iteratively removing regions with In-

tersection over Union (IoU) larger than 40% with regions

already selected) to obtain the final list of class-specific de-

tections in an image.

The way the two streams’ scores are combined is remi-

niscent of the bilinear networks of [22], but there are three

key differences. The first difference is that the introduction

of the different softmax operators explicitly breaks the sym-

metry of the two streams. The second one is that, instead

of computing the outer product of the two feature vectors

σclass(x
c
r)⊗σdet(x

d
r), we compute the element-wise product

σclass(x
c
r)⊙σdet(x

d
r) (generating quadratically less parame-

ters). The third difference is that scores σclass(x
c
r)⊗σdet(x

d
r)

are computed for specific image regions r rather than a

fixed set of image locations on a grid. Together, these three

differences mean that we can interpret σdet(x
d) as a term

that ranks regions, whereas σclass(x
c) ranks classes. It is

more difficult to clearly assess the nature of the two streams

in [22].

Image-level classification scores. So far, WSDDN has

computed region-level scores x
R. This is transformed in

an image-level class prediction score by summation over

regions:

yc =

|R|∑

r=1

xR
cr.

Note that both yc is a sum of element-wise product of soft-

max normalised scores over |R| regions and thus it is in the

range of (0, 1). Softmax is not performed at this stage as

images are allowed to contain more than one object class

(whereas regions should contain a single class).

3.3. Training WSDDN

Having discussed the WSDDN architecture in the previ-

ous section, here we explain how the model is trained. The

data is a collection of images xi, i = 1, . . . , n with image

level labels yi ∈ {−1, 1}C . We denote by φy(x|w) the

complete architecture, mapping an image x to a vector of

class scores y ∈ R
C . The parameters w of the model lump

together the coefficients of all the filters and biases in the

convolutional and fully-connected layers. Then, stochastic

gradient descent with momentum is used to optimise the en-

ergy function

E(w) =
λ

2
‖w‖2 +

n∑

i=1

C∑

k=1

log(yki(φ
y

k(xi|w)−
1

2
) +

1

2
),

(3)

hence optimising a sum of C binary-log-loss terms, one per

class. As φ
y

k(xi|w) is in range of (0, 1), it can be considered

as a probability of class k being present in image xi, i.e.

p(yki = 1). When the ground-truth label is positive, the

binary log loss becomes log(p(yki = 1)), log(1 − p(yki =
1)) otherwise.

3.4. Spatial Regulariser

As WSDDN is optimised for image-level class labels, it

does not guarantee any spatial smoothness such that if a re-

gion obtains a high score for an object class, the neighbour-

ing regions with high overlap will also have high scores.

In the supervised detection case, Fast-RCNN [11] takes the

region proposals that have IoU with a ground truth box of

at least 50% as positive samples and learns to regress them

into their corresponding ground truth bounding box. As our

method does not have access to ground truth boxes, we fol-

low a soft regularisation strategy that penalises the feature

map discrepancies between the highest scoring region and

the regions with at least 60% IoU during training:

1

nC

C∑

k=1

n
+

k∑

i=1

1

2
φ
y

k(xi|w)(φfc7
kp − φfc7

ki )
T

(φfc7
kp − φfc7

ki )

where n+

k is the number of positive images for the class

k and kp = argmaxj φ
y

kj is the highest scoring region in
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image i for the class k. We add this regularisation term to

the cost function in eq. (3).

4. Experiments

In this section we conduct a thorough investigation of

WSDDN and its components on weakly supervised detec-

tion and image classification.

4.1. Benchmark data.

We evaluate our method on the PASCAL VOC 2007 and

2010 datasets [9], as they are the most widely-used bench-

mark in weakly supervised object detection. While the

VOC 2007 dataset consists of 2501 training, 2510 valida-

tion, and 5011 test images containing bounding box anno-

tations for 20 object categories, VOC 2010 dataset contains

4998 training, 5105 validation, and 9637 test images for the

same number of categories. We use the suggested train-

ing and validation splits and report results evaluated on test

split. We report performance of our method on both the ob-

ject detection and the image classification tasks of PASCAL

VOC.

For detection, we use two performance measures. The

first one follows the standard PASCAL VOC protocol and

reports average precision (AP) at 50% intersection-over-

union (IoU) of the detected boxes with the ground truth

ones. We also report CorLoc, a commonly-used weakly su-

pervised detection measure [6]. CorLoc is the percentage of

images that contain at least one instance of the target object

class for which the most confident detected bounding box

overlaps by at least 50% with one of these instances. Dif-

ferently from AP, which is measured on the PASCAL test

set, CorLoc is evaluated on the union of the training and

validation subset of PASCAL. For classification, we use the

standard PASCAL VOC protocol and report AP.

4.2. Experimental setup.

We comprehensively evaluate our method with three pre-

trained CNN models in our experiments as in [11]. The

first network is the VGG-CNN-F [3] which is similar to

AlexNet [18] but has reduced number of convolutional fil-

ters. We refer to this network as S, for small. The sec-

ond one is VGG-CNN-M-1024 which has the same depth

as S but has smaller stride in the first convolutional layer.

We name this network M for medium. The last network

is the deep VGG-VD16 model [30] and we call this net-

work L for large. These models, which are pre-trained

on the ImageNet ILSVRC 2012 challenge data [28], attain

18.8%, 16.1% and 9.9% top-5 accuracy respectively (using

a single centre-crop) on ILSVRC (importantly no bound-

ing box information is provided during pre-training). As

explained in section 3.1, we apply the following modifi-

cations to the network. First, we replace the last pooling

layer pool5 with a SPP layer [15] which is configured to be

compatible with the network’s first fully connected layer.

Second, we add a parallel detection branch to the classifica-

tion one that contains a fully-connected layer followed by a

soft-max layer. Third, we combine the classification and de-

tection streams by element-wise product followed by sum-

ming scores across regions, and feed the latter to a binary

log-loss layer. Note that this layer assesses the classification

performance for the 20 classes together, but each of them is

treated as a different binary classification problem; the rea-

son is that classes can co-occur in the PASCAL VOC, such

that the softmax log loss used in AlexNet is not appropriate.

The WSDDNs are trained on the PASCAL VOC train-

ing and validation data by using fine-tuning on all layers,

a widely-adopted technique to improve the performance of

a CNN on a target domain [3]. Here, however, fine tuning

performs the essential function of learning the classification

and detection streams, effectively causing the network to

learn to detect objects, but using only weak image-level su-

pervision. The experiments are run for 20 epochs and all the

layers are fine-tuned with the learning rate 10−5 for the first

ten epochs and 10−6 for the last ten epochs. Each minibatch

contains all region proposals from a single image.

In order to generate candidate regions to use with our

networks, we evaluate two proposal methods, Selective

Search Windows (SSW) [34] using its fast setting, and

EdgeBoxes (EB) [38]. In addition to region proposals, EB

provides an objectness score for each region based on the

number of contours wholly encloses. We exploit this ad-

ditional information by multiplying the feature map φSPP

proportional to its score via a scaling layer in WSDDN and

denote this setting as Box Sc. Since we use a SPP layer to

aggregate descriptors for each region, images do not need to

be resized to a particular size as in the original pre-trained

model. Instead, we keep the original aspect ratio of images

fixed and resize them to five different scales (setting their

maximum of width or height to {480, 576, 688, 864, 1200}
respectively) as in [15]. During training, we apply random

horizontal flips to the images and select a scale at random

as a form of jittering or data augmentation. At test time we

average the outputs of 10 images (i.e. the 5 scales and their

flips). We use the publicly available CNN toolbox MatCon-

vNet [35] to conduct our experiments and share our code,

models and data 1.

When evaluated on an image, WSDDN produces, for

each target class c and image x, a score x
R
r = Sc(x; r) for

each region r and an aggregated score yc = Sc(x) for each

image. Non-maxima suppression (with 40 % IoU thresh-

old) is applied to the regions and then the scored regions

and images are pooled together to compute detection AP

and CorLoc.

1https://github.com/hbilen/WSDDN
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S M L Ens.

SSW 31.1 30.9 24.3 33.3

EB 31.5 30.9 25.5 34.2

EB + Box Sc. 33.4 32.7 30.4 36.7

EB + Box Sc. + Sp. Reg. 34.5 34.9 34.8 39.3

Table 1. VOC 2007 test detection average precision (%). The en-

semble network is denoted as Ens.

4.3. Detection results

Baseline method. First we design a single stream

classification-detection network as an alternative baseline to

WSDDN. Part of the construction is similar to WSDDN, as

we replace pool5 layer of VGG-CNN-F model with an SPP.

However, we do not branch off two streams, but simply ap-

pend to the last fully connected layer (φfc8c) the following

loss layer

1

nC

n∑

i=1

C∑

k=1

max{0, 1− yki log

|R|∑

r=1

exp(xR
cr)}.

The term log
∑|R|

r=1
exp(xR

cr) is a soft approximation of the

max operator maxr x
R
cr and was found to yield better per-

formance than using the max scoring region. This obser-

vation is also reported in [1]. Note that the non-linearity

is necessary as otherwise aggregating region-based scores

would sum over the scores of a majority of regions that are

uninformative. The loss function is once more a sum of

C binary hinge-losses, one for each class. This baseline ob-

tains 21.6% mAP detection score on the PASCAL VOC test

set, which is well below the state-of-the-art (31.6% in [36]).

Pre-trained CNN architectures. We evaluate our

method with the models S, M and L and also report the re-

sults for the ensemble of these models by simply averaging

their scores. Table 1 shows that WSDDN with individual

models S and M are already on par with the state-of-

the-art method [36] and the ensemble outperforms the

best previous score in the VOC 2007 dataset. Differently

from supervised detection methods (e.g. [11]), detection

performance of WSDDN does not improve with use of

wider or deeper networks. In contrast, model L performs

significantly worse than models S and M (see table 1).

This can be explained with the fact that model L frequently

focuses on parts of objects, instead of whole instances, and

is still able to associate these parts with object categories

due to its smaller convolution strides, higher resolution and

deeper architecture.

Object proposals. Next, we compare the detection per-

formances with two popular object proposal methods,

SSW [34] and EB [38]. While both the region proposals

provides comparable quality region proposals, using box

scores of EB (denoted as Box Sc in table 1) leads to a 2%
improvement for models S and M and boosts the detection

performance of model L 5%.

Spatial regulariser. We denote the setting where WS-

DDN is trained with the additional spatial regularisation

term (denoted as Sp. Reg. in table 1). Finally the intro-

duction of the regularisation improves the detection perfor-

mance 1, 2 and 4 mAP points for models S, M and L respec-

tively. The improvements show that larger network bene-

fits more from introduction of the spatial invariance around

high confidence regions.

Comparison with the state of the art. After evaluating

the design decisions, we follow the best setting (last row

in table 1) and compare WSDDN to the state of the art in

weakly supervised detection literature in table 2 and table 3

for the VOC 2007 dataset and in table 5 and table 6 for the

VOC 2010 dataset. The results show that our method al-

ready achieves overall significantly better performance than

these alternatives with a single model and ensemble mod-

els further boost the performance. The majority of previ-

ous work [31, 32, 1, 36, 2] use the Caffe reference CNN

model [17], which is comparable to model S in this paper,

as a black box to extract features over SSW proposals. In

addition to CNN features, Cinbis et al. [4] use Fisher Vec-

tors [27] and EB objectness measure of Zitnick and Dollar

[38] as well. Differently from the previous work, WSDDN

is based on a simple modification of the original CNN archi-

tecture fine-tuned on the target data using back-propagation.

Next, we investigate the results in more detail. While our

method significantly outperforms the alternatives in major-

ity of categories, is not as strong in chair, person and potted-

plant categories. Failure and success case are illustrated in

fig. 3. It can be noted that, by far, the most important failure

modality for our system is that an object part (e.g. person

face) is detected instead as the object as a whole. This can

be explained by the fact that parts such as “face” are very

often much more discriminative and with a less variable ap-

pearance than the rest of the object. Note that the root cause

for this failure modality is that we, as many other authors,

define objects as image regions that are most predictive for

a given object class, and these may not include the object

as a whole. Addressing this issue will therefore require in-

corporating additional cue in the model to try to learn the

“whole object”.

The output of our model could also be used as input to

one of the existing methods for weakly-supervised detec-

tion that use a CNN as a black-box for feature extraction.

Investigating this option is left to future work.
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method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mean

WSDDN S 42.9 56.0 32.0 17.6 10.2 61.8 50.2 29.0 3.8 36.2 18.5 31.1 45.8 54.5 10.2 15.4 36.3 45.2 50.1 43.8 34.5

WSDDN M 43.6 50.4 32.2 26.0 9.8 58.5 50.4 30.9 7.9 36.1 18.2 31.7 41.4 52.6 8.8 14.0 37.8 46.9 53.4 47.9 34.9

WSDDN L 39.4 50.1 31.5 16.3 12.6 64.5 42.8 42.6 10.1 35.7 24.9 38.2 34.4 55.6 9.4 14.7 30.2 40.7 54.7 46.9 34.8

WSDDN Ensemble 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

Bilen et al. [1] 42.2 43.9 23.1 9.2 12.5 44.9 45.1 24.9 8.3 24.0 13.9 18.6 31.6 43.6 7.6 20.9 26.6 20.6 35.9 29.6 26.4

Bilen et al. [2] 46.2 46.9 24.1 16.4 12.2 42.2 47.1 35.2 7.8 28.3 12.7 21.5 30.1 42.4 7.8 20.0 26.8 20.8 35.8 29.6 27.7

Cinbis et al. [4] 39.3 43.0 28.8 20.4 8.0 45.5 47.9 22.1 8.4 33.5 23.6 29.2 38.5 47.9 20.3 20.0 35.8 30.8 41.0 20.1 30.2

Wang et al. [36] 48.8 41.0 23.6 12.1 11.1 42.7 40.9 35.5 11.1 36.6 18.4 35.3 34.8 51.3 17.2 17.4 26.8 32.8 35.1 45.6 30.9

Wang et al. [36]+context 48.9 42.3 26.1 11.3 11.9 41.3 40.9 34.7 10.8 34.7 18.8 34.4 35.4 52.7 19.1 17.4 35.9 33.3 34.8 46.5 31.6

Table 2. VOC 2007 test detection average precision (%). Comparison of our WSDDN on PASCAL VOC 2007 to the state-of-the-art in

terms of AP.

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mean

WSDDN S 68.5 67.5 56.7 34.3 32.8 69.9 75.0 45.7 17.1 68.1 30.5 40.6 67.2 82.9 28.8 43.7 71.9 62.0 62.8 58.2 54.2

WSDDN M 65.1 63.4 59.7 45.9 38.5 69.4 77.0 50.7 30.1 68.8 34.0 37.3 61.0 82.9 25.1 42.9 79.2 59.4 68.2 64.1 56.1

WSDDN L 65.1 58.8 58.5 33.1 39.8 68.3 60.2 59.6 34.8 64.5 30.5 43.0 56.8 82.4 25.5 41.6 61.5 55.9 65.9 63.7 53.5

WSDDN Ensemble 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0

Bilen et al. [2] 66.4 59.3 42.7 20.4 21.3 63.4 74.3 59.6 21.1 58.2 14.0 38.5 49.5 60.0 19.8 39.2 41.7 30.1 50.2 44.1 43.7

Cinbis et al. [4] 65.3 55.0 52.4 48.3 18.2 66.4 77.8 35.6 26.5 67.0 46.9 48.4 70.5 69.1 35.2 35.2 69.6 43.4 64.6 43.7 52.0

Wang et al. [36] 80.1 63.9 51.5 14.9 21.0 55.7 74.2 43.5 26.2 53.4 16.3 56.7 58.3 69.5 14.1 38.3 58.8 47.2 49.1 60.9 48.5

Table 3. VOC 2007 trainval correct localization (CorLoc [6]) on positive trainval images (%).

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mean

WSDDN S 92.5 89.9 89.5 88.3 66.5 83.6 92.1 90.3 73.0 85.7 72.6 91.4 90.1 89.0 94.4 78.1 86.0 76.1 91.1 85.5 85.3

WSDDN M 93.9 91.0 90.4 89.3 72.7 86.4 91.9 91.5 73.8 85.6 74.9 91.9 91.5 89.9 94.5 78.6 85.0 78.6 91.5 85.7 86.4

WSDDN L 93.3 93.9 91.6 90.8 82.5 91.4 92.9 93.0 78.1 90.5 82.3 95.4 92.7 92.4 95.1 83.4 90.5 80.1 94.5 89.6 89.7

WSDDN Ensemble 95.0 92.6 91.2 90.4 79.0 89.2 92.8 92.4 78.5 90.5 80.4 95.1 91.6 92.5 94.7 82.2 89.9 80.3 93.1 89.1 89.0

Oquab et al. [24] 88.5 81.5 87.9 82.0 47.5 75.5 90.1 87.2 61.6 75.7 67.3 85.5 83.5 80.0 95.6 60.8 76.8 58.0 90.4 77.9 77.7

SPP [15] – – – – – – – – – – – – – – – – – – – – 82.4

VGG-F [3] 88.7 83.9 87.0 84.7 46.9 77.5 86.3 85.4 58.6 71.0 72.6 82.0 87.9 80.7 91.8 58.5 77.4 66.3 89.1 71.3 77.4

VGG-M-1024 [3] 91.4 86.9 89.3 85.8 53.3 79.8 87.8 88.6 59.0 77.2 73.1 85.9 88.3 83.5 91.8 59.9 81.4 68.3 93.0 74.1 79.9

VGG-S [3] 95.3 90.4 92.5 89.6 54.4 81.9 91.5 91.9 64.1 76.3 74.9 89.7 92.2 86.9 95.2 60.7 82.9 68.0 95.5 74.4 82.4

VGG-VD16 [30] – – – – – – – – – – – – – – – – – – – – 89.3

Table 4. VOC 2007 test classification average precision (%).

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mean

WSDDN Ensemble 57.4 51.8 41.2 16.4 22.8 57.3 41.8 34.8 13.1 37.6 10.8 37.0 45.2 64.9 14.1 22.3 33.8 27.6 49.1 44.8 36.2

Cinbis et al. [4] 44.6 42.3 25.5 14.1 11.0 44.1 36.3 23.2 12.2 26.1 14.0 29.2 36.0 54.3 20.7 12.4 26.5 20.3 31.2 23.7 27.4

Table 5. VOC 2010 test detection average precision (%). http://host.robots.ox.ac.uk:8080/anonymous/3QGEGM.html

method aero bike bird boat bottle bus car cat chair cow table dog horse mbike persn plant sheep sofa train tv mean

WSDDN Ensemble 77.4 73.2 61.9 39.6 50.8 84.4 67.5 49.6 38.6 73.4 30.4 53.2 72.9 84.1 30.3 53.1 76.6 48.5 61.6 66.7 59.7

Cinbis et al. [4] 61.1 65.0 59.2 44.3 28.3 80.6 69.7 31.2 42.8 73.3 38.3 50.2 74.9 70.9 37.3 37.1 65.3 55.3 61.7 58.2 55.2

Table 6. VOC 2010 trainval correct localization (CorLoc [6]) on positive trainval images (%).
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Figure 3. This figure depicts success (in green) and failure cases (in red) of our detector in randomly picked images. Majority of false

detections contains two kinds of error: i) group multiple object instances with a single bounding box, ii) focus on (discriminative) parts

(e.g. “faces”) rather than whole object.

4.4. Classification Results

While WSDDN is primarily designed for weakly-

supervised object detection, ultimately it is trained to per-

form image classification. Hence, it is interesting to eval-

uate its performance on this task as well. To this end, we

use the PASCAL VOC 2007 benchmark and contrast it to

standard fine-tuning techniques that are often used in com-

bination with CNNs and show the results in table 6. These

techniques have been thoroughly investigated in [3, 15, 24].

Chatfield et al. [3], in particular, analyse many variants of

fine-tuning, including extensive data augmentation, on the

PASCAL VOC. They experiment with three architectures,

VGG-F, VGG-M, and VGG-S. While VGG-F is their fastest

model, the other two networks are slower but more accu-

rate. As explained in 4.2, we initialise WSDDN S and M

with the pre-trained VGG-F and VGG-M-1024 respectively

and thus they should be considered as right baselines. WS-

DDN S and M improves 8 and 7 points over VGG-F and

VGG-M-1024 respectively.

We also compare WSDDN to the SPP-net [15] which

uses the Overfeat-7 [29] with a 4-level spatial pyramid pool-

ing layer {6× 6, 3× 3, 2× 2, 1× 1} for supervised object

detection. While they do not perform fine-tuning, they in-

clude a spatial pooling layer. Applied to image classifica-

tion, their best performance on the PASCAL VOC 2007 is

82.4%. Finally we compare WSDDN L to the competitive

VGG-VD16 [30]. Interestingly, this method also exploits

coarse local information by aggregating the activations of

the last fully connected layer over multiple locations and

scales. WSDDN L outperforms this very competitive base-

line with a margin of 0.4 point.

5. Conclusions

In this paper, we have presented WSDDN, a simple

modification of a pre-trained CNN for image classifica-

tion that allows it to perform weakly supervised detection.

It achieves significantly better performance than existing

methods on weakly supervised detection, while requiring

only fine-tuning on a target dataset using back-propagation,

region proposals and image-level labels. Since it works on

top of a SPP layer, it is also efficient at training and test

time. WSDDN is also shown to perform better than tradi-

tional fine-tuning techniques to improve the performance of

a pre-trained CNN on the problem of image classification.

We have identified the detection of object parts as a fail-

ure modality of the method, damaging its performance in

selected object categories, and imputed that to the main

criterion used to identify objects, namely the selection of

highly-distinctive image regions. We are currently explor-

ing complementary cues that would favour detecting com-

plete objects instead.
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