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Abstract

In this paper, we present a part-based sparse tracker in

a particle filter framework where both the motion and ap-

pearance model are formulated in 3D. The motion model is

adaptive and directed according to a simple yet powerful

occlusion handling paradigm, which is intrinsically fused

in the motion model. Also, since 3D trackers are sensi-

tive to synchronization and registration noise in the RGB

and depth streams, we propose automated methods to solve

these two issues. Extensive experiments are conducted on

a popular RGBD tracking benchmark, which demonstrate

that our tracker can achieve superior results, outperform-

ing many other recent and state-of-the-art RGBD trackers.

1. Introduction

Visual object tracking is a classical and very popular

problem in computer vision with a plethora of applications

such as vehicle navigation, human computer interface, hu-

man motion analysis, surveillance, and many more. The

problem involves estimating the location of an initialized

visual target in each frame of a video. Despite numerous

object tracking methods that have been proposed in recent

years [31, 25, 29, 26], most of these trackers suffer a degra-

dation in performance mainly because of several challenges

that include illumination changes, motion blur, complex

motion, out of plane rotation, and partial or full occlusion,

while occlusion is usually the most contributing factor in

degrading the majority of trackers, if not all of them.

Fortunately, there is a recent surge in the availability of

affordable and increasingly reliable RGBD sensors that pro-

vide image and depth data such as the Microsoft Kinect,

Asus Xtion, and PrimeSense. When depth data is avail-

able, there exist more visual cues that can help resolve the

nuisances of object tracking, especially occlusion. Recent-

ly, a relatively large RGBD dataset for visual tracking (100

videos) was compiled and released to the public [27] in the

form of an online competition, where the ground truth ob-

ject tracks are mostly suppressed. Since then, much de-

served attention has been brought towards developing ro-

bust RGBD visual trackers. Although only a few of these

Figure 1. Top: Shows the tracking results on the videos

“bear front”, “face occ 5”, and “new ex occ 4” respectively

comparing our method, DS-KCF [9], and Princeton RGBD track-

er [27]. Bottom: Shows 3D cuboids and their parts for different

sequences as proposed in this paper.

trackers exist, they easily and with a big margin outperform

state-of-art RGB trackers on the same videos. This is clear

evidence of how depth information can be useful to visu-

al tracking, especially regarding early and robust detection

of occlusion and proper model update, both of which can

significantly boost the performance of any tracker.

Along with providing an RGBD benchmark [27], Song

et al. proposed an RGBD tracker that performs quite

well on the benchmark. They adopt an exhaustive search

paradigm coupled with an SVM classifier trained on im-

age/depth HOG and point cloud features, which reduces the

tracker’s runtime to only 0.26 FPS. An occlusion handling

method is also adopted, where the tracked object is assumed

to be contained in the plane closest to the camera. This
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method of handling occlusions makes it difficult to proper-

ly update the target’s depth throughout the frames.

Recently, the work in [9] incorporated depth informa-

tion into the popular Kernelized Correlation Filter tracker

[14, 13]. This method demonstrates very promising per-

formance with real-time speeds of up to 40 FPS. However,

tracking is still done in the 2D image plane, which might

not make use fully of the depth information. Also, an oc-

clusion handling method was proposed that is very similar

in spirit to [27], thus, suffering from similar difficulties.

Part-based RGB trackers have been prevalent for a while

now. They demonstrate very desirable performance as com-

pared to RGB trackers that use only one part, owing to the

fact that an object can still be tracked as long as some (not

necessarily) all its parts are visible in the next frame. This

is most helpful in handling partial occlusions and recover-

ing from complete occlusions. Inspired by this line of work

[39, 38, 30], we propose a 3D part based-tracker, whereby

the parts not only help in representing the target but also

support the detection of partial or full occlusion.

When testing our tracker and other 3D methods on the

RGBD Princeton benchmark [27], we realized that the pro-

vided RGB and depth sequences contain many synchroniza-

tion and registration errors. A synchronization error occurs

when an RGB frame is assigned to an incorrect depth frame

in the sequence. This happens because the RGB and depth

video streams are usually generated independently and al-

though the frame rate of both cameras is similar, it might

fluctuate slightly over time and there might also be dropped

frames. This can cause substantial errors when tracking is

done in 3D, since the projection to the image plane is af-

fected. For example, even if the 3D tracking results are

accurate, their resulting 2D bounding boxes, which are in

turn used to evaluate the RGBD tracker, will not be since

they are with respect to the depth image plane while the

ground truth is in the RGB image plane. On the other hand,

a registration error usually occurs due to imprecise calibra-

tion between the RGB and depth cameras. This imprecision

manifests itself in erroneous assignment of depth values to

RGB pixels. For example, background RGB pixels are as-

signed the target’s depth values and vice versa. Due to both

types of errors, the tracking performance of methods, which

perform representation, sampling, and tracking in 3D, can

be significantly affected. In fact, we suspect that this is the

reason why the authors of a very recent RGBD tracker [9]

mention that they mandate these errors be rectified (mostly

probably manually) before tracking can be performed. In

this paper, we suggest a simple yet effective method to au-

tomatically alleviate many of these errors that plague 3D

tracking and possibly other applications that make use of

RGBD stream data.

Contributions This work makes two main contributions.

(i) To the best of our knowledge, we propose the first gener-

ic 3D part-based tracker with a very effective part-based oc-

clusion handling method with desirable performance. At

the time of submission, outranks all other trackers in the

online Princteon RGBD benchmark [27]. (ii) We propose

a simple method to synchronize and register RGBD videos

for the purpose of single object tracking. We also provide

to the vision community the manual synchronization and

registration of the videos provided in the benchmark.

2. Related Work

RGB Trackers. In general, they can be divided into t-

wo main categories: discriminative and generative methods.

Discriminative trackers formulate visual object tracking as

a binary classification problem that searches for the target

location that is the most distinctive from the background.

Examples of discriminative trackers include multiple in-

stance learning tracking (MIL) [5], ensemble tracking [4],

support vector tracking [3], correlation filter based trackers

[14, 13, 7, 6, 20, 18], multiple experts entropy minimization

(MEEM) tracker [32] and other multi-object based trackers

like the tracklet association with identity constraints [28].

On the other hand, a generative tracker searches for a can-

didate target that is best represented by its current appear-

ance model. As such, the major contribution of this type

of tracker is in developing suitable and versatile representa-

tive models that can reliably describe the object even when

it undergoes different appearance changes. Examples of

generative models include the mean shift [11], incremental

(IVT) [23], fragment-based (Frag) [1], L1-min [21], multi-

task (MTT) [35, 34], low-rank sparse [33], exclusive con-

text modelling based tracker [36], occlusion detection based

structural sparse learning based tracker [37] and structural

sparse tracker [39].

RGBD Trackers. As for the RGBD domain, only a limit-

ed number of generic methods exist in the literature, owing

to the novelty of the problem and the only recent availabil-

ity of RGBD tracking data. In [27], a computationally ex-

pensive tracker is proposed that combines the SVM scores

of two tracking-by-detection instances: one based on RG-

B and depth HOG features and the other is based on point

cloud features. This scoring function is used to evaluate a

dense sampling of 3D non-overlapping cells, thus, incur-

ring a large computational cost. In our proposed tracker, we

avoid this unnecessary computation induced by naive 3D

sampling by exploiting the object’s part-based structure as

well as its previous motion. In doing so, only a very smal-

l number of 3D samples need to be evaluated at any given

time. Also, the authors of [27] propose an expensive depth

based histogram segmentation method (based on a strict as-

sumption that the object lies in the nearest plane) to detect

occlusion, unlike our tracker that infuses the occlusion han-

dling scheme directly in the tracking process without any

additional complexity.

Moreover, the conventional and high-speed KCF tracker
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Figure 2. Overall pipeline for the proposed method, including the three major modules synchronization, registration, and 3D tracking.

[14, 13] was adapted to the RGBD domain in [9]. Similar

to [27], occlusion is claimed to be handled by a segmenta-

tion of the depth histogram followed by a connected com-

ponent analysis to incorporate spatial features of the object.

As mentioned in the paper, the results of [9] on the Prince-

ton benchmark relied on an apriori synchronization and re-

aligning of the provided RGB and depth sequences. To the

best of our knowledge, this process was most probably done

manually, since no elaboration was given on the method

used. In this paper, we show how this issue can be allevi-

ated automatically. In [17], a 2D particle filter was adopted

in which the sampling variance of each individual particle

changes according to its occlusion state. Despite its good

performance on the benchmark, its representation and mo-

tion models are both constructed in 2D, unlike our method

that natively treats the problem in 3D, from both represen-

tation and motion perspectives. In [12], authors build an

adaptive boosting classifier from a pool of features (color,

depth, and grayscale) that is incrementally re-trained from

frame-to-frame. Similar to the previous method, this tracker

operates solely in 2D representations with no clear method

of handling occlusion.

Other 3D trackers usually rely on a target-specific 3D

object model, which is known apriori [30]. For example,

the trackers of [22, 24] assume a 3D model of a hand is

provided before tracking begins. Other methods like [19,

10] are category-specific RGBD trackers, which are mainly

used for human detection and tracking.

In this paper, we propose a 3D particle filter tracker that

exploits sparse representation, object structure (parts), as

well as, adaptive particle sampling and pruning, all in a u-

nified framework. We also present a simple yet effective

method to automatically re-synchronize and re-register RG-

B and depth pairs for better tracking performance. Through

extensive experiments, we show that our tracker outper-

forms all the state-of-the-art methods in Princeton RGBD

benchmark by ranking first and third on the manually and

automatically synchronized and registered data respectively

in the online evaluation.

3. Part-Based Sparse 3D Tracker

In this paper, we propose a 3D part-based particle-filter

tracker, where both representation and motion models are

constructed entirely in 3D. We also propose a simple yet ef-

fective method for handling structural information provided

by the object parts and how it is used for both representation

and particle pruning. We represent target candidates (par-

ticles) and their parts using a linear sparse representation.

Moveover, an occlusion handling scheme supported by the

part representation is integrated with the motion model so as

to adaptively guide/direct how particles are sampled in the

next frame. As compared to tracking-by-detection method-

s that densely sample the 3D space, our strategy produces

only a small number of particles needed for 3D tracking.

As mentioned earlier, synchronized and registered data is

exceptionally important for 3D trackers; therefore, we pro-

pose an automatic method to synchronize and register RGB-

D sequences and apply it to those in the Princeton RGBD

benchmark [27]. The overall pipeline of our method is il-

lustrated in Figure 2.

3.1. Representation Model

Generative RGB trackers [39, 15, 21] and most RGBD

trackers [17, 9] define their target candidates (e.g. particles)

to be 2D bounding boxes in the RGB or depth image plane,

from which features for representation are extracted. In our

formulation, we use a particle filter to sample 3D cuboid

candidates. To limit the number of particles to a practical

number, we propose an adaptive data-driven sampling ap-

proach. Each particle cuboid is divided into a pre-defined

number of overlapping parts, each of which is defined al-

so as a 3D cuboid. For convenience, all particles have the

same part layout. One of these parts covers 65% volume

of the entire particle (cuboid) and is located at its center as

seen in Figure 1. This part captures holistic object informa-

tion, while the other smaller parts capture information from

different sides of the object (refer to Figure 1). Clearly,

other (possibly hierarchical) part layouts can be used here

too. Each part is represented using a m = 13 dimension-

al feature: ten color names and three 3D shape features, as

proposed in [27]. We model each particle part as a sparse

linear combination of a set of dictionary elements. To do

this, we adopt a similar approach as in [39, 15, 21]. At

the first frame, we collect several observations of the ob-

ject (and its parts) by sampling multiple cuboids around its

ground truth location. We build K = 2 sparsifying dictio-

naries (using KSVD [2], one for each type of feature and

for each part. Therefore, the representation of each particle

can be described mathematically as follows:

1441



min
Xk

K
∑

k

‖DkXk −Yk‖
2
F + λ‖Xk‖1,1, (1)

where Dk denotes the dictionary corresponding to the kth

feature type, such that Dk = [D̂1k|D̂2k|...|D̂Nk|Imk
],

where D̂ik ∈ R
mk×nk , where mk and nk are the dimen-

sionality of the kth feature space and the number of atoms

in dictionary k of the part i respectively. Imk
is an identi-

ty matrix that encodes sparse error (e.g. partial occlusion);

therefore, Dk ∈ R
mk×(Nnk+mk). For computational rea-

sons, these dictionaries are not updated with time. We con-

catenate the kth feature type for all the parts of a particle in

the observation matrix Yk ∈ R
mk×N , where N is the total

number of parts (N = 9 in our experiments). The result-

ing sparse code matrix is denoted as Xk ∈ R
(Nnk+mk)×N .

The optimization in Eq (1) is non-smooth but convex. It is

the matrix form of the popular Lasso problem. It can be

efficiently solved using a number of methods, including Al-

ternating Direction Method of Multipliers (ADMM).

3.1.1 Temporal Coherence on Part Structure

Unlike sampling in 2D where the image plane is dense, most

of the 3D point cloud scene is in fact empty. This may re-

sult in empty particle parts or completely empty particles.

Scoring particles that are partially or completely empty us-

ing the objective in Eq (1) is not appropriate because the

objective is not representative of these instances. That is, if

one of the parts has disappeared, one of the two very dif-

ferent scenarios have occurred. Either the part is occluded,

or the particle having that part is not representative enough.

The first has to be associated with a low cost, while the lat-

ter with a high one. In Eq (1), an empty part (one of the

columns of Yk is the zero vector) will result in a the triv-

ial solution of Eq (1) for both scenarios. That means the

objective will favor parts that are empty; thus, leading the

tracker to drift into completely empty regions in 3D space.

Similarly, setting the cost too high for empty parts within a

cuboid would favor dense regions and will lead to favoring

any nearby object, even if it were the occluder.

To address this issue, we make use of the temporal coher-

ence of the object’s part structure, which is modeled using

the distribution of 3D points within each part of the curren-

t target. For simplicity, each part is described with a sin-

gle binary value (1 or 0), which depicts whether that part

is empty or not. As such, each particle is described using

an N -dimensional binary vector, denoted as the part-based

structure feature. We expect that this feature changes gradu-

ally with time, i.e. many parts tend not to abruptly disappear

or re-appear in the next frame. To preserve structural in-

formation in between consecutive frames and to determine

occluded parts, we use the hamming distance between the

binary structure feature of the current target and that of each

particle sampled in the next frame. Only those particles with

the minimum hamming distance are selected and represent-

ed using Eq (1). This strategy also helps prune unlikely par-

ticles, thus, substantially reducing the overall computation

time needed for representation.

3.2. Motion Model
In this part, we give a detailed explanation of how we

use particle filters in our tracker. But first, we give a brief

of particle filtering.

3.2.1 Particle Filter

The particle filter is a Bayesian sequential important sam-

pling technique for estimating a posterior distribution of s-

tate variables xt that characterize a dynamic mode. It con-

sists of two major steps, the prediction and the update for

re-sampling. At the new instance t, a new observation zt
is available and the new probability distribution given all

observations and the previous state is given by:

p(xt|z1:t) =
p(zt|xt)p(xt|z1:t−1)

p(zt|z1:t−1)
(2)

As for the update step, it is based on p(zt|x
i
t). The higher

the probability is, the higher the weight is. As such, more

particles will be sampled from a state that has been observed

with a higher probability. It is computed as follows:

wi
t = wi

t−1p(zt|xt) (3)

3.2.2 Adaptive Directed Sampling

Owing to the way objects move in 3D and since our par-

ticles are modeled as cuboids, we take the state vector xt

to represent a 3D rigid body transformation, i.e. xt ∈ R
6,

which is characterized by a 3D rotation and 3D translation.

Note that scale could be incorporated in this setup; howev-

er, in most cases and unlike the 2D scale, the 3D scale of

a target does not change dramatically from its initial value.

Depending on the state of the object (whether it is occluded

or not), the motion model changes accordingly.

No occlusion. To not sample particles unnecessarily, we

do not use a zero-order motion model. Instead, we use 2D

optical flow on the current target to the next RGB frame to

compute a crude estimate of its new 3D location. Since only

a crude estimate is needed, most optical flow methods can

be used here. So, for mainly computational reasons, the ba-

sic Horn-Schunck optical flow [16] is sufficient. In fact, we

experimented with more sophisticated large-displacement

methods (e.g. the work in [8]), only to find that the tracking

performance is only subtly affected. Given the pixel corre-

spondences from optical flow, we can get a crude estimate

of the rigid body transformation (rotation R and translation

t) of the current target. Then, we sample the particle states
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Figure 3. Shows the proposed occlusion handling scheme on video “new ex occ 4 ”, where the number of points in all the particles

decreases significantly in 3D space when the tracked object is occluded.

using a Gaussian distribution centered at the previous esti-

mate (R, t) and with a diagonal covariance. Since the ori-

entation of a target cuboid does not change much over time

(e.g. a human walking on a planar surface), we set the vari-

ances of the translation parameters to be much larger than

those of the rotation.

Occlusion. When the target is determined to be in an oc-

clusion state (as we will describe in the next section), opti-

cal flow is no longer a valid measure. Therefore, we resort

back to a zero-mean motion model with large translational

variance, so as to recapture the target when it re-appears.

3.2.3 Occlusion Handling

We integrate the occlusion handling scheme with the par-

ticle filter formulation. As discussed earlier, each sampled

particle represents a cuboid, which contains a certain num-

ber of 3D points. In case of occlusion, we observe that this

number tends to decrease significantly in all particles all at

once. By monitoring this change, we can determine if an

object is being occluded or not. Since image resolution is

inversely proportional to the distance from the camera, the

number of points in a cuboid is also inversely proportion-

al with depth. Therefore, we need to compensate for the

number of points in depth by computing a depth-normalized

measure: t̃j =
(

zj

z1

)2

tj . Here, zj and z1 are the aver-

age depth values in the 3D cuboids in frame j and the first

frame respectively. tj and t̃j are the original and the depth

adjusted average number of points in the current 3D cuboid

in frame j. In case of an occlusion at frame j, the depth-

normalized number of points among all particles will be

very low. If the average depth adjusted falls below some

threshold compared to the average number of points in the

first frame, the object is identified to be in an occlusion state

as illustrated in Figure 3.

3.3. Synchronizing and Registering RGBD Images

There are several videos in Princeton RGBD benchmark

[27] with registration and synchronization issues that can

substantially affect 3D tracking performance. We consider

this as a fundamental problem that needs to be addressed

because it not only affects 3D trackers but many other com-

puter vision applications that involve operations on 3D data.

In fact, it is clearly stated in previous work [9] that the RGB

and depth sequences need to be synchronized and realigned

properly before tracking can be applied. In the following,

we propose a method to solve both problems.

Figure 4. (a)&(b) is a previously synchronized RGBD image pair.

(c)&(d) is an RGBD pair formed of the next RGB image in the

sequence and its corresponding synthetic depth image generated

using optical flow. (e) shows a set of possible matches to (c) most

similar to (d).

3.3.1 Synchronization

As explained earlier, synchronization problems arise in

RGBD videos because the RGB and depth streams tend to

be acquired independently, with different frame rates, and

sometimes frames are dropped. A commonly used method

to resolve this issue is to assign a depth image to every RGB

image that has the closest time stamp. This is what is done
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in the benchmark [27]. Obviously, this issue can also be

resolved from a hardware perspective by simply increasing

the frame rate of both cameras, thus, reducing the effect of

time stamp offset. In this work, we formulate the problem

as a matching task to alleviate the synchronization issues.

We take the RGB sequence as reference. We seek to

match a depth image to every image in the RGB sequence.

An RGB image is allowed to match to any depth image,

whose time stamp is close enough to that of the RGB im-

age. We start with a manually synchronized pair of RGB

and depth images in the first frame, denoted as I1RGB and

I1D respectively. Under the assumption that the depth values

of a scene change smoothly between consecutive frames,

we can compute a large-displacement optical flow [8] be-

tween the current synchronized RGB image I1RGB and the

next one in the sequence I2RGB . Only point correspon-

dences {(x1
i ,y

2
i )}

p
i=1 with a large enough flow magnitude

are maintained, since moving points give clear indication

of when synchronization errors occur. Then, we generate a

synthetic depth image Î2D by transferring over depth values,

i.e. Î2D(y2
i ) = I1D(x1

i ). If C is the set of frame indices i-

dentifying the depth images that are close in time stamp to

I2RGB , then we can synchronize I2RGB to the depth image

I
j∗

D , whose depth values at {y2
i }

p
i=1 are closest to those in

Î2D. We formulate this mathematically as follows:

j∗ = argmin
j∈C

p
∑

i=1

(

Î2D(y2
i )− I

j
D(y2

i )
)2

(4)

This strategy can be applied iteratively (refer to Fig. 4)

until all the images in the RGB sequence are synchronized.

3.3.2 Registration

Several videos in the Princeton RGBD benchmark [27] al-

so suffer from incorrect registration between synchronized

RGB and depth image pairs. Being able to correctly register

these pairs is very important, since this registration defines

the correspondences between pixels in the RGB image and

those in the depth image, which in turn enable the genera-

tion of the 3D point cloud of the scene.

The usual strategy for registering these image pairs is to

stereo calibrate both the depth and RGB cameras together.

This calibration can be used to map pixels from one of them

to the other. This strategy is used in the RGBD benchmark

[27]; however, in many cases, registration errors do occur

and they could be as large as 30-40 pixels. Such an offset

can negatively affect any RGBD based tracker, especially

one that tracks the object in 3D. This offset is not uniform-

ly random at each pixel, since the source of the error arises

from perturbations in the extrinsic calibration parameters,

i.e. the rotation and translation that transforms the coordi-

nate system of the RGB camera to that of the depth. By

assuming that the perturbation in the rotation is negligible

w.r.t. the perturbation in the translation, it can be shown that

the per-pixel offset in registration varies with the depth and

image location of the pixel (refer to supplementary mate-

rial). However, this variation is structured. For example,

neighboring pixels with similar depth values tend to have

very similar offsets. This is why some of the registration

errors in the benchmark (corresponding to videos showing

a predominant foreground object infront of a far away back-

ground) can be easily fixed by simply translating the whole

depth image in a single direction. To estimate the regis-

tration offsets from one frame to the next, we formulate a

structured selection problem as shown in Eq (5). We only

require the first RGBD image pair to be correctly registered.

min
zi∀i

1

p

p
∑

i

(di1 − di
2

T
zi)

2

s.t zi ∈ {0, 1}N ∀i, 1T zi = 1 ∀i, rank(Z) ≤ r

(5)

Here, di1 is the depth of pixel i in the previous RGBD

image pair, which is assumed to be correctly registered. We

assume that the offset of this pixel in the next frame can be

one of N possible offsets. The vector di
2 ∈ R

N contains the

depth values in the next depth image corresponding to the

N possible offsets. Moreover, the binary vector zi can be

viewed as a selection vector that chooses only one of the off-

set depth values in the next frame for pixel i. The selection

vectors Z = [z1|...|zp] for the p pixels (i.e. matched pixels

using optical flow) must be constrained to follow the per-

turbation model described above. Since neighboring pixels

with similar depths tend to have the same offset, we only ex-

pect a small number of distinct offsets to be selected among

the p pixels. We formulate this as a low-rank constraint on

the binary matrix Z.

Computing the global solution of this binary problem

cannot be done in polynomial time, so we seek a tradeoff

between solution quality and computational efficiency. We

observe that when r = 1, any feasible matrix Z is all zeros

except for an entire row. We can exhaustively evaluate all

N feasible matrices and return the one leading to the small-

est objective value. This is equivalent to selecting a single

offset for all p pixels. We can exploit this observation to

efficiently compute an approximate solution when r > 1.

This can be done in two ways. (i) We can pre-cluster the p

pixels (e.g. according to their depth values di1 and their im-

age locations) and then find the best rank-1 solution for each

cluster independently. (ii) We first find the best rank-1 solu-

tion and remove all pixels whose offset has been found (i.e.

their contribution to the overall objective is zero). Then, we

reiterate this process on the remaining pixels at most (r−1)
times or until no pixels are left.

4. Experimental Results

To evaluate the performance of our proposed tracker, we

conduct extensive experiments on the well-known Prince-
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Target type Target Size Movement Occlusion Motion Type
Algorithm

Human Animal Rigid Large Small Slow Fast Yes No Passive Active

Ours Manual 0.81 0.64 0.73 0.80 0.71 0.75 0.75 0.73 0.78 0.79 0.73

Ours Sync Reg 0.74 0.66 0.70 0.77 0.65 0.76 0.68 0.67 0.76 0.75 0.69

Ours Sync Raw Reg 0.68 0.58 0.71 0.76 0.61 0.74 0.64 0.62 0.74 0.75 0.64

Ours Raw Sync Raw Reg 0.64 0.57 0.67 0.71 0.58 0.73 0.60 0.57 0.73 0.72 0.61

Ours One Part Manual 0.60 0.56 0.46 0.58 0.50 0.58 0.52 0.48 0.62 0.54 0.54

Table 1. Comparison between our proposed tracker in different design variations.

Target Type Target Size Movement Occlusion Motion Type
Algorithm

Avg.

Rank Human Animal Rigid Large Small Slow Fast Yes No Passive Active

Ours Manual 2.27 0.81 0.64 0.73 0.80 0.71 0.75 0.75 0.73 0.78 0.79 0.73

OAPF[17] 2.63 0.64 0.85 0.77 0.73 0.73 0.85 0.68 0.64 0.85 0.78 0.71

RGBDOcc+OF[27] 2.81 0.74 0.63 0.78 0.78 0.70 0.76 0.72 0.72 0.75 0.82 0.70

Ours Sync Reg 3.72 0.74 0.66 0.70 0.77 0.65 0.76 0.68 0.67 0.76 0.75 0.69

DS-KCF[9] 4.54 0.67 0.61 0.76 0.69 0.70 0.75 0.67 0.63 0.78 0.79 0.66

RGBD+OF[27] 5.27 0.64 0.65 0.75 0.72 0.65 0.73 0.66 0.60 0.79 0.74 0.66

PCdet flow[27] 7.27 0.51 0.52 0.73 0.63 0.56 0.74 0.53 0.55 0.64 0.75 0.53

Table 2. Tracking results from the online evaluation for our tracker on both the manually and automatically synchronized and registered

data compared with the top 5 trackers.

ton RGBD benchmark [27], comprising a total of 100 video

sequences only five of which have publicly available ground

truth tracks. The videos contain many challenges including

partial and full occlusion, fast motion, out of plane rotation,

background clutter, moving camera, and shape deformation

and distortion. For comparison, the authors of [27] pro-

vide an online evaluation system that compares a tracker’s

performance with that of 20 others, 12 of which use depth

information while the rest are popular state-of-the-art RGB

trackers. The evaluation for the comparisons among track-

ers was based on the intersection over union criterion (IOU).

For the details of the tracking criterion used for evaluation,

reader is referred to [27]. To evaluate the merits of our

synchronization and registration method, we compare our

tracker on both the RGBD data provided in the benchmark

and the same data after both methods are applied. More-

over, we empirically validate the benefits of using multiple

parts instead of a holistic representation for tracking.

4.1. Implementation Details

All our experiments are done using MATLAB R2014b

on a 3.07GHz Intel(R) Xeon(R) with 48GB RAM. The

number of parts N = 9, with K = 2 dictionaries learnt

for each part. Only a total of 20 particles were used in our

method. As for particle sampling, we set the standard de-

viations of the translation component to {0.05, 0.05, 0.03}
for when the object is not in a state of occlusion and

{0.35, 0.10, 0.2} when it is. To reduce computational cost,

we do not sample the rotation obtained from point corre-

spondences. Moreover, we set the Lasso parameter λ =
0.05 as a decent tradeoff between sparsity and meaningful

reconstruction. The target is in an occlusion state, when

the depth-normalized average number of points in a frame

for all particles falls below 0.2t̄1, where t̄1 is the average

number of points inside the cuboid in the first frame.

As for synchronization, any RGB image is allowed to

match to one depth image that is within 5 frames from it.

Figure 5. Pairs (a)&(b) and (c)&(d) denote the registered

RGB and depth pairs as provided in the benchmark [27],

compared with our method of registration on the video

“new student center no occ” at frames 2 and 57 respectively.

Similarly, we show pairs (e)&(f) and (g)&(h) for the video

“new student center 3 ” at frames 2 and 77 respectively.

For the registration problem, we use the offset in the previ-

ous frame as an initialization for the next one.

4.2. Evaluation of Design Choices

In the following, we show the impact on tracking perfor-

mance of using the automatically synchronized and regis-

tered data and compare it to the provided benchmark data

[27]. In the defense of parts, we see a significant perfor-

mance improvement when multiple parts are considered.

Synchronization results. As discussed earlier, around

14% of Princeton RGBD benchmark [27] videos have syn-

chronization error, while an additional 8% also require re-

registration. Since this is very important for 3D based track-

ers, Table 1 shows our proposed tracker results on the RGB-

D ground truth data provided by [27] and the same data after
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Figure 6. Images (a)&(c) show the tracking results in 3D where

the red and blue cuboids are two different parts tracked. The yel-

low cuboid is an occlusion detection. Images (b)&(d) show the

corresponding 2D tracking results. The videos from top to bottom

are “new ex occ 4 ”and “three people ”respectively.

our proposed method of synchronization is used. For both

the fast motion and occlusion categories, we observe a no-

table improvement in performance (4% and 5% respective-

ly), since the un-synchronized RGB and depth image pairs

in these categories tend to be significantly different.

Registration results. Figure 5 illustrates the problem of

registration with a qualitative example. Around 12% of the

testing videos provided by [27] suffer from severe registra-

tion errors. Table 1 shows tracking results on the videos as

given by [27] and on the data registered using our proposed

method. Significant improvement in performance is not-

ed in almost all categories Again, this is mainly because 3D

based trackers project the points back into the depth frame’s

reference, while the evaluation ground truth is constructed

in the RGB image. Moreover, unregistered data contami-

nates the representation of the target because color attributes

of the background appear in the target and vice versa.

In the defense of parts. Table 1 summarizes the perfor-

mance of our method when only one holistic part is used.

Clearly, adding multiple parts substantially improves per-

formance across all tracking categories. It is evident that

parts help provide a more robust representation of the tar-

get, as well as, structural information that is important to

prune unnecessary and possibly confusing particles.

4.3. Results on the RGBD Tracking Benchmark

In Table 2, we summarize the performance of our track-

er on both the manually and automatically synchronized and

registered data compared to the top-5 closest trackers on a

total of 95 videos. We use the same category breakdown as

the online benchmark. The list of competing trackers was

shortened to show only the best 5 methods (refer to the sup-

plementary material for the entire table). Our part-based

sparse tracker ranks first among all other methods on the

manually synchronized and registered data while ranking

third when the automatically synchronized and registered

data is used. In some categories (e.g. Human), it registers

an improvement of 7% over the second best tracker. This

is attributed to the use of parts and the temporal coherence

in their structure, which is a reasonable assumption for hu-

mans. Other categories (e.g. Animal and Fast Motion) show

the target interacting in very close distance with other ob-

jects that have similar cues and/or exhibiting complex mo-

tion, thus, restricting tracking performance.

Qualitative results. Figure (6) shows the tracking results

in 3D of sample frames taken from two benchmark videos,

namely “new ex occ 4 ”and “three people”. Both of these

videos include examples of full occlusion. For visualization

purposes, we only show two of the nine constituent parts,

shown as red and blue cuboids. We also backproject these

cuboids into the image plane as upright bounding boxes.

The yellow cuboids are instances when the object is deter-

mined to be in an occlusion state. Notice how our tracker is

able to easily recover from this full occlusion.

5. Conclusion

In this paper, we proposed a 3D part-based sparse track-

er, which exploits parts to preserve temporal structural in-

formation and help in particle pruning. A fast yet power-

ful method was proposed to embed occlusion detection in

the motion model framework. Since 3D trackers are sensi-

tive to synchronization and registration noise, we proposed

methods to correct for both, especially since no less than

30% of the videos on the popular RGBD tracking bench-

mark [27] suffer from these issues. Extensive experiments

demonstrate the positive impact of each module of the pro-

posed tracker. In fact, our tracker currently ranks first on

the benchmark, as compared to many state-of-the-art track-

ers. For future work, we aim to exploit part-to-part spatial

and appearance relationships to encode particles and to de-

tect occlusion. Moreover, we plan to develop a strategy to

incrementally build and maintain a prototypical 3D model

of the target by registering its tracking results with time.
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