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Figure 1: Sometimes colour distributions are not enough to discriminate the target from the background. Conversely, template

models (like HOG) depend on the spatial configuration of the object and perform poorly when this changes rapidly. Our

tracker Staple can rely on the strengths of both template and colour-based models. Like DSST [10], its performance is not

affected by non-distinctive colours (top). Like DAT [33], it is robust to fast deformations (bottom).

Abstract

Correlation Filter-based trackers have recently achieved

excellent performance, showing great robustness to chal-

lenging situations exhibiting motion blur and illumination

changes. However, since the model that they learn depends

strongly on the spatial layout of the tracked object, they

are notoriously sensitive to deformation. Models based on

colour statistics have complementary traits: they cope well

with variation in shape, but suffer when illumination is not

consistent throughout a sequence. Moreover, colour distri-

butions alone can be insufficiently discriminative. In this

paper, we show that a simple tracker combining comple-

mentary cues in a ridge regression framework can operate

faster than 80 FPS and outperform not only all entries in the

popular VOT14 competition, but also recent and far more

sophisticated trackers according to multiple benchmarks.

1. Introduction

We consider the widely-adopted scenario of short-term,

single-object tracking, in which the target is only specified

in the first frame (using a rectangle). Short-term implies

that re-detection should not be necessary. The key challenge

of tracking an unfamiliar object in video is to be robust to

changes in its appearance. The task of tracking unfamil-

iar objects, for which training examples are not available in

advance, is interesting because in many situations it is not

feasible to obtain such a dataset. It is advantageous for the

algorithm to perform above real-time for computationally

intensive applications such as robotics, surveillance, video

processing and augmented reality.

Since an object’s appearance can vary significantly dur-

ing a video, it is not generally effective to estimate its model

from the first frame alone and use this single, fixed model

to locate the object in all other frames. Most state-of-the-

art algorithms therefore employ model adaptation to take

advantage of information present in later frames. The sim-

plest, most widespread approach is to treat the tracker’s pre-

dictions in new frames as training data with which to update

the model. The danger of learning from predictions is that

small errors can accumulate and cause model drift. This

is particularly likely to happen when the appearance of the

object changes.

In this paper, we propose Staple (Sum of Template And

Pixel-wise LEarners), a tracker that combines two image

patch representations that are sensitive to complementary

factors to learn a model that is inherently robust to both

colour changes and deformations. To maintain real-time

speed, we solve two independent ridge-regression prob-

lems, exploiting the inherent structure of each representa-

tion. Compared to other algorithms that fuse the predictions

of multiple models, our tracker combines the scores of two

models in a dense translation search, enabling greater ac-

curacy. A critical property of the two models is that their

scores are similar in magnitude and indicative of their re-

liability, so that the prediction is dominated by the more
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confident.

We establish the surprising result that a simple combi-

nation of a Correlation Filter (using HOG features) and a

global colour histogram outperforms many more complex

trackers in multiple benchmarks while running at speeds in

excess of 80 FPS.

2. Related Work

Online learning and Correlation Filters. Modern ap-

proaches to adaptive tracking often use an online ver-

sion of an object detection algorithm. One approach that

achieves strong results [39] and has an elegant formulation

is Struck [16], which seeks to minimise the structured out-

put objective for localisation [3]. However, the computation

needed limits the number of features and training examples.

Correlation Filters instead minimise a least-squares loss

for all circular shifts of the positive examples. Although this

might seem a weaker approximation of the true problem,

it enables the use of densely-sampled examples and high-

dimensional feature images in real-time using the Fourier

domain. Initially applied to adaptive tracking in grayscale

images by Bolme et al. [5], their extension to multiple

feature channels [4, 17, 22, 18] and therefore HOG fea-

tures [7] enabled the technique to achieve state-of-the-art

performance in VOT14 [24]. The winner of the challenge,

DSST [8], incorporated a multi-scale template for Discrim-

inative Scale-Space Tracking using a 1D Correlation Fil-

ter. One deficiency of Correlation Filters is that they are

constrained to learn from all circular shifts. Several recent

works [12, 23, 9] have sought to resolve this issue, and the

Spatially Regularised (SRDCF) [9] formulation in particu-

lar has demonstrated excellent tracking results. However,

this was achieved at the cost of real-time operation.

Robustness to deformation. Correlation Filters are in-

herently confined to the problem of learning a rigid tem-

plate. This is a concern when the target experiences shape

deformation in the course of a sequence. Perhaps the sim-

plest method to achieve robustness to deformation is to

adopt a representation that is insensitive to shape variation.

Image histograms have this property, because they discard

the position of every pixel. In fact, histograms can be con-

sidered orthogonal to Correlation Filters, since a Correla-

tion Filter is learnt from circular shifts, whereas a histogram

is invariant to circular shifts. However, histograms alone

are often insufficient to discriminate the object from the

background. While colour histograms were used in many

early approaches to object tracking [32, 31], they have only

recently been demonstrated to be competitive in modern

benchmarks in the Distractor-Aware Tracker (DAT) [33],

which uses adaptive thresholding and explicit suppression

of regions with similar colours. In general, histograms may

be constructed from any discrete-valued feature, including

local binary patterns and quantised colours. For a histogram

to provide robustness to deformation, the feature must be

insensitive to the local changes that arise.

The chief alternative way to achieve robustness to defor-

mation is to learn a deformable model. We believe it is am-

bitious to learn a deformable model from a single video in

which the only supervision is the location in the first frame,

and therefore adopt a simple bounding box. While our

method outperforms recent sophisticated parts-based mod-

els [6, 40] in benchmarks, deformable models have a richer

representation that these evaluations do not necessarily re-

ward. Our single-template tracker could be considered a

component with which to construct a parts-based model.

Rather than use a deformable model, HoughTrack [14]

and PixelTrack [11] accumulate votes from each pixel and

then use the pixels that voted for the winning location to

estimate the object’s extent. However, these methods are

yet to demonstrate competitive benchmark performances.

Schemes to reduce model drift. Model drift is a result

of learning from inaccurate predictions. Several works

have aimed to prevent drift by modifying the training strat-

egy rather than improving the predictions. TLD [21] and

PROST [34] encode rules for additional supervision based

on optical flow and a conservative appearance model. Other

approaches avoid or delay making hard decisions. MIL-

Track [1] uses Multiple-Instance Learning to train with bags

of positive examples. Supančič and Ramanan [35] intro-

duce self-paced learning for tracking: they solve for the

optimal trajectory keeping the appearance model, then up-

date the model using the most confident frames, and repeat.

Grabner et al. [15] treat tracking as online semi-supervised

boosting, in which a classifier learnt in the first frame pro-

vides an anchor for the labels assigned to examples in later

frames. Tang et al. [36] apply co-training to tracking, learn-

ing two independent SVMs that use different features and

then obtaining hard negatives from the combined scores. Of

these methods, only MILTrack and TLD are found in cur-

rent benchmarks, and neither has strong results.

Combining multiple estimates. Another strategy widely

adopted to mitigate inaccurate predictions is to combine the

estimates of an ensemble of methods, so that the weaknesses

of the trackers are reciprocally compensated. In [27, 28],

Kwon et al. make use of complementary basic trackers,

built by combining different observation models and mo-

tion models, and then integrate their estimates in a sam-

pling framework. Similarly, [38] combines five indepen-

dent trackers using a factorial HMM, modelling both the

object trajectory and the reliability of each tracker across

time. Rather than using trackers of different types, the

Multi-Expert Entropy Minimisation (MEEM) tracker [41]

maintains a collection of past models and chooses the pre-

diction of one according to an entropy criterion. We dif-

fer from these approaches in that a) both of our models are

learnt in a common framework (specifically, ridge regres-
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sion), and b) this enables us to directly combine the scores

of the two models in a dense search.

Long-term tracking with re-detection. Several recent

works have adopted Correlation Filters for the problem of

long-term tracking, where the performance of an algorithm

will be greatly improved by its ability to re-detect the object.

The Long-term Correlation Tracker (LCT) [30] augments a

standard Correlation Filter tracker with an additional Corre-

lation Filter for confidence estimation and a random forest

for re-detection, both of which are only updated in confident

frames. The Multi-Store Tracker (MUSTer) [20] maintains

a long-term memory of SIFT keypoints for the object and

background, using keypoint matching and MLESAC to lo-

cate the object. The confidence of the long-term memory is

estimated using the number of inliers, and occlusions can be

determined by considering the number of background key-

points that are located inside the rectangle. Since we con-

sider mostly short-term benchmarks, and these long-term

trackers are meta-algorithms that are built upon a short-term

tracker, there is little value in a comparison. Note that the

TLD [21] and self-paced learning [35] algorithms also in-

corporate some aspects that are well-suited to the long-term

tracking problem.

3. Proposed Approach

3.1. Formulation and motivation

We adopt the tracking-by-detection paradigm, in which,

in frame t, the rectangle pt that gives the target location in

image xt is chosen from a set St to maximise a score:

pt = argmaxp∈St
f
(

T (xt, p); θt−1

)

. (1)

The function T is an image transformation such that

f(T (x, p); θ) assigns a score to the rectangular window p
in image x according to the model parameters θ. The model

parameters should be chosen to minimise a loss function

L(θ;Xt) that depends on the previous images and the loca-

tion of the object in those images Xt = {(xi, pi)}
t
i=1:

θt = argminθ∈Q {L(θ;Xt) + λR(θ)} . (2)

The space of model parameters is denoted Q. We use a reg-

ularisation term R(θ) with relative weight λ to limit model

complexity and prevent over-fitting. The location p1 of the

object in the first frame is given. To achieve real-time per-

formance, the functions f and L must be chosen not only to

locate the object reliably and accurately, but also such that

the problems in (1) and (2) can be solved efficiently.

We propose a score function that is a linear combination

of template and histogram scores:

f(x) = γtmplftmpl(x) + γhistfhist(x) . (3)

The template score is a linear function of a K-channel

feature image φx : T → R
K , obtained from x and defined

on a finite grid T ⊂ Z
2:

ftmpl(x;h) =
∑

u∈T h[u]
Tφx[u] . (4)

In this, the weight vector (or template) h is another K-

channel image. The histogram score is computed from an

M -channel feature image ψx : H → R
M , obtained from x

and defined on a (different) finite grid H ⊂ Z
2:

fhist(x;β) = g(ψx;β) . (5)

Unlike the template score, the histogram score is invari-

ant to spatial permutations of its feature image, such that

g(ψ) = g(Πψ) for any permutation matrix Π. We adopt a

linear function of the (vector-valued) average feature pixel

g(ψ;β) = βT
(

1
|H|

∑

u∈H ψ[u]
)

, (6)

which can also be interpreted as the average of a scalar-

valued score image ζ(β,ψ)[u] = βTψ[u]

g(ψ;β) = 1
|H|

∑

u∈H ζ(β,ψ)[u] . (7)

To enable efficient evaluation of the score function in

dense sliding-window search, it is important that both fea-

ture transforms commute with translation φT (x) = T (φx).
Not only does this mean that feature computation can be

shared by overlapping windows, but also that the template

score can be computed using fast routines for convolution,

and that the histogram score can be obtained using a sin-

gle integral image. Further acceleration is possible if the

histogram weight vector β or feature pixels ψ[u] are sparse.

The parameters of the overall model are θ = (h, β),
since the coefficients γtmpl and γhist can be considered im-

plicit in h and β. The training loss that will be optimised to

choose parameters is assumed to be a weighted linear com-

bination of per-image losses:

L(θ,XT ) =
∑T
t=1 wtℓ(xt, pt, θ) . (8)

Ideally, the per-image loss function should be of the form

ℓ(x, p, θ) = d(p, argmaxq∈S f(T (x, q); θ)) , (9)

in which d(p, q) defines the cost of choosing rectangle q
when the correct rectangle is p. Although this function is

non-convex, structured output learning can be used to op-

timise a bound on the objective [3], and this is the basis

of Struck [16]. However, the optimisation problem is com-

putationally expensive, limiting the number of features and

training examples that can be used. Correlation Filters, by

contrast, adopt a simplistic least-squares loss, but are able

to learn from a relatively large number of training exam-

ples using quite high-dimensional representations by con-

sidering circular shifts of the feature image as examples.
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TRAINING - frame xt , position pt

TESTING - frame xt+1 , position pt
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Figure 2: Template-related. In frame t, a training patch represented using HOG features is extracted at the estimated location

pt and used to update the denominator d̂t and the numerator r̂t of the model ĥt in (21). In frame t+1, features for the testing

patch φT (xt+1,pt) are extracted around the location in the previous image pt and convolved with ĥt in (4) to obtain the dense

template response. Histogram-related. In frame t, foreground and background regions (relative to the estimated location)

are used to update the frequencies of each colour bin ρt(O) and ρt(B) in (26). These frequencies enable us to compute the

updated weights βt. In frame t + 1, a per-pixel score is computed in a search area centred at the position in the previous

image, which is then used to compute the dense histogram response efficiently using an integral image (7). The final response

is obtained with (3) and the new location pt+1 of the target is estimated at its peak. Best viewed in colour.

(This requires the property that the feature transform com-

mutes with translation.) This approach has achieved strong

results in tracking benchmarks [18, 8] whilst maintaining

high frame-rates.

It may at first seem counter-intuitive to consider fhist dis-

tinct from ftmpl, when it is, in fact, a special case of ftmpl

with h[u] = β for all u. However, a uniform template such

as this would not be learnt from circular shifts, since the

score that is obtained using a uniform template is invariant

to circular shifts. The histogram score may thus be under-

stood to capture an aspect of the object appearance that is

lost when considering circular shifts.

To retain the speed and efficacy of the Correlation Fil-

ter without ignoring the information that can be captured

by a permutation-invariant histogram score, we propose to

learn our model by solving two independent ridge regres-

sion problems:

ht = argmin
h

{

Ltmpl(h;Xt) +
1
2λtmpl‖h‖

2
}

βt = argmin
β

{

Lhist(β;Xt) +
1
2λhist‖β‖

2
}

(10)

The parameters h can be obtained quickly using the Corre-

lation Filter formulation. While the dimension of β may be

less than that of h, it may still be more expensive to solve

for, since it cannot be learnt with circular shifts and there-

fore requires the inversion of a general matrix rather than a

circulant matrix. The fast optimisation of the parameters β
will be covered later in this section.

Finally, we take a convex combination of the two scores,

setting γtmpl = 1− α and γhist = α, where α is a parameter

chosen on a validation set. We hope that since the param-

eters of both score functions will be optimised to assign a

score of 1 to the object and 0 to other windows, the mag-

nitudes of the scores will be compatible, making a linear

combination effective. Figure 2 is a visual representation of

the overall learning and evaluation procedure.

3.2. Online least­squares optimisation

Two advantages of adopting a least-squares loss and a

quadratic regulariser are that the solution can be obtained in

closed form and the memory requirements do not grow with

the number of examples. If L(θ;X ) is a convex quadratic

function of the score f(x; θ) and f(x; θ) is linear in the

model parameters θ to preserve convexity, then there exists

a matrix At and a vector bt such that

L(θ;Xt) + λ‖θ‖2 = 1
2θ
T (At+ λI)θ+ bTt θ+ const. (11)

and these are sufficient to determine the solution θt = (At+
λI)−1bt, regardless of the size of Xt. If we adopt a recursive

definition of the loss function

L(θ;Xt) = (1− η)L(θ;Xt−1) + ηℓ(xt, pt, θ) (12)
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with adaptivity rate η, then we can simply maintain

At = (1− η)At−1 + ηA′
t (13)

bt = (1− η)bt−1 + ηb′t

in which A′
t and b′t define the per-image loss via

ℓ(xt, pt, θ) =
1
2θ
TA′

tθ + θT b′t + const. (14)

Note that At denotes the parameters estimated from frames

1 to t, whereas A′
t denotes the parameters estimated from

frame t alone. We will be consistent in this notation.

These parameters, which are sufficient to obtain a solu-

tion, are generally economical to compute and store if the

number of features (the dimension of θ) is small or the ma-

trix is redundant (e.g. sparse, low rank or Toeplitz). This

technique for adaptive tracking with Correlation Filters us-

ing circulant matrices was pioneered by Bolme et al. [5].

3.3. Learning the template score

Under a least-squares Correlation Filter formulation, the

per-image loss is

ℓtmpl(x, p, h) =
∥

∥

∥

∑K
k=1 h

k ⋆ φk − y
∥

∥

∥

2

(15)

where hk refers to channel k of multi-channel image h, φ
is short for φT (x,p), y is the desired response (typically a

Gaussian function with maximum value 1 at the origin), and

⋆ denotes periodic cross-correlation. This corresponds to

linear regression from the circular shift of φ by δ pixels to

the value y[δ] with a quadratic loss. Using x̂ to denote the

Discrete Fourier Transform Fx, the minimiser of the regu-

larised objective ℓtmpl(x, p, h) + λ‖h‖2 is obtained [22]

ĥ[u] = (ŝ[u] + λI)−1r̂[u] (16)

for all u ∈ T , where ŝ[u] is a K ×K matrix with elements

ŝij [u] and r̂[u] is a K-dimensional vector with elements

r̂i[u]. Treating sij and ri as signals, these are defined

sij = φj ⋆ φi , ri = y ⋆ φi (17)

or, in the Fourier domain, using ∗ to denote conjugation and

⊙ for element-wise multiplication,

ŝij = (φ̂j)∗ ⊙ φ̂i , r̂ij = (ŷ)∗ ⊙ φ̂i . (18)

In practice, Hann windowing is applied to the signals to

minimise boundary effects during learning. Instead of com-

puting (16), we adopt the approximation found in the DSST

code [8]

ĥ[u] = 1/(d̂[u] + λ) · r̂[u] . (19)

where d̂[u] = tr(ŝ[u]) or

d̂ =
∑K
i=1(φ̂

i)∗ ⊙ φ̂i (20)

This enables the algorithm to remain fast with a significant

number of feature channels, since it is not necessary to fac-

torise a matrix per pixel. The online version update is

d̂t = (1− ηtmpl)d̂t−1 + ηtmpld̂
′
t (21)

r̂t = (1− ηtmpl)r̂t−1 + ηtmplr̂
′
t

where d̂′ and r̂′ are obtained according to (20) and (18) re-

spectively. For a template of m = |T | pixels and K chan-

nels, this can be performed in O(Km logm) time and the

sufficient statistics d̂ and r̂ require O(Km) memory.

3.4. Learning the histogram score

Ideally, the histogram score should be learnt from a set

of examples taken from each image, including the correct

position as a positive example. Let W denote a set of pairs

(q, y) of rectangular windows q and their corresponding re-

gression target y ∈ R, including the positive example (p, 1).
The per-image loss is then ℓhist(x, p, β) =

∑

(q,y)∈W

(

βT
[
∑

u∈H ψT (x,q)[u]
]

− y
)2
. (22)

For an M -channel feature transform ψ, the solution is ob-

tained by solving anM×M system of equations, which re-

quires O(M2) memory and O(M3) time. If the number of

features is large, this is infeasible. While there are iterative

alternatives to matrix decomposition, such as co-ordinate

descent, conjugate gradient and dual co-ordinate descent, it

may still be difficult to achieve high frame-rates with these.

We instead propose features of the special form ψ[u] =
ek[u] where ei is a vector that is one at index i and zero ev-

erywhere else, then the one-sparse inner product is simply

a lookup βTψ[u] = βk[u] as in the PLT method described

in the VOT13 challenge [26]. The particular type of fea-

tures that we consider are quantised RGB colours, although

a suitable alternative would be Local Binary Patterns. Re-

call from (7) that the histogram score can be considered an

average vote. For efficiency, we therefore propose to apply

linear regression to each feature pixel independently over

object and background regions O and B ⊂ Z
2 using the

per-image objective ℓhist(x, p, β) =

1
|O|

∑

u∈O

(

βTψ[u]− 1
)2

+ 1
|B|

∑

u∈B

(

βTψ[u]
)2

(23)

where ψ is short-hand for ψT (x,p). Introducing the one-

hot assumption, the objective decomposes into independent

terms per feature dimension ℓhist(x, p, β) =

∑M
j=1

[

Nj(O)
|O| · (βj − 1)2 + Nj(B)

|B| · (βj)2
]

(24)

where N j(A) = |{u ∈ A : k[u] = j}| is the number

of pixels in the region A of φT (x,p) for which feature j is

non-zero k[u] = j. The solution of the associated ridge

regression problem is

βjt =
ρj(O)

ρj(O)+ρj(B)+λ (25)
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Learning rate (template) ηtmpl 0.01
Learning rate (histogram) ηhist 0.04

Colour features RGB

# bins colour histograms 32 × 32 × 32
Merge factor α 0.3

Fixed area 1502

HOG cell size 4 × 4

Table 1: The parameters we use for our experiments.

for each feature dimension j = 1, . . . ,M , where ρj(A) =
N j(A)/|A| is the proportion of pixels in a region for which

feature j is non-zero. This expression has previously been

used under probabilistic motivation [2, 33]. In the online

version, the model parameters are updated

ρt(O) = (1− ηhist)ρt−1(O) + ηhistρ
′
t(O)

ρt(B) = (1− ηhist)ρt−1(B) + ηhistρ
′
t(B) (26)

where ρt(A) is the vector of ρjt (A) for j = 1, . . . ,M .

3.5. Search strategy

When searching for the target’s position in a new frame,

we consider rectangular windows that vary in transla-

tion/scale but not aspect ratio/orientation. Rather than

search jointly in translation/scale, we search first in trans-

lation and subsequently in scale. We follow Danelljan et

al. [8] and learn a distinct, multi-scale template for scale

search using a 1D Correlation Filter. This model’s param-

eters are updated using the same scheme as the template

learnt for translation. The histogram score is not suited to

scale search because it will often prefer to shrink the target

to find a window that is more purely foreground.

For both translation and scale, we search only in a region

around the previous location. We also follow prior works

that adopt Correlation Filters for tracking [18, 8] in using

a Hann window during search as well as for training. To-

gether these can be considered an implicit motion model.

The size of the translation template is normalised to have

a fixed area. This parameter can be tuned to trade tracking

quality for speed, as shown in the following section.

4. Evaluation

We compare Staple to competing methods on two recent

and popular benchmarks, VOT14 [24, 25] and OTB [39],

and demonstrate state-of-the-art performance. To achieve

an up-to-date comparison, we report the results of several

recent trackers in addition to the baselines that are part of

each benchmark, using the authors’ own results to ensure

a fair comparison. Therefore, for each evaluation, we can

only compare against those methods that provide results for

it. To aid in reproducing our experiments, we make the

source code of our tracker and our results available on our

website: www.robots.ox.ac.uk/˜luca/staple.html.

#1 (Staple)

#2

#3

VOT14 winner

Figure 3: Accuracy-Robustness rank plot for

report challenge. Better trackers are closer to

the top right corner.

In Table 1, we report the values of the most important

parameters we use. Contrary to standard practice, we do

not choose the parameters of the tracker from the testing

set, but instead use VOT15 as a validation set.

4.1. VOT14 and VOT15

The benchmark. VOT14 [24] compares competing

trackers on 25 sequences chosen from a pool of 394 to rep-

resent several challenging situations: camera motion, oc-

clusion, illumination, size and motion change. Two per-

formance measures are used. The accuracy of a tracker

on a sequence is expressed as the average per-frame over-

lap between its predicted bounding box rt and the ground

truth rGT using the intersection-over-union criterion St =
|rt∩rGT|
|rt∪rGT|

. The robustness of a tracker is its number of fail-

ures over the sequence, with a failure determined to have

occurred when St becomes zero. Since the focus of the

benchmark is on short-term tracking, a tracker that fails is

automatically reinitialised to the ground truth five frames

after the failure.

Given the nature of the two performance measures, it is

crucial to consider them jointly. Considering either in iso-

lation is uninformative, since a tracker that fails frequently

will be re-initialised more often and likely achieve higher

accuracy, while zero failures can always be achieved by re-

porting that the object occupies the entire video frame.

Results. To produce Table 2 and Figure 3, we used the

most recent version of the VOT toolkit available at sub-

mission time (commit d3b2b1d). From VOT14 [25] we

only include the top performers: DSST [8], SAMF [29],

KCF [18], DGT [6], PLT 14 and PLT 13. Table 2 re-

ports the average accuracy and number of failures for each

tracker, together with an overall ranking devised from both.

Figure 3 visualises independent ranks for each metric on

two axes. Surprisingly, our simple method significantly

outperforms all VOT14 entries, together with many recent
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Tracker Year Where Accuracy # Failures Overall Rank

Staple (proposed) - - 0.644 9.38 4.37

DATs [33] 2015 CVPR 0.580 13.17 5.39

PLT 13 [24] 2013 VOT 0.523 1.66 5.41

DGT [6] 2014 TIP 0.534 13.78 5.66

SRDCF [9] 2015 ICCV 0.600 15.90 5.99

DMA [40] 2015 CVPR 0.476 0.72 6.00

PLT 14 [24] 2014 VOT 0.537 3.41 6.03

KCF [18] 2015 PAMI 0.613 19.79 6.58

DSST [8] 2014 BMVC 0.607 16.90 6.59

SAMF [29] 2014 ECCVw 0.603 19.23 6.79

DAT [33] 2015 CVPR 0.519 15.87 7.95

PixelTrack [11] 2013 ICCV 0.420 22.58 11.31

Table 2: Ranked results for VOT14. First, second and third

entries for accuracy, number of failures (over 25 sequences)

and overall rank are reported. Lower rank is better.

Tracker Accuracy # Failures

Staple (proposed) 0.538 80

DSST [8] 0.491 152

DATs [33] 0.442 124

Table 3: Ranked result for the 60 sequences of VOT15.

trackers published after VOT14. In particular, it surpasses

trackers like Correlation Filter-based DSST [8], SAMF [29]

and KCF [18], colour-based PixelTrack [11], DAT, DATs

(with scale) [33] and DGT [6], and also more complex and

far slower methods like DMA [40] and SRDCF [9], which

operates below 10 FPS. It is interesting to observe how Sta-

ple performs in comparison to the second-best correlation

and colour trackers, SRDCF and DATs: it achieves a 7%

improvement in accuracy and 41% improvement in num-

ber of failures over SRDCF, and an 11% improvement in

accuracy and 13% improvement in number of failures over

DATs. Considering the two metrics individually, Staple is

by far the best method in terms of accuracy and the fourth

for number of failures, after DMA, PLT 13 and PLT 14.

However, all these trackers perform poorly in terms of ac-

curacy, scoring at least 20% worse than Staple.

For completeness, we also present results for VOT15

in Table 3, comparing Staple against the second-best per-

former in Table 2 (DATs) and the winner of VOT14 (DSST).

Our performance is significantly better than DATs and

DSST in terms of both accuracy (respectively +22% and

+10%) and robustness to failures (+35% and +47%).

In this experiment, we have kept the hyper-parameters

that were chosen for VOT15. However, this is in accord

with convention, since the VOT benchmark has never in-

cluded a validation set on the assumption that the hyper-

parameters would be simple enough not to vary significantly

between datasets.

4.2. OTB­13

The benchmark. As with VOT, the idea of OTB-13 [39]

is to evaluate trackers on both accuracy and robustness to
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Figure 5: Number of failures (lower is better) in relation to

speed for HOG cells of size 1× 1, 2× 2, 4× 4 and 8× 8.

failure. Again, prediction accuracy is measured as inter-

section over union between the tracker’s bounding box and

ground truth. A success is detected when this value is above

a threshold to. In order not to set a specific value for such

a threshold, the area under the curve of success rates at dif-

ferent values of to is used as a final score.

Results. Our results for OTB have been obtained using

exactly the same code and parameters used for VOT14/15.

The only difference is that we are constrained to use one-

dimensional histograms for the few grayscale sequences

present in the benchmark. Figure 4 reports the results of

OPE (one pass evaluation), SRE (spatial robustness eval-

uation) and TRE (temporal robustness evaluation). Sta-

ple performs significantly better than all the methods re-

ported in [39], with an average relative improvement of

23% with respect to the best tracker evaluated in the orig-

inal benchmark (Struck [16]). Moreover, our method also

outperforms recent trackers published after the benchmark

such as MEEM [41], DSST [8], TGPR [13], EBT [38] and

also trackers that make use of deep conv-nets like CNN-

SVM [19] and SO-DLT [37], while running at a signifi-

cantly higher frame rate. The only comparable method in

terms of frame-rate is ACT [10], which however performs

substantially worse in all the evaluations. Since ACT learns

a colour template using Correlation Filters, this result shows

that the improvement that Staple achieves by combining

template and histogram scores cannot be attributed solely

to the introduction of colour. On OTB, the only tracker per-

forming better than Staple is the very recent SRDCF [9].

However, it performs significantly worse on VOT14. Fur-

thermore, it has a reported speed of only 5 FPS, which

severely limits its applicability.

4.3. Efficiency

With the above reported configuration, our MATLAB

prototype runs at approximately 80 frames per second on a

machine equipped with an Intel Core i7-4790K @4.0GHz.

However, it is possible to achieve higher frame rates with a
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Figure 6: Number of failures (lower is better) in relation to

the learning rates ηtmpl and ηhist. Black points were obtained

experimentally, others were interpolated.

relatively small loss in terms of performance, by adjusting

the size of the patch from which the models are computed.

For example (refer to Figure 5), using HOG cells of size

2 × 2 and a fixed area of 502 causes only a small increase

in the number of failures, yet boosts the speed beyond 100

frames per second. The accuracy follows a similar trend.

4.4. Learning rate experiments

The learning rates ηtmpl and ηhist, used respectively for

the template (21) and histogram (26) model updates, deter-

mine the rate at which to replace old evidence from ear-

lier frames with new evidence from the current frame. The

lower the learning rate, the higher the relevance given to

model instances learnt in earlier frames. The heatmap of

Figure 6 illustrates how maximal robustness is achieved at

around 0.01 for both ηtmpl and ηhist. The accuracy follows a

similar trend.

4.5. Merge factor experiments

In Figure 7, we show how the accuracy of Staple is sig-

nificantly influenced by the choice of the merge factor α
that regulates γtmpl and γhist in (3): the best performance is

achieved around α = 0.3. The robustness follows a simi-

lar trend. Figure 7 also shows that the strategy of merging
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Figure 7: Accuracy (higher is better) vs. merge factor α.

the dense responses of the two ridge regression problems

achieves significantly better performance than a mere inter-

polation of the final estimates would, suggesting that choos-

ing models with compatible (and complementary) dense re-

sponses is a winning choice.

5. Conclusion

By learning their model from circular shifts of posi-

tive examples, correlation filters fail to learn a component

that is invariant to permutations. This makes them inher-

ently sensitive to shape deformation. We therefore pro-

pose a simple combination of template and histogram scores

that are learnt independently to preserve real-time opera-

tion. The resulting tracker, Staple, outperforms significantly

more complex state-of-the-arts trackers in several bench-

marks. Given its speed and simplicity, our tracker is a logi-

cal choice for applications that require computational effort

themselves, and in which robustness to colour, illumination

and shape changes is paramount.
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[9] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg.

Learning Spatially Regularized Correlation Filters for Visual

Tracking. In ICCV, 2015.

[10] M. Danelljan, F. S. Khan, M. Felsberg, and J. van de Weijer.

Adaptive Color Attributes for Real-Time Visual Tracking. In

CVPR, 2014.

[11] S. Duffner and C. Garcia. PixelTrack: a fast adaptive algo-

rithm for tracking non-rigid objects. In ICCV, 2013.

[12] J. Fernandez, B. Kumar, et al. Zero-Aliasing Correlation Fil-

ters. In ISPA, 2013.

[13] J. Gao, H. Ling, W. Hu, and J. Xing. Transfer Learning

Based Visual Tracking with Gaussian Processes Regression.

In ECCV. 2014.

[14] M. Godec, P. M. Roth, and H. Bischof. Hough-based Track-

ing of Non-Rigid Objects. CVIU, 117(10), 2013.

[15] H. Grabner, C. Leistner, and H. Bischof. Semi-Supervised

On-line Boosting for Robust Tracking. In ECCV, 2008.

[16] S. Hare, A. Saffari, and P. H. Torr. Struck: Structured Output

Tracking with Kernels. In ICCV, 2011.

[17] J. F. Henriques, J. Carreira, R. Caseiro, and J. Batista. Be-

yond Hard Negative Mining: Efficient Detector Learning via

Block-Circulant Decomposition. In ICCV, 2013.

[18] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. High-

Speed Tracking with Kernelized Correlation Filters. TPAMI,

2015.

[19] S. Hong, T. You, S. Kwak, and B. Han. Online tracking

by learning discriminative saliency map with convolutional

neural network. arXiv preprint arXiv:1502.06796, 2015.

[20] Z. Hong, Z. Chen, C. Wang, X. Mei, D. Prokhorov, and

D. Tao. MUlti-Store Tracker (MUSTer): a Cognitive Psy-

chology Inspired Approach to Object Tracking. In CVPR,

2015.

[21] Z. Kalal, K. Mikolajczyk, and J. Matas. Tracking-Learning-

Detection. TPAMI, 34(7), 2012.

[22] H. Kiani Galoogahi, T. Sim, and S. Lucey. Multi-Channel

Correlation Filters. In ICCV, 2013.

[23] H. Kiani Galoogahi, T. Sim, and S. Lucey. Correlation Filters

with Limited Boundaries. In CVPR, 2015.

[24] M. Kristan et al. The Visual Object Tracking VOT2014 chal-

lenge results. In ECCV, 2014.

[25] M. Kristan, J. Matas, A. Leonardis, T. Vojir, R. Pflugfelder,

G. Fernandez, G. Nebehay, F. Porikli, and L. Cehovin.

A Novel Performance Evaluation Methodology for Single-

Target Trackers. arXiv preprint arXiv:1503.01313v2, 2015.

[26] M. Kristan, R. Pflugfelder, A. Leonardis, J. Matas, F. Porikli,

L. Cehovin, G. Nebehay, G. Fernandez, T. Vojir, A. Gatt,

et al. The Visual Object Tracking VOT2013 challenge re-

sults. In ICCVW, 2013.

[27] J. Kwon and K. M. Lee. Visual Tracking Decomposition. In

CVPR, 2010.

[28] J. Kwon and K. M. Lee. Tracking by Sampling Trackers. In

ICCV, 2011.

[29] Y. Li and J. Zhu. A Scale Adaptive Kernel Correlation Filter

Tracker with Feature Integration. In ECCVW, 2014.

[30] C. Ma, X. Yang, C. Zhang, and M.-H. Yang. Long-term

Correlation Tracking. In CVPR, 2015.

[31] K. Nummiaro, E. Koller-Meier, and L. Van Gool. An adap-

tive color-based particle filter. IVC, 2003.
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