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Abstract

The state-of-the-art in semantic segmentation is cur-

rently represented by fully convolutional networks (FCNs).

However, FCNs use large receptive fields and many pool-

ing layers, both of which cause blurring and low spatial

resolution in the deep layers. As a result FCNs tend to pro-

duce segmentations that are poorly localized around object

boundaries. Prior work has attempted to address this issue

in post-processing steps, for example using a color-based

CRF on top of the FCN predictions. However, these ap-

proaches require additional parameters and low-level fea-

tures that are difficult to tune and integrate into the original

network architecture. Additionally, most CRFs use color-

based pixel affinities, which are not well suited for semantic

segmentation and lead to spatially disjoint predictions.

To overcome these problems, we introduce a Boundary

Neural Field (BNF), which is a global energy model inte-

grating FCN predictions with boundary cues. The bound-

ary information is used to enhance semantic segment co-

herence and to improve object localization. Specifically, we

first show that the convolutional filters of semantic FCNs

provide good features for boundary detection. We then em-

ploy the predicted boundaries to define pairwise potentials

in our energy. Finally, we show that our energy decom-

poses semantic segmentation into multiple binary problems,

which can be relaxed for efficient global optimization. We

report extensive experiments demonstrating that minimiza-

tion of our global boundary-based energy yields results su-

perior to prior globalization methods, both quantitatively

as well as qualitatively.

1. Introduction

The recent introduction of fully convolutional networks

(FCNs) [22] has led to significant quantitative improve-

ments on the task of semantic segmentation. However, de-

spite their empirical success, FCNs suffer from some limita-

tions. Large receptive fields in the convolutional layers and

the presence of pooling layers lead to blurring and segmen-

tation predictions at a significantly lower resolution than the

Figure 1: Examples illustrating shortcomings of prior se-

mantic segmentation methods: the second column shows

results obtained with a FCN [22], while the third column

shows the output of a Dense-CRF applied to FCN predic-

tions [19, 7]. Segments produced by FCN are blob-like and

are poorly localized around object boundaries. Dense-CRF

produces spatially disjoint object segments due to the use of

a color-based pixel affinity function that is unable to mea-

sure semantic similarity between pixels.

original image. As a result, their predicted segments tend to

be blobby and lack fine object boundary details. We report

in Fig. 1 some examples illustrating typical poor localiza-

tion of objects in the outputs of FCNs.

Recently, Chen at al. [7] addressed this issue by apply-

ing a Dense-CRF post-processing step [19] on top of coarse

FCN segmentations. However, such an approach introduces

several problems of its own. First, the Dense-CRF adds new

parameters that are difficult to tune and integrate into the

original network architecture. Additionally, most methods

based on CRFs or MRFs use low-level pixel affinity func-

tions, such as those based on color. These low-level affini-

ties often fail to capture semantic relationships between ob-

jects and lead to poor segmentation results (see last column

in Fig. 1).

We propose to address these shortcomings by means of

a Boundary Neural Field (BNF), an architecture that em-

ploys a single semantic segmentation FCN to predict se-

mantic boundaries and then use them to produce semantic

segmentation maps via a global optimization. We demon-

strate that even though the semantic segmentation FCN has

not been optimized to detect boundaries, it provides good
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Figure 2: The architecture of our system (best viewed in

color). We employ a semantic segmentation FCN [7] for

two purposes: 1) to obtain semantic segmentation unaries

for our global energy; 2) to compute object boundaries.

Specifically, we define semantic boundaries as a linear com-

bination of these feature maps (with a sigmoid function ap-

plied on top of the sum) and learn individual weights corre-

sponding to each convolutional feature map. We integrate

this boundary information in the form of pairwise potentials

(pixel affinities) for our energy model.

features for boundary detection. Specifically, the contribu-

tions of our work are as follows:

• We show that semantic boundaries can be expressed

as a linear combination of interpolated convolutional

feature maps inside an FCN. We introduce a boundary

detection method that exploits this intuition to predict

object boundaries with accuracy superior to the state-

the-of-art.

• We demonstrate that boundary-based pixel affinities

are better suited for semantic segmentation than the

commonly used color affinity functions.

• Finally, we introduce a new global energy that de-

composes semantic segmentation into multiple binary

problems and relaxes the integrality constraint. We

show that minimizing our proposed energy yields bet-

ter qualitative and quantitative results relative to tradi-

tional globalization models such as MRFs or CRFs.

2. Related Work

Boundary Detection. Spectral methods comprise one

of the most prominent categories for boundary detection.

In a typical spectral framework, one formulates a general-

ized eigenvalue system to solve a low-level pixel grouping

problem. The resulting eigenvectors are then used to pre-

dict the boundaries. Some of the most notable approaches

in this genre are MCG [2], gPb [1], PMI [17], and Normal-

ized Cuts [29]. A weakness of spectral approaches is that

they tend to be slow as they perform a global inference over

the entire image.

To address this issue, recent approaches cast boundary

detection as a classification problem and predict the bound-

aries in a local manner with high efficiency. The most no-

table examples in this genre include sketch tokens (ST) [20]

and structured edges (SE) [9], which employ fast random

forests. However, many of these methods are based on

hand-constructed features, which are difficult to tune.

The issue of hand-constructed features have been re-

cently addressed by several approaches based on deep learn-

ing, such as N4 fields [11], DeepNet [18], DeepCon-

tour [27], DeepEdge [3], HFL [4] and HED [33]. All of

these methods use CNNs in some way to predict the bound-

aries. Whereas DeepNet and DeepContour optimize ordi-

nary CNNs to a boundary based optimization criterion from

scratch, DeepEdge and HFL employ pretrained models to

compute boundaries. The most recent of these methods is

HED [33], which shows the benefit of deeply supervised

learning for boundary detection.

In comparison to prior deep learning approaches, our

method offers several contributions. First, we exploit the in-

herent relationship between boundary detection and seman-

tic segmentation to predict semantic boundaries. Specif-

ically, we show that even though the semantic FCN has

not been explicitly trained to predict boundaries, the con-

volutional filters inside the FCN provide good features for

boundary detection. Additionally, unlike DeepEdge [3] and

HFL [4], our method does not require a pre-processing step

to select candidate contour points, as we predict boundaries

on all pixels in the image. We demonstrate that our ap-

proach allows us to achieve state-of-the-art boundary detec-

tion results according to both F-score and Average Preci-

sion metrics. Additionally, due to the semantic nature of

our boundaries, we can successfully use them as pairwise

potentials for semantic segmentation in order to improve

object localization and recover fine structural details, typ-

ically lost by pure FCN-based approaches.

Semantic Segmentation. We can group most seman-

tic segmentation methods into three broad categories. The

first category can be described as “two-stage” approaches,

where an image is first segmented and then each segment

is classified as belonging to a certain object class. Some

of the most notable methods that belong to this genre in-

clude [24, 6, 12, 14].

The primary weakness of the above methods is that they

are unable to recover from errors made by the segmentation

algorithm. Several recent papers [15, 10] address this issue

by proposing to use deep per-pixel CNN features and then
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classify each pixel as belonging to a certain class. While

these approaches partially address the incorrect segmenta-

tion problem, they perform predictions independently on

each pixel. This leads to extremely local predictions, where

the relationships between pixels are not exploited in any

way, and thus the resulting segmentations may be spatially

disjoint.

The third and final group of semantic segmentation

methods can be viewed as front-to-end schemes where seg-

mentation maps are predicted directly from raw pixels with-

out any intermediate steps. One of the earliest examples of

such methods is the FCN introduced in [22]. This approach

gave rise to a number of subsequent related approaches

which have improved various aspects of the original seman-

tic segmentation [7, 34, 8, 16, 21]. There have also been at-

tempts at integrating the CRF mechanism into the network

architecture [7, 34]. Finally, it has been shown that semantic

segmentation can also be improved using additional training

data in the form of bounding boxes [8].

Our BNF offers several contributions over prior work. To

the best of our knowledge, we are the first to present a model

that exploits the relationship between boundary detection

and semantic segmentation within a FCN framework. We

introduce pairwise pixel affinities computed from seman-

tic boundaries inside an FCN, and use these boundaries to

predict the segmentations in a global fashion. Unlike [21],

which requires a large number of additional parameters to

learn for the pairwise potentials, our global model only

needs ⇡ 5K extra parameters, which is about 3 orders of

magnitudes less than the number of parameters in a typi-

cal deep convolutional network (e.g. VGG [30]). We em-

pirically show that our proposed boundary-based affinities

are better suited for semantic segmentation than color-based

affinities. Additionally, unlike in [7, 34, 21], the solution to

our proposed global energy can be obtained in closed-form,

which makes global inference easier. Finally we demon-

strate that our method produces better results than tradi-

tional globalization models such as CRFs or MRFs.

3. Boundary Neural Fields

In this section, we describe Boundary Neural Fields.

Similarly to traditional globalization methods, Boundary

Neural Fields are defined by an energy including unary

and pairwise potentials. Minimization of the global en-

ergy yields the semantic segmentation. BNFs build both

unary and pairwise potentials from the input RGB image

and then combine them in a global manner. More precisely,

the coarse segmentations predicted by a semantic FCN are

used to define the unary potentials of our BNF. Next, we

show that the convolutional feature maps of the FCN can

be used to accurately predict semantic boundaries. These

boundaries are then used to build pairwise pixel affinities,

which are used as pairwise potentials by the BNF. Finally,

we introduce a global energy function, which minimizes the

energy corresponding to the unary and pairwise terms and

improves the initial FCN segmentation. The detailed illus-

tration of our architecture is presented in Figure 2. We now

explain each of these steps in more detail.

3.1. FCN Unary Potentials

To predict semantic unary potentials we employ the

DeepLab model [7], which is a fully convolutional adapta-

tion of the VGG network [30]. The FCN consists of 16 con-

volutional layers and 3 fully convolutional layers. There are

more recent FCN-based methods that have demonstrated

even better semantic segmentation results [8, 34, 16, 21].

Although these more advanced architectures could be in-

tegrated into our framework to improve our unary poten-

tials, in this work we focus on two aspects orthogonal to

this prior work: 1) demonstrating that our boundary-based

affinity function is better suited for semantic segmentation

than the common color-based affinities and 2) showing that

our proposed global energy achieves better qualitative and

quantitative semantic segmentation results in comparison to

prior globalization models.

3.2. Boundary Pairwise Potentials

In this section, we describe our approach for building

pairwise pixel affinities using semantic boundaries. The ba-

sic idea behind our boundary detection approach is to ex-

press semantic boundaries as a function of convolutional

feature maps inside the FCN. Due to the close relationship

between the tasks of semantic segmentation and boundary

detection, we hypothesize that convolutional feature maps

from the semantic segmentation FCN can be employed as

features for boundary detection.

3.2.1 Learning to Predict Semantic Boundaries.

We propose to express semantic boundaries as a linear com-

bination of interpolated FCN feature maps with a non-linear

function applied on top of this sum. We note that interpo-

lation of feature maps has been successfully used in prior

work (see e.g. [15]) in order to obtain dense pixel-level fea-

tures from the low-resolution outputs of deep convolutional

layers. Here we adopt interpolation to produce pixel-level

boundary predictions. There are several advantages to our

proposed formulation. First, because we express boundaries

as a linear combination of feature maps, we only need to

learn a small number of parameters, corresponding to the

individual weight values of each feature map in the FCN.

This amounts to ⇡ 5K learning parameters, which is much

smaller than the number of parameters in the entire network

(⇡ 15M ). In comparison, DeepEdge [3] and HFL [4] need

17M and 6M additional parameters to predict boundaries.

Furthermore, expressing semantic boundaries as a linear
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combination of FCN feature maps allows us to efficiently

predict boundary probabilities for all pixels in the image

(we resize the FCN feature maps to the original image di-

mensions). This eliminates the need to select candidate

boundary points in a pre-processing stage, which was in-

stead required in prior boundary detection work [3, 4].

Our boundary prediction pipeline can be described as

follows. First we use use SBD segmentations [13] to op-

timize our FCN for semantic segmentation task. We then

treat FCN convolutional maps as features for the bound-

ary detection task and use the boundary annotations from

BSDS 500 dataset [23] to learn the weights for each feature

map. BSDS 500 dataset contains 200 training, 100 valida-

tion, 200 testing images, and ground truth annotations by 5
human labelers for each of these images.

To learn the weights corresponding to each convolutional

feature map we first sample 80K points from the dataset.

We define the target labels for each point as the fraction of

human annotators agreeing on that point being a boundary.

To fix the issue of label imbalance (there are many more

non-boundaries than boundaries), we divide the label space

into four quartiles, and select an equal number of samples

for each quartile to balance the training dataset. Given these

sampled points, we then define our features as the values in

the interpolated convolutional feature maps corresponding

to these points. To predict semantic boundaries we weigh

each convolutional feature map by its weight, sum them up

and apply a sigmoid function on top of it. We obtain the

weights corresponding to each convolutional feature map by

minimizing the cross-entropy loss using a stochastic batch

gradient descent for 50 epochs. To obtain crisper bound-

aries at test-time we post-process the boundary probabilities

using non-maximum suppression.

To give some intuition on how FCN feature maps con-

tribute to boundary detection, in Fig. 3 we visualize the fea-

ture maps corresponding to the highest weight magnitudes.

It is clear that many of these maps contain highly localized

boundary information.

Boundary Detection Results Before discussing how

boundary information is integrated in our energy for seman-

tic segmentation, here we present experimental results as-

sessing the accuracy of our boundary detection scheme. We

tested our boundary detector on the BSDS500 dataset [23],

which is the standard benchmark for boundary detection.

The quality of the predicted boundaries is evaluated using

three standard measures: fixed contour threshold (ODS),

per-image best threshold (OIS), and average precision (AP).

In Table 1 we show that our algorithm outperforms all

prior methods according to both F-score measures and the

Average Precision metric. In Fig. 4, we also visualize our

predicted boundaries. The second column shows the pixel-

level softmax output computed from the linear combina-

tion of feature maps, while the third column depicts our fi-

Figure 3: An input image and convolutional feature maps

corresponding to the largest weight magnitude values. Intu-

itively these are the feature maps that contribute most heav-

ily to the task of boundary detection.

Method ODS OIS AP

SCG [25] 0.739 0.758 0.773

SE [9] 0.746 0.767 0.803

MCG [2] 0.747 0.779 0.759

N4-fields [11] 0.753 0.769 0.784

DeepEdge [3] 0.753 0.772 0.807

DeepContour [27] 0.756 0.773 0.797

HFL [4] 0.767 0.788 0.795

HED [33] 0.782 0.804 0.833

BNF 0.788 0.807 0.851

Table 1: Boundary detection results on BSDS500 bench-

mark. Our proposed method outperforms all prior algo-

rithms according to all three evaluation metrics.

nal boundaries after applying a non-maximum suppression

post-processing step.

We note that our predicted boundaries achieve high-

confidence predictions around objects. This is important as

we employ these boundaries to improve semantic segmen-

tation results, as discussed in the next subsection.

3.2.2 Constructing Pairwise Pixel Affinities.

We can use the predicted boundaries to build pairwise pixel

affinities. Intuitively, we declare two pixels as similar (i.e.,

likely to belong to the same segment) if there is no bound-

ary crossing the straight path between these two pixels.

Conversely, two pixels are dissimilar if there is a bound-

ary crossing their connecting path. The larger the boundary

magnitude of the crossed path, the more dissimilar the two

pixels should be, since a strong boundary is likely to mark

the separation of two distinct segments. Similarly to [1], we

encode this intuition with a following formulation:

wsb
ij = exp (

−Mij

σsb

) (1)
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Figure 4: A figure illustrating our boundary detection re-

sults. In the second column, we visualize the raw probabil-

ity output of our boundary detector. In the third column,

we present the final boundary maps after non-maximum

suppression. While most prior methods predict the bound-

aries where the sharpest change in color occurs, our method

captures semantic object-level boundaries, which we subse-

quently use to aid semantic segmentation.

where Mij denotes the maximum boundary value that

crosses the straight line path between pixels i and j, σsb de-

picts the smoothing parameter and wsb
ij denotes the semantic

boundary-based affinity between pixels i and j.

Similarly, we want to exploit high-level object informa-

tion in the network to define another type of pixel similarity.

Specifically, we use object class probabilities from the soft-

max (SM) layer to achieve this goal. Intuitively, if pixels i

and j have different hard segmentation labels from the soft-

max layer, we set their similarity ( wsm
ij ) to 0. Otherwise,

we compute their similarity using the following equation:

wsm
ij = exp (

−Dij

σsm

) (2)

where Dij denotes the difference in softmax output val-

ues corresponding to the most likely object class for pixels

i and j, and σsm is a smoothing parameter. Then we can

write the final affinity measure as:

wij = exp (wsm
ij )wsb

ij (3)

We exponentiate the term corresponding to the object-

level affinity because our boundary-based affinity may be

too aggressive in declaring two pixels as dissimilar. To ad-

dress this issue, we increase the importance of the object-

level affinity in (3) using the exponential function. How-

ever, in the experimental results section, we demonstrate

that most of the benefit from modeling pairwise potentials

comes from wsb
ij rather than wsm

ij .

We then use this pairwise pixel affinity measure to build

a global affinity matrix W that encodes relationships be-

tween pixels in the entire image. For a given pixel, we

sample ⇡ 10% of points in the neighborhood of radius 20
around that pixel, and store the resulting affinities into W .

3.3. Global Inference

The last step in our proposed method is to combine se-

mantic boundary information with the coarse segmentation

from the FCN softmax layer to produce an improved seg-

mentation. We do this by introducing a global energy func-

tion that utilizes the affinity matrix constructed in the pre-

vious section along with the segmentation from the FCN

softmax layer. Using this energy, we perform a global infer-

ence to get segmentations that are well localized around the

object boundaries and that are also spatially smooth.

Typical globalization models such as MRFs [31],

CRFs [19] or Graph Cuts [5] produce a discrete label as-

signment for the segmentation problem by jointly model-

ing a multi-label distribution and solving a non-convex op-

timization. The common problem in doing so is that the

optimization procedure may get stuck in local optima.

We introduce a new global energy function, which over-

comes this issue and achieves better segmentation in com-

parison to prior globalization models. Similarly to prior

globalization approaches, our goal is to minimize the energy

corresponding to the sum of unary and pairwise potentials.

However, the key difference in our approach comes from the

relaxation of some of the constraints. Specifically, instead

of modeling our problem as a joint multi-label distribution,

we propose to decompose it into multiple binary problems,

which can be solved concurrently. This decomposition can

be viewed as assigning pixels to foreground and background

labels for each of the different object classes. Additionally,

we relax the integrality constraint. Both of these relaxations

make our problem more manageable and allow us to formu-

late a global energy function that is differentiable, and has

a closed form solution.

In [35], the authors introduce the idea of learning

with global and local consistency in the context of semi-

supervised problems. Inspired by this work, we incorporate

some of these ideas in the context of semantic segmenta-

tion. Before defining our proposed global energy function,

we introduce some relevant notation.

For the purpose of illustration, suppose that we only have

two classes: foreground and background. Then we can de-

note an optimal continuous solution to such a segmentation

problem with variable z∗. To denote similarity between pix-

els i and j we use wij . Then, di indicates the degree of a

pixel i. In graph theory, the degree of a node denotes the

number of edges incident to that node. Thus, we set the de-

gree of a pixel to di =
Pn

j=1
wij for all j except i 6= j.

Finally, with fi we denote an initial segmentation proba-
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Figure 5: A figure illustrating semantic segmentation results. Images in columns two and three represent FCN softmax and

Dense-CRF predictions, respectively. Note that all methods use the same FCN unary potentials. Additionally, observe that

unlike FCN and Dense-CRF, our methods predicts segmentation that are both well localized around object boundaries and

that are also spatially smooth.

bility, which in our case is obtained from the FCN softmax

layer.

Using this notation, we can then formulate our global

inference objective as:

z∗ = argmin
z

µ

2

X

i

di(zi−
fi

di
)2+

1

2

X

ij

wij(zi−zj)
2 (4)

This energy consists of two different terms. Similar to

the general globalization framework, our first term encodes

the unary energy while the second term includes the pair-

wise energy. We now explain the intuition behind each of

these terms. The unary term attempts to find a segmentation

assignment (zi) that deviates little from the initial candidate

segmentation computed from the softmax layer (denoted by

fi). The zi in the unary term is weighted by the degree di
of the pixel in order to produce larger unary costs for pixels

that have many similar pixels within the neighborhood. In-

stead, the pairwise term ensures that pixels that are similar

should be assigned similar z values. To balance the ener-

gies of the two terms we introduce a parameter µ and set it

to 0.025 throughout all our experiments.

We can also express the same global energy function in

matrix notation:

z
∗ = argmin

z

µ

2
D(z−D

−1
f)T(z−D

−1
f)+

1

2
z
T(D−W)z

(5)

where z
∗ is a n ⇥ 1 vector containing an optimal con-

tinuous assignment for all n pixels, D is a diagonal degree

matrix, and W is the n⇥ n pixel affinity matrix. Finally, f

denotes a n⇥ 1 vector containing the probabilities from the

softmax layer corresponding to a particular object class.

An advantage of our energy is that it is differentiable. If

we denote the above energy as E(z) then the derivative of

this energy can be written as follows:

∂E(z)

∂z
= µD(z−D

−1
f) + (D−W)z = 0 (6)

With simple algebraic manipulations we can then obtain

a closed form solution to this optimization:

z
∗ = (D− αW)−1βf (7)

where α = 1

1+µ
and β = µ

1+µ
. In the general case where

we have k object classes we can write the solution as:

Z
∗ = (D− αW)−1βF (8)

where Z now depicts a n ⇥ k matrix containing assign-

ments for all k object classes, while F denotes n⇥k matrix

with object class probabilities from softmax layer. Due to

the large size of D−αW it is impractical to invert it. How-

ever, if we consider an image as a graph where each pixel

denotes a vertex in the graph, we can observe that the term

D−W in our optimization is equivalent to a Laplacian ma-

trix of such graph. Since we know that a Laplacian matrix is

positive semi-definite, we can use the preconditioned con-

jugate gradient method [28] to solve the system in Eq. (9).

Alternatively, because our defined global energy in Eq. (5)

is differentiable, we can efficiently solve this optimization

problem using stochastic gradient descent. We choose the

former option and solve the following system:

(D− αW)z∗ = βf (9)

To obtain the final discrete segmentation, for each pixel

we assign the object class that corresponds to the largest

column value in the row of Z (note that each row in Z rep-

resents a single pixel in the image, and each column in Z
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Metric Inference Method RGB Affinity BNF Affinity

PP-IOU

Belief Propagation [31] 75.4 75.6

ICM 74.2 75.8

TRWS [32] 75.9 76.7

QPBO [26] 76.9 77.2

BNF 74.6 77.6

PI-IOU

Belief Propagation [31] 45.9 46.2

ICM 45.7 48.8

TRWS [32] 51.5 52.0

QPBO [26] 55.3 57.2

BNF 53.0 58.5

Table 2: We compare semantic segmentation results

when using a color-based pixel affinity and our proposed

boundary-based affinity. We note that our proposed affinity

improves the performance of all globalization techniques.

Note that all of the inference methods use the same FCN

unary potentials. This suggests that for every method our

boundary-based affinity is more beneficial for semantic seg-

mentation than the color-based affinity.

represents one of the object classes). In the experimental

section, we show that this solution produces better quantita-

tive and qualitative results in comparison to commonly used

globalization techniques.

4. Experimental Results

In this section we present quantitative and qualitative re-

sults for semantic segmentation on the SBD [13] dataset,

which contains objects and their per-pixel annotations for

20 Pascal VOC classes. We evaluate semantic segmenta-

tion results using two evaluation metrics. The first metric

measures accuracy based on pixel intersection-over-union

averaged per pixels (PP-IOU) across the 20 classes. Ac-

cording to this metric, the accuracy is computed on a per-

pixel basis. As a result, the images that contain large ob-

ject regions are given more importance. However, for cer-

tain applications we may need to accurately segment small

objects. Therefore, similar to [4] we also consider the PI-

IOU metric (pixel intersection-over-union averaged per im-

age across the 20 classes), which gives equal weight to each

of the images.

We compare Boundary Neural Fields with other com-

monly used global inference methods. These methods in-

clude Belief Propagation [31], Iterated Conditional Mode

(ICM), Graph Cuts [5], and Dense-CRF [19]. Note that in

all of our evaluations we use the same FCN unary potentials

for every model.

Our evaluations provide evidence for three conclusions:

• In Subsection 4.1, we show that our boundary-based

pixel affinities are better suited for semantic segmenta-

tion than the traditional color-based affinities.

• In Subsection 4.2, we demonstrate that our global min-

imization leads to better results than those achieved by

other inference schemes.

• In Fig. 5, we qualitatively compare the outputs of FCN

and Dense-CRF to our predicted segmentations. This

comparison shows that the BNF segments are better

localized around the object boundaries and that they

are also spatially smooth.

4.1. Comparing Affinity Functions for Semantic
Segmentation

In Table 2, we consider two global models. Both mod-

els use the same unary potentials obtained from the FCN

softmax layer. However, the first model uses the popular

color-based pairwise affinities, while the second employs

our boundary-based affinities. Each of these two models

is optimized using several inference strategies. The table

shows that using our boundary based-affinity function im-

proves the results of all global inference methods accord-

ing to both evaluation metrics. Note that we cannot in-

clude Dense-CRF [19] in this comparison because it em-

ploys an efficient message-passing technique and integrat-

ing our affinities into this technique is a non-trivial task.

However, we compare our method with Dense-CRF in Sub-

section 4.2.

The results in Table 2 suggest that our semantic bound-

ary based pixel affinity function yields better semantic seg-

mentation results compared to the commonly-used color

based affinities. We note that we also compared the results

of our inference technique using other edge detectors, no-

tably UCM [1] and HFL [4]. In comparison to UCM edges,

we observed that our boundaries provide 1.0% and 6.0%
according to both evaluation metrics respectively. When

comparing our boundaries with HFL method, we observed

similar segmentation performance, which suggests that our

method works best with the high quality semantic bound-

aries.

4.2. Comparing Inference Methods for Semantic
Segmentation

Additionally, we also present semantic segmentation re-

sults for both of the metrics (PP-IOU and PI-IOU) in Ta-

ble 3. In this comparison, all the techniques use the same

FCN unary potentials. Additionally, all inference methods

except Dense-CRF use our affinity measure (since the pre-

vious analysis suggested that our affinities yield better per-

formance). We use BNF-SB to denote the variant of our

method that uses only semantic boundary based affinities.

Additionally, we use BNF-SB-SM to indicate the version

of our method that uses both boundary and softmax-based

affinities (see Eq. (3)).

Based on these results, we observe that our proposed

technique outperforms all the other globalization methods

according to both metrics, by 0.3% and 1.3% respectively.
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Metric Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

PP-IOU

FCN-Softmax 80.7 71.6 80.7 71.3 72.9 88.1 81.8 86.6 47.4 82.9 57.9 83.9 79.6 80.4 81.0 64.7 78.2 54.5 80.9 69.9 74.8

Belief Propagation [31] 81.4 72.2 82.4 72.2 74.3 88.8 82.4 87.2 48.4 83.8 58.4 84.6 80.5 80.9 81.5 65.1 79.5 55.5 81.5 71.2 75.6

ICM 81.7 72.2 82.8 72.1 75.3 89.6 83.4 87.7 46.3 83.3 58.4 84.6 80.6 81.4 81.5 65.8 79.5 56.0 80.7 74.1 75.8

TRWS [32] 81.6 70.9 83.8 72.0 75.1 89.5 82.5 88.0 51.7 86.6 61.9 85.8 83.3 80.8 81.1 65.3 81.5 58.8 77.6 75.9 76.7

Graph Cuts [5] 82.5 72.4 84.6 73.3 77.2 89.7 83.3 88.8 49.3 84.0 60.3 85.4 82.2 81.2 81.9 66.7 79.8 58.0 82.3 74.9 76.9

QPBO [26] 82.6 72.3 84.7 73.1 76.7 89.9 83.6 89.3 49.7 85.0 61.1 86.2 82.9 81.3 82.3 67.1 80.5 58.8 82.2 75.1 77.2

Dense-CRF [19] 83.4 71.5 84.9 72.6 76.2 89.5 83.3 89.1 50.4 86.7 61.0 86.8 83.5 81.8 82.3 66.9 82.2 58.2 81.9 75.1 77.3

BNF-SB 81.9 72.5 84.9 73.3 76.0 90.3 83.1 89.2 51.2 86.7 61.5 86.6 83.2 81.3 81.9 66.2 81.7 58.6 81.6 75.8 77.4

BNF-SB-SM 82.2 73.1 85.1 73.8 76.7 90.6 83.4 89.5 51.3 86.7 61.4 86.8 83.3 81.7 82.3 67.7 81.9 58.4 82.4 75.4 77.6

PI-IOU

FCN-Softmax 56.9 35.1 47.8 41.1 27.4 51.1 43.4 52.7 22.2 43.1 29.2 54.2 40.5 45.6 59.1 24.2 43.6 24.8 55.9 37.2 41.8

Belief Propagation [31] 68.0 38.6 52.9 45.8 31.9 55.9 47.2 58.2 24.6 49.9 31.7 60.2 44.9 50.1 62.4 25.2 49.9 27.6 62.3 42.2 46.2

ICM 65.3 40.9 56.4 45.3 33.7 58.9 49.5 61.9 25.8 53.5 33.2 62.1 48.0 53.2 63.4 24.1 54.8 34.0 63.7 47.7 48.8

TRWS [32] 67.5 40.7 60.3 46.3 35.6 63.4 49.6 69.3 29.7 58.9 37.8 67.4 57.3 53.8 64.1 26.3 62.0 36.9 63.1 49.9 52.0

Graph Cuts [5] 72.1 47.8 64.5 50.8 36.0 70.8 51.4 71.6 31.7 65.8 34.4 71.8 62.0 59.4 64.8 29.0 60.9 38.7 70.3 51.6 55.3

QPBO [26] 71.6 46.8 65.6 49.6 38.0 72.6 52.7 76.7 32.5 69.6 38.9 74.4 61.4 61.0 66.2 30.3 68.7 41.4 72.2 52.8 57.2

Dense-CRF [19] 68.0 39.5 58.0 45.0 33.4 62.8 47.7 66.0 29.4 60.9 36.0 68.5 54.6 51.4 63.7 28.3 57.6 37.1 65.9 48.2 51.1

BNF-SB 71.6 48.1 67.2 52.3 37.8 79.5 52.9 80.8 33.3 71.5 39.5 75.1 65.7 63.4 65.1 31.1 67.5 39.6 73.2 54.7 58.5

BNF-SB-SM 72.0 48.9 66.5 52.9 39.1 79.0 53.4 78.6 32.9 72.2 39.4 74.6 65.9 64.2 65.8 31.7 66.9 39.0 73.1 53.9 58.5

Table 3: Semantic segmentation results on the SBD dataset according to PP-IOU (per pixel) and PI-IOU (per image) eval-

uation metrics. We use BNF-SB to denote the variant of our method that uses only semantic boundary based affinities.

Additionally, we use BNF-SB-SM to indicate our method that uses boundary and softmax based affinities (See Eq. (3)). We

observe that our proposed globalization method outperforms other globalization techniques according to both metrics by

at least 0.3% and 1.3% respectively. Note that in this experiment, all of the inference methods use the same FCN unary

potentials. Additionally, for each method except Dense-CRF (it is challenging to incorporate boundary based affinities into

the Dense-CRF framework) we use our boundary based affinities, since those lead to better results.

Additionally, these results indicate that most benefit comes

from the semantic boundary affinity term rather than the

softmax affinity term.

In Fig. 5, we also present qualitative semantic segmenta-

tion results. Note that, compared to the segmentation out-

put from the softmax layer, our segmentation is much bet-

ter localized around the object boundaries. Additionally,

in comparison to Dense-CRF predictions, our method pro-

duces segmentations that are much spatially smoother.

4.3. Semantic Boundary Classification

We can also label our boundaries with a specific object

class, using the same classification strategy as in the HFL

system [4]. Since the SBD dataset provides annotations for

semantic boundary classification, we can test our results

against the state-of-the-art HFL [4] method for this task.

Due to the space limitation, we do not include full results for

each category. However, we observe that our produced re-

sults achieve mean Max F-Score of 54.5% (averaged across

all 20 classes) whereas HFL method obtains 51.7%.

5. Conclusions

In this work we introduced a Boundary Neural Field

(BNF), an architecture that employs a semantic segmenta-

tion FCN to predict semantic boundaries and then uses the

predicted boundaries and the FCN output to produce an im-

proved semantic segmentation maps a global optimization.

We showed that our predicted boundaries are better suited

for semantic segmentation than the commonly used low-

level color based affinities. Additionally, we introduced a

global energy function that decomposes semantic segmen-

tation into multiple binary problems and relaxes an inte-

grality constraint. We demonstrated that the minimization

of this global energy allows us to predict segmentations

that are better localized around the object boundaries and

that are spatially smoother compared to the segmentations

achieved by prior methods. We made the code of our global-

ization technique available at http://www.seas.upenn.

edu/~gberta/publications.html.

The main goal of this work was to show the effective-

ness of boundary-based affinities for semantic segmenta-

tion. However, due to differentiability of our global energy,

it may be possible to add more parameters inside the BNFs

and learn them in a front-to-end fashion. We believe that

optimizing the entire architecture jointly could capture the

inherent relationship between semantic segmentation and

boundary detection even better and further improve the per-

formance of BNFs. We will investigate this possibility in

our future work.
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