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Abstract

Haze limits visibility and reduces image contrast in out-

door images. The degradation is different for every pixel

and depends on the distance of the scene point from the

camera. This dependency is expressed in the transmission

coefficients, that control the scene attenuation and amount

of haze in every pixel. Previous methods solve the single

image dehazing problem using various patch-based priors.

We, on the other hand, propose an algorithm based on a

new, non-local prior. The algorithm relies on the assump-

tion that colors of a haze-free image are well approximated

by a few hundred distinct colors, that form tight clusters in

RGB space. Our key observation is that pixels in a given

cluster are often non-local, i.e., they are spread over the en-

tire image plane and are located at different distances from

the camera. In the presence of haze these varying distances

translate to different transmission coefficients. Therefore,

each color cluster in the clear image becomes a line in RGB

space, that we term a haze-line. Using these haze-lines, our

algorithm recovers both the distance map and the haze-free

image. The algorithm is linear in the size of the image, de-

terministic and requires no training. It performs well on a

wide variety of images and is competitive with other state-

of-the-art methods.

1. Introduction

Outdoor images often suffer from low contrast and lim-

ited visibility due to haze, small particles in the air that scat-

ter the light in the atmosphere. Haze is independent of scene

radiance and has two effects on the acquired image: it at-

tenuates the signal of the viewed scene, and it introduces an

additive component to the image, termed the ambient light,

or airlight (the color of a scene point at infinity). The im-

age degradation caused by haze increases with the distance

from the camera, since the scene radiance decreases and

the airlight magnitude increases. Thus, hazy images can be

modeled as a per-pixel convex combination of a haze-free

image and the global airlight.

Our goal is to recover the RGB values of the haze-free

image and the transmission (the coefficient of the convex

combination) for each pixel. This is an ill-posed problem

that has an under-determined system of three equations and
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Figure 1. Non-Local Image Dehazing. (a) Pixels of a haze free

color image are clustered using K-means. Pixels belonging to four

of the clusters are marked. Note that the pixels are non-local and

are spread all over the image plane. (b) The four color clusters

are depicted in RGB space. Colors of the clusters correspond to

the highlighted pixels in (a). (c) Synthetic haze is added to (a).

The same clustered pixels are marked, but their observed colors

are affected by different amounts of haze. (d) The hazy pixels

depicted in RGB color space. They are distributed along lines,

termed haze-lines, passing through the airlight, marked in black.

at least four unknowns per pixel, with inherent ambiguity

between haze and object radiance. To handle this ambiguity,

some previous works used additional information such as

more images, while others assumed an image prior to solve

the problem from a single image (see Sec. 2).

Here, we use the observation that colors of a haze-free

image can be well approximated by a few hundred distinct

colors [14]. This implies that pixels in a hazy image can

be modeled by lines in RGB space that pass through the

airlight coordinates. We term these lines haze-lines to stress

this characteristic (Figs. 1, 2). Pixels along a haze-line come

from objects that have similar radiance colors, located over

the entire image plane. These objects can be and indeed are

located at different distances from the camera. Since their

acquired color can be modeled by a convex combination of

the radiance color and the airlight color, such objects will

span a line in RGB space. We use these lines to estimate the

per-pixel transmission based on the pixel’s position along

the line it belongs to.

As opposed to recent state-of-the-art methods our

11674



0

100

200

A  

B

200

G

100 200

R

1000

0

100

200

A  

B

200

G

100

(1-t)A  

200

R

1000

(a) Input hazy image: Forest. (b) The circled pixels form a (c) The pixels in the orange square

Note pixels marked in circles haze-line in RGB color space form a color-line in RGB color space

Figure 2. Haze-lines (ours) vs. Color lines [3]. (a) An input hazy image. Six pixels belonging to similar objects in different distances are

marked by round color markers, and a local patch is marked by an orange frame. (b) The color coordinates of the pixels depicted in (a)

with round markers are shown in RGB color space, with a corresponding color coding. They are distributed over a haze-line, as identified

by our method. The line passes through the airlight, marked in black. The other end of the line is the haze-free color of these pixels, not

the origin. (c) As opposed to our method, the pixels in the local patch marked by an orange square are distributed along a color line [3]

that intersects the vector from the origin to the airlight.

method is global and does not divide the image to patches.

Patch-based methods take great care to avoid artifacts by

either using multiple patch sizes [19] or taking into consid-

eration patch overlap and regularization using connections

between distant pixels [3]. In our case, the pixels that form

the haze-lines are spread across the entire image and there-

fore capture a global phenomena that is not limited to small

image patches. Thus, our prior is more robust and signifi-

cantly more efficient in run-time.

We propose an efficient algorithm that is linear in the

size of the image. We automatically detect haze-lines and

use them to dehaze the image. We also conduct extensive

experiments to validate our assumptions and report quanti-

tative and qualitative results on many outdoor images.

2. Previous Work

A variety of approaches have been proposed to solve im-

age dehazing. Several methods require additional informa-

tion to dehaze images, such as multiple images taken under

different weather conditions [11], or two images with dif-

ferent polarization states [16]. Alternatively, the scene ge-

ometry is used [6]. Single image dehazing methods assume

only the input image is available and rely on image priors.

Haze reduces the contrast in the image, and various

methods rely on this observation for restoration. Tan [18]

maximizes the contrast per patch, while maintaining a

global coherent image. In [15] the amount of haze is es-

timated from the difference between the RGB channels,

which decreases as haze increases. This assumption is prob-

lematic in gray areas. In [21] the haze is estimated based on

the observation that hazy regions are characterized by high

brightness and low saturation.

Some methods use a prior on the depth of the image.

A smoothness prior on the airlight is used in [20], assum-

ing it is smooth except for depth discontinuities. Nishino

et al. [12] assume the scene albedo and depth are statisti-

cally independent and jointly estimate them using priors on

both. The prior on the albedo assumes the distribution of

gradients in images of natural scenes exhibits a heavy-tail

distribution, and it is approximated as a generalized normal

distribution. The depth prior is scene-dependent, and is cho-

sen manually, either as piece-wise constant for urban scenes

or smoothly varying for non-urban landscapes.

Several methods assume that transmission and radiance

are piece-wise constant, and employ a prior on a patch basis

[3, 4, 5]. The dark channel prior [5] assumes that within

small image patches there will be at least one pixel with a

dark color channel and use this minimal value as an estimate

of the present haze. This prior works very well, except in

bright areas of the scene where the prior does not hold.

In [4], color ellipsoids are fitted in RGB space per-patch.

These ellipsoids are used to provide a unified approach for

previous single image dehazing methods, and a new method

is proposed to estimate the transmission in each ellipsoid.

In [3, 17], color lines are fitted in RGB space per-patch,

looking for small patches with a constant transmission. This

prior is based on the observation [13] that pixels in a haze-

free image form color lines in RGB space. These lines pass

through the origin and stem from shading variations within

objects. As shown in [3], the color lines in hazy images

do not pass through the origin anymore, due to the additive

haze component. In small patches that contain pixels in a

uniform distance from the camera, these lines are shifted

from the origin by the airlight at that distance. By fitting

a line to each such patch, the transmission in the patch is

estimated using the line’s shift from the origin.

The variety of priors has led to the work of [19], that

examines different patch features in a learning framework.

Instead of small patches, in [7] the image is segmented to

regions with similar distances, and the contrast is stretched

within each segment. This may create artifacts at the bound-

aries between segments.
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While our haze-lines might seem similar to [3, 4], they

are inherently different. The differences are shown in Fig. 2.

In [3], lines are defined by the pixels of small patches in

the image plane assuming constant transmission, with inten-

sity differences caused by shading, and therefore relatively

small (Fig. 2c). This is a local phenomena that does not

always hold and indeed, in [3] care is taken to ensure only

patches where the assumption holds are considered. We, on

the other hand, look at lines that are formed by individual

pixels that are scattered over the entire image. These pix-

els usually have large intensity differences that are caused

by changes in transmission and not local shading effects, as

demonstrated in Fig. 2b.

3. Non-Local Colors in Hazy Images

We first present the haze model and then describe how

we use non-local haze-lines for image dehazing.

3.1. Haze Model

The common hazy image formation model is [9]:

I(x) = t(x) · J(x) + [1− t(x)] ·A , (1)

where x is the pixel coordinates, I is the observed hazy im-

age, and J is the true radiance of the scene point imaged at

x. The airlight A is a single color representing the airlight

in image areas where t = 0.

The scene transmission t(x) is distance-dependent:

t(x) = e−βd(x) , (2)

where β is the attenuation coefficient of the atmosphere and

d(x) is the distance of the scene at pixel x. Generally, β is

wavelength dependent and therefore t is different per color

channel [11, 16]. This dependency has been assumed negli-

gible in previous single image dehazing methods to reduce

the number of unknowns and we follow this assumption.

The transmission t(x) acts as a matting coefficient between

the scene J and the airlight A. Thus, per-pixel x, Eq. (1)

has three observations I(x) and four unknowns: J(x) and

t(x), resulting in an under-determined estimation problem.

3.2. The Prior

Our method is based on the observation that the number

of distinct colors in an image is orders of magnitude smaller

than the number of pixels [14]. This assumption has been

used extensively in the past and is used for saving color

images using indexed colormaps. We validate and quan-

tify it on the Berkeley Segmentation Dataset (BSDS300).

This is a diverse dataset of clear outdoor natural images and

thus represents the type of scenes that might be degraded

by haze. We clustered the RGB pixel values of each image

using K-means to a maximum of 500 clusters, and replaced

every pixel in the image with its respective cluster center.

The result is an image with 500 different RGB values at
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Figure 3. Prior validation: (a) A PSNR histogram of the quantiza-

tion errors on the Berkeley Segmentation Dataset (BSDS300): The

RGB values of each image were clustered using K-means to 500

clusters and replaced by the cluster center. The histogram shows

the PSNRs measured on the entire dataset. (b,d) The image that

had the worst PSNR, 36.64dB, before (b) and after (d) color quan-

tization. (c) Absolute difference image to color-quantized version

(the contrast was stretched for display, note that the maximal dif-

ference was 18 out of 256).

most (two orders of magnitude smaller than image size).

The PSNR of the images generated with the reduced color

set, compared to the original ones, were high and ranged

from 36.6dB to 52.6dB. A histogram of the obtained PSNR

values is shown in Fig 3, as well as the image that had the

worst PSNR, before and after color quantization.

The observation regarding a small number of distinct

colors holds for haze-free images. In the presence of haze,

object points that belong to the same color cluster end up

with different acquired colors, since they are located in dis-

parate image areas and thus have different distances from

the camera. This prior suggests that pixels clustered to-

gether in a haze-free image form a line in RGB space in

a hazy image. Based on Eq. (1), the two end points of the

line are the original color J and the airlight A. These are

the haze-lines.

This prior is demonstrated in Fig. 1. A haze-free im-

age is clustered using K-means to 500 clusters. The pixels

belonging to four of these clusters are marked by different

color markers in Fig. 1a and their RGB coordinates are plot-

ted in Fig. 1b, demonstrating tight clusters. Note that the

clusters include pixels distributed over the entire image that

come from objects with different distances from the cam-

era. A synthetic hazy image was generated from the clear

image (Fig. 1c) by [3]. The same pixels as in Fig. 1a are

marked. However, now, colors of pixels that belonged to

the same color cluster are no longer similar. This is de-

picted in RGB space in Fig. 1d, where the color coordinates

of these pixels are distributed along a haze-line spanned by

the original color and the airlight. The pixels marked by

purple circles (originating from the sand patch) are located
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Figure 4. Airlight centered spherical representation. The sphere

was sampled uniformly using 500 points. The color at each point

[φ, θ] indicates the number of pixels x with these angles when

writing IA(x) in spherical coordinates (image size 768× 1024).

in similar distances, so their distribution along the haze-line

is rather tight. However, the pixels marked by orange tri-

angles (grassy areas) are found at different locations in the

real world, so they are distributed along the haze-line.

Fig. 2 demonstrates the haze-lines prior on a hazy out-

door image. Six different pixels identified by our method as

belonging to the same haze line are circled. All of them are

on shaded tree trunks and branches, and are likely to have

similar radiance J . However, their observed intensity I is

quite different, as shown in Fig. 2b, where these pixels form

a haze-line in RGB space that passes through the airlight.

4. Haze Removal

Our algorithm is composed of four essential steps: clus-

tering the pixels into haze-lines, estimating an initial trans-

mission map, regularization, and dehazing (see Alg. 1).

Finding Haze-Lines: We estimate A using one of the pre-

vious methods [2, 5, 18]. Let us define IA as:

IA(x) = I(x)−A , (3)

i.e., the 3D RGB coordinate system is translated such that

the airlight is at the origin. Following Eq. (1),

IA(x) = t(x) · [J(x)−A] . (4)

We express IA(x) in spherical coordinates:

IA(x) = [r(x), θ(x), φ(x)] . (5)

Here r is the distance to the origin (i.e., ‖I −A‖)), θ and φ
are the longitude and latitude, respectively.

The colors of the pixels are now represented in a spheri-

cal coordinate system around the airlight. Fig. 4 shows the

histogram of the Forest image (Fig. 2a) projected onto a

sphere. The color represents the number of pixels pointing

at each direction. The equator (φ = 0) is marked by a bold

dashed blue line, while the longitudes θ = 0, π
2 are marked

by dotted blue lines. The triangulation is explained later.

The color-mapping is logarithmic for illustration purposes.

The histogram indicates that the pixels are highly concen-

trated in terms of their longitude and latitude.

Let us look at Eq. (4). For given values of J and A,

scene points at different distances from the camera differ

only in the value of t. In the spherical coordinate system

we defined, changes in t affect only r(x) without chang-

ing either φ(x) or θ(x). In other words, pixels x and y

have similar RGB values in the underlying haze-free image

if their [φ, θ] are similar:

J(x) ≈ J(y) ⇒ {φ(x) ≈ φ(y) , θ(x) ≈ θ(y)}, ∀t. (6)

Therefore, pixels belong to the same haze-line if their

[φ(x), θ(x)] values are similar. Each point on the sphere

in Fig. 4 represents a haze-line, in which all the pixels have

approximately the same angles [φ(x), θ(x)]. The pixels on

each haze-line have similar values in the non-hazy image J

with high probability.

Note that there is inherent ambiguity between color and

haze for colors which are collinear with the airlight:

J1 −A = α(J2 −A) ⇒ J1 = (1− α)A+ αJ2 , (7)

where α is a scale factor. In this case all single image de-

hazing methods will correct J1 and J2 to the same color.

This is the only case in our method when two color clusters

will be mapped to the same haze-line.

In order to determine which pixels are on the same haze-

line, pixels should be grouped according to their angles

[φ, θ]. A 2-D histogram binning of θ and φ with uniform

edges in the range [0, 2π] × [0, π] will not generate a uni-

form sampling of a sphere. Instead, the samples will be

denser near the poles [8], since the distance on the sphere is

relative to sin(θ). Therefore, we sample the unit sphere uni-

formly, as shown in Fig. 4, where each vertex is a sample

point. Each vertex corresponds to a haze-line. For clarity

of display, the number of samples in Fig. 4 is smaller than

the actual number we use. We group the pixels based on

their [φ(x), θ(x)] values, according to the closest sample

point on the surface. This can be implemented efficiently

by building a KD-Tree from the pre-defined tessellation and

querying the tree for each pixel. This is much faster than

running a clustering algorithm such as k-means.

Based on the analysis described in section 3.2, several

hundreds of haze-lines represent an image with a good ap-

proximation. Fig. 5a depicts the layout of two different

haze-lines in the image plane for the Forest image.

Estimating Initial Transmission: For a given haze-line de-

fined by J and A, r(x) depends on object distance:

r(x) = t(x)‖J(x)−A‖ , 0 ≤ t(x) ≤ 1 . (8)

Thus, t = 1 corresponds to the largest radial coordinate:

rmax
def

= ‖J −A‖ . (9)

Combining Eqs. (8,9) results in an expression for the

transmission based on radii in the haze-line:

t(x) = r(x)/rmax . (10)

Now, the question is how to find an estimate r̂max for

the maximal radius? If a haze-line H contains a haze-free
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Figure 5. Distance distribution per haze-line: (a) Pixels belong-

ing to two different haze-lines are depicted in green and blue, re-

spectively. (b) A histogram of r(x) within each cluster. The hori-

zontal axis is limited to the range [0, ‖A‖], as no pixel can have a

radius outside that range in this particular image.

pixel, then r̂max is the maximal radius of that haze-line:

r̂max(x) = max
x∈H

{r(x)} , (11)

where the estimation is done per haze-line H . Fig. 5b

displays the radii histograms of the two clusters shown in

Fig. 5a. We assume that the farthest pixel from the airlight

is haze free, and that such a pixel exists for every haze-line.

This assumption does not hold for all of the haze-lines in an

image, however the regularization step partially compen-

sates for it. Combining Eqs. (10,11) results in a per-pixel

estimation of the transmission:

t̃(x) = r(x)/r̂max(x) . (12)

Regularization: Since the radiance J is positive (i.e.,

J ≥ 0 ), Eq. (1) gives a lower bound on the transmission:

tLB(x) = 1− min
c∈{R,G,B}

{Ic(x)/Ac} . (13)

In [5], the transmission estimate is based on an eroded

version of tLB . We impose this bound on the estimated

transmission, per-pixel:

t̃LB(x) = max{t̃(x), tLB(x)} . (14)

The estimation in Eq. (12) is performed per-pixel, with-

out imposing spatial coherency. This estimation can be

inaccurate if a small amount of pixels were mapped to a

particular haze-line, or in very hazy areas, where r(x) is

very small and noise can affect the angles significantly. The

transmission map should be smooth, except for depth dis-

continuities [3, 12, 18, 20]. We seek a transmission map

t̂(x) that is similar to t̃LB(x) and is smooth when the input

image is smooth. Mathematically, we minimize the follow-

ing function w.r.t. t̂(x):

∑

x

[

t̂(x)− t̃LB(x)
]2

σ2(x)
+ λ

∑

x

∑

y∈Nx

[

t̂(x)− t̂(y)
]2

‖I(x)− I(y)‖2
,

(15)

where λ is a parameter that controls trade-off between the

data and the smoothness terms, Nx denotes the four nearest

neighbors of x in the image plane and σ(x) is the standard

deviation of t̃LB , which is calculated per haze-line.

Algorithm 1 Haze Removal

Input: I(x),A
Output: Ĵ(x), t̂(x)

1: IA(x) = I(x)−A

2: Convert IA to spherical coordinates to obtain

[r(x), φ(x), θ(x)]
3: Cluster the pixels according to [φ(x), θ(x)].

Each cluster H is a haze-line.

4: for each cluster H do

5: Estimate maximum radius:

r̂max(x) = maxx∈H{r(x)}

6: for each pixel x do

7: Estimate transmission: t̃(x) = r(x)
r̂max

8: Perform regularization by calculating t̂(x) that

minimizes Eq. 15

9: Calculate the dehazed image using Eq. (16)

σ(x) plays a significant role since it allows us to ap-

ply our estimate only to pixels where the assumptions hold.

When the variance is high, the initial estimation is less reli-

able. σ(x) increases as the number of pixels in a haze line

decreases. When the radii distribution in a given haze-line

is small, our haze-line assumption does not hold since we

do not observe pixels with different amounts of haze. In

such cases, σ(x) increases as well.

Dehazing: Once t̂(x) is calculated as the minimum of

Eq. (15), the dehazed image is calculated using Eq. (1):

Ĵ(x) =
{

I(x)−
[

1− t̂(x)
]

A
}/

t̂(x) . (16)

The method is summarized in Alg. 1 and demonstrated

in Fig. 6. Fig. 6a shows the input hazy image. The final,

dehazed image is shown in Fig. 6b. Fig. 6c shows the dis-

tance in RGB space of every pixel in the hazy image to the

airlight. Note that this distance decreases as haze increases.

Fig. 6d shows the maximum radii r̂max(x) per haze-line.

Observe that Fig. 6d is much brighter than Fig. 6c. Since

larger values are represented by brighter colors, this indi-

cates that the distance to the airlight is increased. The pixels

with the maximum radius in their haze-line are marked on

the hazy image in Fig. 6e. Note that these pixels are mostly

at the foreground, where indeed there is a minimal amount

of haze. We filtered out pixels that had a maximum radius in

the haze line, yet had a σ > 2, since the model assumptions

do not hold for these haze lines. The aforementioned pixels

are found in the sky, since the distance to the airlight in RGB

space is very short. Therefore, clustering them according to

their angles is not reliable due to noise. In the regularization

step this fact is taken into consideration through the data-

term weight 1
σ2(x) , which is shown in Fig. 6f (warm colors

depict high values). The ratio of Figs. 6c and 6d yields the

initial transmission t̃(x) that is shown in Fig. 6g. The trans-
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(a) Hazy image I(x) (b) Dehazed image Ĵ(x)

(c) r(x) (d) r̂max(x)

(e) pixels {x|r(x) = r̂max(x)} (f) 1
σ
2(x)

, colomapped

(g) Initial trans. t̃(x) (h) Regularized trans. t̂(x)

Figure 6. Intermediate and final results of our method: (a) An

input hazy image; (b) The output image; (c) The distance r(x) of

every pixel of the hazy image to the airlight; (d) the estimated radii

r̂max(x) calculated according to Eq. (11); (e) The input image is

shown, with the pixels x for which r(x) = r̂max(x) marked by

cyan circles; (f) The data term confidence in Eq. (15) colormapped

(warm colors show the larger values); (g) The estimated transmis-

sion map t̂(x) before the regularization; (h) The final transmission

map t̃(x) after regularization. (g) and (h) are colormapped.

mission map after regularization is shown in Fig. 6h. While

t̃(x) contains fine details even in grass areas that are at the

same distance from the camera, t̂(x) does not exhibit this

behavior. This indicates the regularization is necessary.

5. Results

We evaluate our method on a large dataset containing

both natural and synthetic images and compare our perfor-

mance to state-of-the-art algorithms. We assume A is given,

by using the airlight vector A calculated by [17]. We use

the same parameters for all of the images: in Eq. (15) we

set λ = 0.1 and we scale 1/σ2(x) to be in the range [0, 1]
in order to avoid numeric issues. In order to find the haze

lines, we sample uniformly 1000 points on the unit sphere

(Fig. 4 shows only 500 for clarity).

5.1. Quantitative results

A synthetic dataset of hazy images of natural scenes

was introduced by [3], and is available online. The dataset

contains eleven haze free images, synthetic distance maps

Table 1. Comparison of L1 errors over synthetic hazy images with

various amount of noise. The noise standard deviation is given and

the images are scaled to the range [0, 1]. The table compares the

L1 errors of the estimated transmission maps (left value) and the

dehazed images (right value).
σ [5] [3] ours

Road1

0 0.097/ 0.051 0.069/ 0.033 0.058/ 0.040

0.01 0.100/ 0.058 0.068/ 0.038 0.061/ 0.045

0.025 0.106/ 0.074 0.084/ 0.065 0.072/ 0.064

0.05 0.136/ 0.107 0.120/ 0.114 0.091/ 0.100

Lawn1

0 0.118/ 0.063 0.077/ 0.035 0.032/ 0.026

0.01 0.116/ 0.067 0.056/ 0.038 0.032/ 0.032

0.025 0.109/ 0.077 0.056/ 0.065 0.052/ 0.056

0.05 0.115/ 0.102 0.114/ 0.121 0.099/ 0.107

Mansion

0 0.074/ 0.043 0.042/ 0.022 0.080/ 0.049

0.01 0.067/ 0.040 0.048/ 0.030 0.088/ 0.056

0.025 0.057/ 0.044 0.065/ 0.051 0.104/ 0.072

0.05 0.083/ 0.075 0.081/ 0.080 0.116/ 0.095

Church

0 0.07/ 0.048 0.039/ 0.025 0.047/ 0.032

0.01 0.067/ 0.050 0.053/ 0.043 0.049/ 0.041

0.025 0.058/ 0.059 0.089/ 0.081 0.047/ 0.057

0.05 0.087/ 0.121 0.121/ 0.136 0.043/ 0.092

Raindeer

0 0.127/ 0.068 0.066/ 0.034 0.089/ 0.045

0.01 0.119/ 0.066 0.077/ 0.042 0.093/ 0.049

0.025 0.109/ 0.067 0.084/ 0.054 0.104/ 0.063

0.05 0.117/ 0.085 0.106/ 0.083 0.131/ 0.092

and corresponding simulated haze images. An identically-

distributed zero-mean Gaussian noise with three different

noise level: σn = 0.01, 0.025, 0.05 was added to these im-

ages (with image intensity scaled to [0, 1]). Table 1 sum-

marizes the L1 errors on non-sky pixels (same metric used

in [3]) of the transmission maps and the dehazed images.

Our method is compared to the method of [3] and an imple-

mentation of [5] by [3]. For five images out of this dataset,

results of both clear and noisy images are provided by [3]1.

Our method outperforms previous methods in most

cases, and handles the noise well. As expected, our perfor-

mance degrades when the noise variance increases. How-

ever, our method maintains its ranking, with respect to other

methods, regardless of the amount of noise. This shows that

our algorithm is quite robust to noise, despite being pixel-

based.

5.2. Qualitative results

Figs. 7 and 8 compare our results to state-of-the-art sin-

gle image dehazing methods [1, 3, 4, 5, 12, 19]. As previ-

ously noted by [5], the image after haze removal might look

dim, since the scene radiance is usually not as bright as the

airlight. For display, we perform a global linear contrast

stretch on the output, clipping 0.5% of the pixel values both

in the shadows and in the highlights. Pixels whose radius is

maximal in their haze-line are marked in pink on the hazy

input. We marked only pixels x for which σ(x) < 2 and

for clarity, only ones that belong to large clusters.

1A complete summary of results and more is available on the project’s

website.
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hazy image: House He et al. [5] Gibson and Nguyen [4] Nishino et al. [12] Fattal [3] Ours

hazy image: Train He et al. [5] Luzón-González et al. [7] Ancuti and Ancuti [1] Fattal [3] Ours

hazy image: Cityscape He et al. [5] Gibson and Nguyen [4] Tang et al. [19] Fattal [3] Ours

Figure 7. Comparison on natural images: [Left] Input with pixels that set the maximum radius in their haze-line circled in pink.

[Right] Our result. Middle columns display results by several methods, since each paper reports results on a different set of images.

Top to bottom:

hazy image: Forest

He et al. [5] results

Fattal [3] results

our results

Figure 8. Comparison of transmission maps and dehazed images.

The method of [1] leaves haze in the results, as seen in

the areas circled in yellow in Fig. 7. In the result of [7] there

are artifacts in the boundary between segments (pointed by

arrows). The method of [12] tends to oversaturate (e.g.,

House). The methods of [5, 19] produce excellent results in

general but lack some micro-contrast when compared to [3]

and to ours. This is evident in the zoomed-in buildings

shown in Cityscape results, where in our result and in [3]

the windows are sharper than in [5, 19] (best viewed on a

monitor). The result of [4] was not enlarged as it has a low

resolution. Results of [3] are sometimes clipped, e.g., the

leaves in House and in the sky in Forest.

Our assumption regarding having a haze-free pixel in

each haze-line does not hold in Cityscape, as evident by

several hazy pixels that set a maximum radius, e.g. the red

buildings. Despite that, the transmission in those areas is

estimated correctly due to the regularization that propagates

the depth information spatially from the other haze-lines.

Fig. 8 compares both the transmission maps and the de-

hazed images. It shows our method is comparable to other

methods, and in certain cases works better. For example,

The two rows of trees are well separated in our result when

compared to [5].

The main advantage of the global approach is the ability

to cope well with fast variations in depth, when the details

are smaller than the patch size. Fig. 9 shows an enlarged
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Figure 9. (a) Hazy input. (b) The result of [5]. (c) The result of

[3]. (d) Our result. Note the artifacts around the leaves and the

branch at (c). This is a result of the patch-based method. While

[5] is also a patch-based and does not exhibit these artifacts, this

method under-estimates the haze in this image, so the depth gap is

not pronounced. Note the lacking details in the tree trunk of (b)

compared to (c) and (d).

Figure 10. Color Clustering: Left: a crop of Fig. 6a). Right:

a cluster map - each color represents a different haze-line. The

gradual tone change of the pumpkins is preserved in the clustering.

Figure 11. Top row: clear day image and ground-truth depth of the

scene. Two bottom rows, from left to right: an image taken in bad

weather conditions, our result and the transmission map.

portion of an image, where clear artifacts are visible in the

result of [3], around the leaves and at the boundary between

the trunk and the background. A patch-based method is less

likely to estimate the distance of such scenes accurately.

The result of [5] does not exhibit these artifacts in Fig. 9,

since the dehazing is less effective in this image and the de-

tails are less clear (e.g, the circled trunk). This phenomena

is also visible in Fig. 7 in the dehazed Cityscape image of

[4], where a halo between the trees in the foreground and

the background is visible, and also in the train output of [3]

around the pole (marked by a yellow square).

Using a fixed tessellation of the unit sphere might raise

a concern that fine tones will not be distinguished. Fig. 10

demonstrates this is not the case. The pumpkins (a crop

of Fig. 6a) are lit from above, and therefore are brighter

at the top and gradually become darker towards the ground

(Fig. 10 left). Fig. 10 right depicts the cluster map - each

color symbolizes a different haze-line. The gradual tone

change is evident in the cluster map.

The Weather and ILlumination Database (WILD) [10]

contains multiple images of the same scene and the ground

truth depth. Fig. 11 shows on the top row a clear day im-

age of the scene as well as the depth. Below are images

taken under bad weather conditions and our results. The im-

age at the middle row was taken in light rain and mist, and

our method restores the visibility while estimating a rough

depth map. The image at the bottom left was taken under

heavy mist and limited visibility. There, the pixels are not

correctly clustered into haze-lines. The result is an inaccu-

rate transmission and artifacts in the restored image.

5.3. Complexity analysis

Our method is linear in N , the number of pixels in the

image, and therefore fast. The clustering is done using a

nearest neighbor search on a KD-Tree with a fixed number

of points. Estimating the radius within each cluster is lin-

ear in N . Therefore, the initial radius estimation is O(N).
Seeking the minimum of Eq. (15) requires solving a sparse

linear system, which is also O(N). Restoring the dehazed

image from the transmission map is O(N) as well.

6. Conclusions

We introduced a novel non-local method for single im-

age dehazing. The method is based on the assumption that

an image can be faithfully represented with just a few hun-

dreds of distinct colors. In RGB space, this corresponds to a

few hundreds tight color clusters. We showed that in a hazy

image, these tight color clusters change because of haze and

form lines in RGB space that pass through the airlight coor-

dinate. We proposed an efficient algorithm to identify these

haze-lines and estimate a per-pixel transmission based on

them. We take into consideration the variance of our es-

timation in the regularization process, so only pixels that

comply with the model assumptions contribute to the result.

Our method may fail in scenes where the airlight is signif-

icantly brighter than the scene. In such cases, most pixels

will point in the same direction and it will be difficult to

detect the haze lines.

In contrast to previous methods our algorithm is pixel-

based and not patch-based. This makes our algorithm faster,

more robust and less prone to issues such as the choice of

patch size, patch tiling, and patches with non-uniform con-

tent. Our method was tested and found to work well on

many real-world images.
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