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Abstract

It is well known that contextual and multi-scale repre-

sentations are important for accurate visual recognition.

In this paper we present the Inside-Outside Net (ION), an

object detector that exploits information both inside and

outside the region of interest. Contextual information out-

side the region of interest is integrated using spatial recur-

rent neural networks. Inside, we use skip pooling to ex-

tract information at multiple scales and levels of abstrac-

tion. Through extensive experiments we evaluate the design

space and provide readers with an overview of what tricks

of the trade are important. ION improves state-of-the-art on

PASCAL VOC 2012 object detection from 73.9% to 77.9%

mAP. On the new and more challenging MS COCO dataset,

we improve state-of-the-art from 19.7% to 33.1% mAP. In

the 2015 MS COCO Detection Challenge, our ION model

won “Best Student Entry” and finished 3rd place overall. As

intuition suggests, our detection results provide strong evi-

dence that context and multi-scale representations improve

small object detection.

1. Introduction

Reliably detecting an object requires a variety of infor-

mation, including the object’s fine-grained details and the

context surrounding it. Current state-of-the-art detection

approaches [8, 32] only use information near an object’s

region of interest (ROI). This places constraints on the type

and accuracy of objects that may be detected.

We explore expanding the approach of [9] to include two

additional sources of information. The first uses a multi-

scale representation [20] that captures fine-grained details

by pooling from multiple lower-level convolutional layers

in a ConvNet [37]. These skip-layers [36, 25, 26, 13] span

multiple spatial resolutions and levels of feature abstraction.

The information gained is especially important for small ob-

jects, which require the higher spatial resolution provided

by lower-level layers.

Our second addition is the use of contextual informa-
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Figure 1. Inside-Outside Net (ION). In a single pass, we extract

VGG16 [37] features and evaluate 2000 proposed regions of in-

terest (ROI). For each proposal, we extract a fixed-size descrip-

tor from several layers using ROI pooling [9]. Each descriptor is

L2-normalized, concatenated, scaled, and dimension-reduced (1x1

convolution) to produce a fixed-length feature descriptor for each

proposal of size 512x7x7. Two fully-connected (fc) layers process

each descriptor and produce two outputs: a one-of-K class predic-

tion (“softmax”), and an adjustment to the bounding box (“bbox”).

tion. It is well known in the study of human and computer

vision that context plays an important role in visual recog-

nition [39, 28, 6]. To gather contextual information we ex-

plore the use of spatial Recurrent Neural Networks (RNNs).

These RNNs pass spatially varying contextual information

both horizontally and vertically across an image. The use of

at least two RNN layers ensures information may be propa-

gated across the entire image. We compare our approach to

other common methods for adding contextual information,

including global average pooling and additional convolu-

tional layers. Global average pooling provides information

about the entire image, similar to the features used for scene

or image classification [27, 22].

Following previous approaches [10], we use object pro-

posal detectors [17, 40, 43] to identify ROIs in an image.

Each ROI is then classified as containing one or none of

the objects of interest. Using dynamic pooling [14] we can

efficiently evaluate thousands of different candidate ROIs

with a single forwards pass of the network. For each can-

didate ROI, the multi-scale and context information is con-

catenated into a single layer and fed through several fully

connected layers for classification.

We demonstrate that both sources of additional infor-
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mation, context and multi-scale, are complementary in na-

ture. This matches our intuition that context features look

broadly across the image, while multi-scale features capture

more fine-grained details. We show large improvements on

the PASCAL VOC [7] and Microsoft COCO [24] object de-

tection datasets and provide a thorough evaluation of the

gains across different object types. We find that they are

most significant for object types that have been historically

difficult. For example, we show improved accuracy for pot-

ted plants which are often small and amongst clutter. In

general, we find that our approach is more adept at detecting

small objects than previous state-of-the-art methods. For

heavily occluded objects like chairs, gains are found when

using contextual information.

While the technical methods employed (spatial

RNNs [11, 3, 42], skip-layer connections [36, 25, 26, 13])

have precedents in the literature, we demonstrate that their

well-executed combination has an unexpectedly positive

impact on the detector’s accuracy. As always, the devil

is in the details [4] and thus our paper aims to provide a

thorough exploration of design choices and their outcomes.

Contributions. We make the following contributions:

1. We introduce the ION architecture that leverages con-

text and multi-scale skip pooling for object detection.

2. We achieve state-of-the-art results on PASCAL VOC

2007, with a mAP of 80.1%, VOC 2012, with a mAP

of 77.9%, and on COCO, with a mAP of 33.1%.

3. We conduct extensive experiments evaluating choices

like the number of layers combined, using a segmen-

tation loss, normalizing feature amplitudes, different

RNN architectures, and other variations.

4. We analyze ION’s performance and find improved ac-

curacy across the board, especially for small objects.

2. Prior work

ConvNet object detectors. ConvNets with a small num-

ber of hidden layers have been used for object detection for

the last two decades (e.g., from [41] to [36]). Until re-

cently, they were successful in restricted domains such as

face detection. Recently, deeper ConvNets have led to rad-

ical improvements in the detection of more general object

categories. This shift came about when the successful ap-

plication of deep ConvNets to image classification [22] was

transferred to object detection in the R-CNN system of Gir-

shick et al. [10] and the OverFeat system of Sermanet et

al. [35]. Our work builds on the rapidly evolving R-CNN

(“region-based convolutional neural network”) line of work.

Our experiments are conducted with Fast R-CNN [9], which

is an end-to-end trainable refinement of He et al.’s SPP-

net [14]. We discuss the relationship of our approach to

other methods later in the paper in the context of our model

description and experimental results.

Spatial RNNs. Recurrent Neural Networks (RNNs) ex-

ist in various extended forms, including bidirectional

RNNs [34] that process sequences left-to-right and right-

to-left in parallel. Beyond simple sequences, RNNs exist

in full multi-dimensional variants, such as those introduced

by Graves and Schmidhuber [11] for handwriting recogni-

tion, or as hierarchical recurrent pyramids (the Neural Ab-

straction Pyramid [2]). As a lower-complexity alternative,

[3, 42] explore running an RNN spatially (or laterally) over

a feature map in place of convolutions. In this paper, we

employ spatial RNNs as a mechanism for computing con-

textual features for use in object detection.

Skip-layer connections. Skip-layer connections are a

classic neural network idea wherein activations from a

lower layer are routed directly to a higher layer while by-

passing intermediate layers. The specifics of the wiring and

combination method differ between models and applica-

tions. Our usage of skip connections is most closely related

to those used by Sermanet et al. [36] (termed “multi-stage

features”) for pedestrian detection. Different from [36], we

find it essential to L2 normalize activations from different

layers prior to combining them.

The need for activation normalization when combin-

ing features across layers was recently noted by Liu et al.

(ParseNet [25]) in a model for semantic segmentation that

makes use of global image context features. Skip connec-

tions have also been popular in recent models for semantic

segmentation, such as the “fully convolutional networks”

in [26], and for object instance segmentation, such as the

“hypercolumn features” in [13].

3. Architecture: Inside-Outside Net (ION)

In this section we describe ION (Figure 1), a detector

with an improved descriptor both inside and outside the

ROI. We begin with a brief overview of the entire archi-

tecture, followed by specific details. To detect objects, a

single deep ConvNet processes an image, and the convolu-

tional feature maps from each layer are stored in memory.

At the top of the network, a 2x stacked 4-directional IRNN

(Figure 2, explained later) computes context features that

describe the image both globally and locally. The context

features have the same dimensions as “conv5.” This is done

once per image. In addition, we have thousands of pro-

posal regions (ROIs) that might contain objects. For each

ROI, we extract a fixed-length feature descriptor from sev-

eral layers (“conv3”, “conv4”, “conv5”, and “context fea-

tures”). The descriptors are L2-normalized, concatenated,

re-scaled, and dimension-reduced (1x1 convolution) to pro-

duce a fixed-length feature descriptor for each proposal of

size 512x7x7. Two fully-connected (FC) layers process

each descriptor and produce two outputs: a one-of-K ob-

ject class prediction (“softmax”), and an adjustment to the
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Figure 2. Four-directional IRNN architecture. We use “IRNN” units [23] which are RNNs with ReLU recurrent transitions, initialized

to the identity. All transitions to/from the hidden state are computed with 1x1 convolutions, which allows us to compute the recurrence

more efficiently (Eq. 1). When computing the context features, the spatial resolution remains the same throughout (same as conv5). The

semantic segmentation regularizer has a 16x higher resolution; it is optional and gives a small improvement of around +1 mAP point.

proposal region’s bounding box (“bbox”). The rest of this

section explains the details of ION and motivates why we

chose this particular architecture.

3.1. Pooling from multiple layers

Recent successful detectors such as Fast R-CNN, Faster

R-CNN [32], and SPPnet, all pool from the last convolu-

tional layer (“conv5 3”) in VGG16 [37]. In order to extend

this to multiple layers, we must consider issues of dimen-

sionality and amplitude.

Since we know that pre-training on ImageNet is im-

portant to achieve state-of-the-art performance [1], and

we would like to use the previously trained VGG16 net-

work [37], it is important to preserve the existing layer

shapes. Therefore, if we want to pool out of more layers,

the final feature must also be shape 512x7x7 so that it is

the correct shape to feed into the first fully-connected layer

(fc6). In addition to matching the original shape, we must

also match the original activation amplitudes, so that we can

feed our feature into fc6.

To match the required 512x7x7 shape, we concatenate

each pooled feature along the channel axis and reduce the

dimension with a 1x1 convolution. To match the original

amplitudes, we L2 normalize each pooled ROI and re-scale

back up by an empirically determined scale. Our experi-

ments use a “scale layer” with a learnable per-channel scale

initialized to 1000 (measured on the training set). We later

show in Section 5.2 that a fixed scale works just as well.

As a final note, as more features are concatenated to-

gether, we need to correspondingly decrease the initial

weight magnitudes of the 1x1 convolution, so we use

“Xavier” initialization [38].

3.2. Context features with IRNNs

Our architecture for computing context features in ION

is shown in more detail in Figure 2. On top of the last convo-

lutional layer (conv5), we place RNNs that move laterally

across the image. Traditionally, an RNN moves left-to-right

along a sequence, consuming an input at every step, updat-

ing its hidden state, and producing an output. We extend

this to two dimensions by placing an RNN along each row

and along each column of the image. We have four RNNs in

total that move in the cardinal directions: right, left, down,

up. The RNNs sit on top of conv5 and produce an output

with the same shape as conv5.

There are many possible forms of recurrent neural net-

works that we could use: gated recurrent units (GRU) [5],

long short-term memory (LSTM) [15], and plain tanh re-

current neural networks. In this paper, we explore RNNs

composed of rectified linear units (ReLU). Le et al. [23]

recently showed that these networks are easy to train and

are good at modeling long-range dependencies, if the recur-

rent weight matrix is initialized to the identity matrix. This

means that at initialization, gradients are propagated back-

wards with full strength. Le et al. [23] call a ReLU RNN

initialized this way an “IRNN,” and show that it performs

almost as well as an LSTM for a real-world language mod-

eling task, and better than an LSTM for a toy memory prob-

lem. We adopt this architecture because it is very simple to

implement and parallelize, and is much faster than LSTMs

or GRUs to compute.

For our problem, we have four independent IRNNs that

move in four directions. To implement the IRNNs as effi-

ciently as possible, we split the internal IRNN computations

into separate logical layers. Viewed this way, we can see

that the input-to-hidden transition is a 1x1 convolution, and

that it can be shared across different directions. Sharing this

transition allows us to remove 6 conv layers in total with a

negligible effect on accuracy (−0.1 mAP). The bias can be

shared in the same way, and merged into the 1x1 conv layer.

The IRNN layer now only needs to apply the recurrent ma-

trix and apply the nonlinearity at each step. The output from
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Figure 3. Interpretation of the first IRNN output. Each cell in the

output summarizes the features to the left/right/top/bottom.

the IRNN is computed by concatenating the hidden state

from the four directions at each spatial location.

This is the update for an IRNN that moves to the right;

similar equations exist for the other directions:

h
right
i,j ← max

(

W
right

hh h
right
i,j−1

+ h
right
i,j , 0

)

. (1)

Notice that the input is not explicitly shown in the equa-

tion, and there is no input-to-hidden transition. This is be-

cause it was computed as part of the 1x1 input-to-hidden

convolution, and then copied in-place to each hidden layer.

For each direction, we can compute all of the independent

rows/columns in parallel, stepping all IRNNs together with

a single matrix multiply. On a GPU, this results in large

speedups compared to computing the RNN cells one by one.

We also explore using semantic segmentation labels to

regularize the IRNN output. When using these labels, we

add the deconvolution and crop layer as implemented by

Long et al. [26]. The deconvolution upsamples by 16x with

a 32x32 kernel, and we add an extra softmax loss layer with

a weight of 1. This is evaluated in Section 5.3.

Variants and simplifications. We explore several further

simplifications.

1. We fixed the hidden transition matrix to the identity

W
right

hh = I , which allows us to entirely remove it:

h
right
i,j ← max

(

h
right
i,j−1

+ h
right
i,j , 0

)

. (2)

This is like an accumulator, but with ReLU after each

step. In Section 5.5 we show that removing the recur-

rent matrix has a surprisingly small impact.

2. To prevent overfitting, we include dropout layers (p =

0.25) after each concat layer in all experiments. We

later found that in fact the model is underfitting and

there is no need for dropout anywhere in the network.

3. Finally, we trained a separate bias b0 for the first step

in the RNN in each direction. However, since it tends

to remain near zero after training, this component is

not really necessary.

Interpretation. After the first 4-directional IRNN (out of

the two IRNNs), we obtain a feature map that summarizes

nearby objects at every position in the image. As illustrated

in Figure 3, we can see that the first IRNN creates a sum-

mary of the features to the left/right/top/bottom of every

cell. The subsequent 1x1 convolution then mixes this in-

formation together as a dimension reduction.

After the second 4-directional IRNN, every cell on the

output depends on every cell of the input. In this way, our

context features are both global and local. The features vary

by spatial position, and each cell is a global summary of the

image with respect to that specific spatial location.

4. Results

We train and evaluate our dataset on three major datasets:

PASCAL VOC2007 [7], VOC2012, and on MS COCO [24].

We demonstrate state-of-the-art results on all three datasets.

4.1. Experimental setup

All of our experiments use Fast R-CNN [9] built on the

Caffe [18] framework, and the VGG16 architecture [37],

all of which are available online. As is common prac-

tice, we use the publicly available weights pre-trained on

ILSVRC2012 [33] downloaded from the Caffe Model Zoo.1

We make some changes to Fast R-CNN, which give a

small improvement over the baseline. We use 4 images per

mini-batch, implemented as 4 forward/backward passes of

single image mini-batches, with gradient accumulation. We

sample 128 ROIs per image leading to 512 ROIs per model

update. We measure the L2 norm of the parameter gradi-

ent vector and rescale it if its norm is above 20 (80 when

accumulating over 4 images).

To accelerate training, we use a two-stage schedule. As

noted by Girshick [9], it is not necessary to fine-tune all

layers, and nearly the same performance can be achieved

by fine-tuning starting from conv3 1. With this in mind, we

first train for 40k iterations with conv1 1 through conv5 3

frozen, and then another 100k iterations with only conv1 1

through conv2 2 frozen. All other layers are fine-tuned.

When training for COCO, we use 80k and 320k iterations

respectively. We found that shorter training schedules are

not enough to fully converge.

We also use a different learning rate (LR) schedule. The

LR exponentially decays from 5 · 10−3 to 10−4 in the first

stage, and from 10−3 to 10−5 in the second stage. To re-

duce the effect of random variation, we fix the random seed

so that all variants see the same images in the same order.

For PASCAL VOC we use the same pre-computed selective

search boxes from Fast R-CNN, and for COCO we use the

boxes precomputed by Hosang et al. [17]. Finally, we mod-

ified the test thresholds in Fast R-CNN so that we keep only

boxes with a softmax score above 0.05, and keep at most

100 boxes per image.

1https://github.com/BVLC/caffe/wiki/Model-Zoo
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Method Boxes R W D Train Time mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN [9] SS 07+12 0.3s 70.0 77.0 78.1 69.3 59.4 38.3 81.6 78.6 86.7 42.8 78.8 68.9 84.7 82.0 76.6 69.9 31.8 70.1 74.8 80.4 70.4

Faster [32] RPN 07+12 0.2s 73.2 76.5 79.0 70.9 65.5 52.1 83.1 84.7 86.4 52.0 81.9 65.7 84.8 84.6 77.5 76.7 38.8 73.6 73.9 83.0 72.6

MR-CNN [8] SS+EB X 07+12 30s 78.2 80.3 84.1 78.5 70.8 68.5 88.0 85.9 87.8 60.3 85.2 73.7 87.2 86.5 85.0 76.4 48.5 76.3 75.5 85.0 81.0

ION [ours] SS 07+12 0.8s 74.6 78.2 79.1 76.8 61.5 54.7 81.9 84.3 88.3 53.1 78.3 71.6 85.9 84.8 81.6 74.3 45.6 75.3 72.1 82.6 81.4

ION [ours] SS X 07+12 0.8s 75.6 79.2 83.1 77.6 65.6 54.9 85.4 85.1 87.0 54.4 80.6 73.8 85.3 82.2 82.2 74.4 47.1 75.8 72.7 84.2 80.4

ION [ours] SS X X X 07+12 1.2s 77.6 79.7 83.4 78.1 65.7 62.0 86.5 85.8 88.8 60.2 83.4 75.1 86.5 87.3 82.1 79.7 48.3 77.0 75.3 85.3 82.4

ION [ours] SS+EB X X X 07+12 2.0s 79.4 82.5 86.2 79.9 71.3 67.2 88.6 87.5 88.7 60.8 84.7 72.3 87.6 87.7 83.6 82.1 53.8 81.9 74.9 85.8 81.2

ION [ours] SS X 07+12+S 0.8s 76.5 79.2 79.2 77.4 69.8 55.7 85.2 84.2 89.8 57.5 78.5 73.8 87.8 85.9 81.3 75.3 49.7 76.9 74.6 85.2 82.1

ION [ours] SS X X 07+12+S 1.2s 78.5 80.2 84.7 78.8 72.4 61.9 86.2 86.7 89.5 59.1 84.1 74.7 88.9 86.9 81.3 80.0 50.9 80.4 74.1 86.6 83.3

ION [ours] SS X X X 07+12+S 1.2s 79.2 80.2 85.2 78.8 70.9 62.6 86.6 86.9 89.8 61.7 86.9 76.5 88.4 87.5 83.4 80.5 52.4 78.1 77.2 86.9 83.5

ION [ours] SS+EB X X X 07+12+S 2.0s 80.1 84.2 87.2 82.1 74.8 67.1 85.0 88.0 89.3 60.4 86.1 76.3 88.7 86.3 83.5 82.2 55.5 80.5 75.3 86.5 83.3

Table 1. Detection results on VOC 2007 test. Legend: 07+12: 07 trainval + 12 trainval, 07+12+S: 07+12 plus SBD segmentation

labels [12], R: include 2x stacked 4-dir IRNN (context features), W: two rounds of box regression and weighted voting [8], D: remove all

dropout, SS: SelectiveSearch [40], EB: EdgeBoxes [43], RPN: region proposal net. [32], Time: per image, excluding proposal generation.

Method Boxes R W D Train mAP aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv

FRCN [9] SS 07++12 68.4 82.3 78.4 70.8 52.3 38.7 77.8 71.6 89.3 44.2 73.0 55.0 87.5 80.5 80.8 72.0 35.1 68.3 65.7 80.4 64.2

Faster [32] RPN 07++12 70.4 84.9 79.8 74.3 53.9 49.8 77.5 75.9 88.5 45.6 77.1 55.3 86.9 81.7 80.9 79.6 40.1 72.6 60.9 81.2 61.5

FRCN+YOLO [31] SS 07++12 70.4 83.0 78.5 73.7 55.8 43.1 78.3 73.0 89.2 49.1 74.3 56.6 87.2 80.5 80.5 74.7 42.1 70.8 68.3 81.5 67.0

HyperNet [21] RPN 07++12 71.4 84.2 78.5 73.6 55.6 53.7 78.7 79.8 87.7 49.6 74.9 52.1 86.0 81.7 83.3 81.8 48.6 73.5 59.4 79.9 65.7

MR-CNN [8] SS+EB X 07+12 73.9 85.5 82.9 76.6 57.8 62.7 79.4 77.2 86.6 55.0 79.1 62.2 87.0 83.4 84.7 78.9 45.3 73.4 65.8 80.3 74.0

ION [ours] SS X X X 07+12 74.7 86.9 84.5 75.2 58.2 57.7 80.5 78.3 90.4 54.4 79.9 60.5 88.4 83.0 83.0 81.2 50.7 77.3 67.6 83.5 72.3

ION [ours] SS+EB X X X 07+12 76.4 88.0 84.6 77.7 63.7 63.6 80.8 80.8 90.9 55.5 81.9 60.9 89.1 84.9 84.2 83.9 53.2 79.8 67.4 84.4 72.9

ION [ours] SS X X X 07+12+S 76.4 87.5 84.7 76.8 63.8 58.3 82.6 79.0 90.9 57.8 82.0 64.7 88.9 86.5 84.7 82.3 51.4 78.2 69.2 85.2 73.5

ION [ours] SS+EB X X X 07+12+S 77.9 88.3 85.7 80.5 67.2 63.6 82.5 82.0 91.4 58.2 84.1 65.3 90.1 87.3 85.0 84.4 53.6 80.7 69.1 84.6 74.7

Table 2. Detection results on VOC 2012 test. Legend: 07+12: 07 trainval + 12 trainval, 07++12: 07 trainvaltest + 12 trainval, 07+12+S:

07+12 plus SBD segmentation labels [12], R: include 2x stacked 4-dir IRNN (context features), W: two rounds of bounding box regression

and weighted voting [8], D: remove all dropout, SS: SelectiveSearch [40], EB: EdgeBoxes [43], RPN: region proposal network [32].

Method Boxes RW D Train
Avg. Precision, IoU: Avg. Precision, Area: Avg. Recall, # Dets: Avg. Recall, Area:

0.5:0.95 0.50 0.75 Small Med. Large 1 10 100 Small Med. Large

FRCN [9]* SS train 20.5 39.9 19.4 4.1 20.0 35.8 21.3 29.5 30.1 7.3 32.1 52.0
FRCN [9]* SS X train 20.0 40.3 18.1 4.1 19.6 34.5 20.8 29.1 29.8 7.4 31.9 50.9

ION [ours] SS X train 23.0 42.0 23.0 6.0 23.8 37.3 23.0 32.4 33.0 9.7 37.0 53.5
ION [ours] SS X X train 23.6 43.2 23.6 6.4 24.1 38.3 23.2 32.7 33.5 10.1 37.7 53.6
ION [ours] SS X X train+S 24.9 44.7 25.3 7.0 26.1 40.1 23.9 33.5 34.1 10.7 38.8 54.1
ION [ours] SS XX X train+S 24.6 46.3 23.3 7.4 26.2 38.8 23.7 33.9 34.6 11.7 40.0 53.8

ION comp.† MCG+RPN XX X trainval35k+S 31.2 53.4 32.3 12.8 32.9 45.2 27.8 43.1 45.6 23.6 50.0 63.2

ION post.† MCG+RPN XX X trainval35k+S 33.1 55.7 34.6 14.5 35.2 47.2 28.9 44.8 47.4 25.5 52.4 64.3

Table 3. Detection results on COCO 2015 test-dev. Legend: R: include 2x stacked 4-dir IRNN (context features), W: two rounds of

bounding box regression and weighted voting [8], D: remove all dropout, +S: train with segmentation labels, SS: SelectiveSearch [40],

MCG: MCG proposals [30], RPN: region proposal net [32]. †Our submission to the 2015 MS COCO Detection Competition, and

post-competition improvements, described in the Supplemental. *These scores are higher than [9] due to our improved hyperparameters.

When re-running the baseline Fast R-CNN using the

above settings, we see a +0.8 mAP improvement over the

original settings on VOC 2007 test. We compare against

the baseline using our improved settings where possible.

4.2. PASCAL VOC 2007

As shown in Table 1, we evaluate our detector (ION) on

PASCAL VOC 2007, training on the VOC 2007 trainval

dataset merged with the 2012 trainval dataset, a common

practice. Applying our method described above, we obtain

a mAP of 76.5%. We then make some simple modifications,

as described below, to achieve a higher score of 79.2%.

MR-CNN [8] introduces a bounding box regression

scheme to improve results on VOC, where bounding boxes

are evaluated twice: (1) the initial proposal boxes are eval-

uated and regressed to improved locations and then (2) the

improved locations are passed again through the network.

All boxes are accumulated together, and non-max supres-

sion is applied. Finally, a weighted vote is computed for

each kept box (over all boxes, including those suppressed),

where boxes that overlap a kept box by at least 0.5 IoU con-

tribute to the average. For our method, we use the soft-

max scores as the weights. When adding this scheme to our

method, our mAP rises from 76.5% to 78.5%. Finally, we
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Extra-small Objects

Medium Objects

Extra-large Objects

Figure 4. VOC 2007 normalized AP by size. Left to right: in-

creasing complexity. Left-most bar in each group: Fast R-CNN;

right-most bar: our best model that achieves 79.2% mAP on VOC

2007 test. Our detector has a particularly large improvement for

small objects. See Hoiem [16] for details on these metrics.

observed that our models are underfitting and we remove

dropout from all layers to get a further gain up to 79.2%.

For a direct comparison to MR-CNN, we also trained our

method on both SelectiveSearch [40] and EdgeBoxes [43]

(SS+EB) but not segmentation labels. With these settings,

we achieve 79.4% mAP with a runtime of 2s/image,2 while

MR-CNN achieves 78.2% mAP at 30s/image. See Table 1.

4.3. PASCAL VOC 2012

We also evaluate on the slightly more challenging VOC

2012 dataset, submitting to the public evaluation server.3 In

Table 2, we show the top methods on the public leaderboard

as of the time of submission. Our detector obtains a mAP

of 76.4%, which is several points higher than the next best

submission, and is the most accurate for most categories.

4.4. MS COCO

Microsoft has recently released the Common Objects in

Context dataset, which contains 80k training images (“2014

train”) and 40k validation images (“2014 val”). There is

an associated MS COCO challenge with a new evaluation

metric, that averages mAP over different IoU thresholds,

from 0.5 to 0.95 (written as “0.5:0.95”). This places a sig-

nificantly larger emphasis on localization compared to the

PASCAL VOC metric which only requires IoU of 0.5.

We are only aware of one baseline performance num-

ber for this dataset, as published in the Fast R-CNN paper,

which cites a mAP of 19.7% on the 2015 test-dev set [9].

2On a single Titan X GPU, excluding proposal generation
3Anonymous URL: http://host.robots.ox.ac.uk:8080/anonymous/B3VFLE.html

We trained our own Fast R-CNN model on “2014 train” us-

ing our longer training schedule and obtained a higher mAP

of 20.5% mAP on the same set, which we use as a baseline.

As shown in Table 3, when trained on the same images with

the same schedule, our method obtains a large improvement

over the baseline with a mAP of 24.9%.

Applying box voting [8] gives us a further improvement

(+1.6 mAP) on the original PASCAL VOC metric (IoU 0.5),

but interestingly decreases performance (-0.3 mAP) on the

new COCO metric (IOU 0.5:0.95). We note that this effect

is entirely due to the change in metric, which weights local-

ization errors differently. As described in the Supplemental,

we fixed this for our competition submission by raising the

box voting IoU threshold from 0.5 to ∼ 0.85.

We submitted ION to the 2015 MS COCO Detection

Challenge and won the Best Student Entry with 3rd place

overall. Using only a single model (no ensembling), our

submission achieved 31.0% on test-competition score and

31.2% on test-dev score (Table 3). After the competition,

we further improved our test-dev score to 33.1% by adding

left-right flipping and adjusting training parameters. See the

Supplemental for details on our challenge submission.

4.5. Improvement for small objects

In general, small objects are challenging for detectors:

there are fewer pixels on the object, they are harder to lo-

calize, and there can be many more of them per image.

Small objects are even more challenging for proposal meth-

ods. For all experiments, we are using selective search [40]

for object proposals, which performs very poorly on small

objects in COCO with an average recall under 10% [29].

We find that our detector shows a large relative improve-

ment in this category. For COCO, if we look at small4 ob-

jects, average precision and average recall improve from

4.1% to 7.0% and from 7.3% to 10.7% respectively. We

highlight that this is even higher than the baseline proposal

method, which is only possible because we perform bound-

ing box regression to predict improved box locations. Sim-

ilarly, we show a size breakdown for VOC2007 test in Fig-

ure 4 using Hoiem’s toolkit for diagnosing errors [16], and

see similarly large improvements on this dataset as well.

5. Design evaluation

In this section, we explore changes to our architecture

and justify our design choices with experiments on PAS-

CAL VOC 2007. All numbers in this section are VOC 2007

test mAP, trained on 2007 trainval + 2012 trainval, with the

settings described in Section 4.1. Note that for this sec-

tion, we use dropout in all networks, and a single round of

bounding box regression at test time.

4“Small” means area ≤ 32
2 px; about 40% of COCO is “small.”
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ROI pooling from: Merge features using:

C2 C3 C4 C5 1x1 L2+Scale+1x1

X *70.8 71.5

X X 69.7 74.4

X X X 63.6 74.6

X X X X 59.3 74.6

Table 4. Combining features from different layers. Metric: De-

tection mAP on VOC07 test. Training set: 07 trainval + 12 train-

val. 1x1: combine features from different layers using a 1x1 con-

volution. L2+Scale+1x1: use L2 normalization, scaling (initial-

ized to 1000), and 1x1 convolution, as described in section 3.1.

These results do not include “context features.” *This entry is the

same as Fast R-CNN [9], but trained with our hyperparameters.

L2 Normalization method Seg.
Scale:

Learned Fixed

Sum across channels X 76.4 76.2

Sum over all entries X 76.5 76.6

Table 5. Approaches to normalizing feature amplitude. Metric:

VOC07 test mAP. All items regularized with segmentation labels.

5.1. Pool from which layers?

As described in Section 3.1, our detector pools regions

of interest (ROI) from multiple layers and combines the re-

sult. A straightforward approach would be to concatenate

the ROI from each layer and reduce the dimensionality us-

ing a 1x1 convolution. As shown in Table 4 (left column),

this does not work. In VGG16, the convolutional features at

different layers can have very different amplitudes, so that

naively combining them leads to unstable learning. While it

is possible in theory to learn a model with inputs of very dif-

ferent amplitude, this is ill-conditioned and does not work

well in practice. It is necessary to normalize the amplitude

such that the features being pooled from all layers have sim-

ilar magnitude. Our method’s normalization scheme fixes

this problem, as shown in Table 4 (right column).

5.2. How should we normalize feature amplitude?

When performing L2 normalization, there are a few

choices to be made: do you sum over channels and perform

one normalization per spatial location (as in ParseNet [25]),

or should you sum over all entries in each pooled ROI and

normalize it as a single blob. Further, when re-scaling the

features back to an fc6-compatible magnitude, should you

use a fixed scale or should you learn a scale per channel?

The reason why you might want to learn a scale per channel

is that you get more sharing than you would if you relied on

the 1x1 convolution to model the scale. We evaluate this in

Table 5, and find that all of these approaches perform about

the same, and the distinction doesn’t matter for this prob-

lem. The important aspect is whether amplitude is taken

into account; the different schemes we explored in Table 5

ROI pooling from: Use seg. loss?

C2 C3 C4 C5 IRNN No Yes

X 69.9 70.6

X X 73.9 74.2

X X X 75.1 76.2

X X X X 75.6 76.5

X X X X X 74.9 76.8

Table 6. Effect of segmentation loss. Metric: detection mAP on

VOC07 test. Adding segmentation loss tends to improve detection

performance by about 1 mAP, with no test-time penalty.

are all roughly equivalent in performance.

To determine the initial scale, we measure the mean scale

of features pooled from conv5 on the training set, and use

that as the fixed scale. Using Fast R-CNN, we measured the

mean norm to be approximately 1000 when summing over

all entries, and 130 when summing across channels.

5.3. How much does segmentation loss help?

Although our target task is object detection, many

datasets also have semantic segmentation labels, where the

object class of every pixel is labeled. Many images in PAS-

CAL VOC and every image in COCO has these labels. This

is valuable information that can be incorporated into a train-

ing algorithm to improve performance.

As shown in Figure 2, when adding stacked IRNNs it is

possible to have them also predict a semantic segmentation

output—a multitask setup. In Table 6, we see that these

extra labels consistently provide about a +1 point boost in

mAP for object detection. This is because we are training

the network with more bits of supervision, so even though

we are adding extra labels that we do not care about dur-

ing inference, the features inside the network are trained to

contain more information than they would have otherwise if

only trained on object detection. Since this is an extra layer

used only for training, we can drop the layer at test time and

get a +1 mAP point boost with no change in runtime.

5.4. How should we incorporate context?

While RNNs are a powerful mechanism of incorporat-

ing context, they are not the only method. For example, one

could simply add more convolutional layers on top of conv5

and then pool out of the top convolutional layer. As shown

in Figure 5, stacked 3x3 convolutions add two cells worth of

context, and stacked 5x5 convolutions add 4 cells. Alterna-

tively, one could use a global average and unpool (tile or re-

peat spatially) back to the original shape as in ParseNet [25].

We compared these approaches on VOC 2007 test,

shown in Table 7. The 2x stacked 4-dir IRNN layers have

fewer parameters than the alternatives, and perform better

on the test set (both with and without segmentation labels).

Therefore, we use this architecture to compute “context fea-

tures” for all other experiments.
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(a) two stacked 3x3 convolution layers

(d) two 4-direction IRNN layers

conv5 3x3 conv 3x3 conv

conv5 4-dir IRNN 4-dir IRNN

(b) two stacked 5x5 convolution layers

conv5 5x5 conv 5x5 conv

(c) global averaging and unpooling

conv5 unpool (tiling)global

average

Figure 5. Receptive field of different layer types. When consid-

ering a single cell in the input, what output cells depend on it? (a)

If we add two stacked 3x3 convolutions on top of conv5, then a

cell in the input influences a 5x5 window in the output. (b) Sim-

ilarly, for a 5x5 convolution, one cell influences a 9x9 window in

the output. (c) For global average pooling, every cell in the out-

put depends on the entire input, but the output is the same value

repeated. (d) For IRNNs, every cell in the output depends on the

entire input, but also varies spatially.

Context method Seg. mAP

(a) 2x stacked 512x3x3 conv 74.8

(b) 2x stacked 256x5x5 conv 74.6

(c) Global average pooling 74.9

(d) 2x stacked 4-dir IRNN 75.6

(a) 2x stacked 512x3x3 conv X 75.2

(d) 2x stacked 4-dir IRNN X 76.5

Table 7. Comparing approaches to adding context. All rows

also pool out of conv3, conv4, and conv5. Metric: detection mAP

on VOC07 test. Seg: if checked, the top layer received extra su-

pervision from semantic segmentation labels.

5.5. Which IRNN architecture?

When designing the IRNN for incorporating context,

there are a few basic decisions to be made, namely how

many layers and how many hidden units per layer. In ad-

dition, we explore the idea of entirely removing the recur-

rent transition (equivalent to replacing it with the identity

matrix), so that the IRNN consist of repeated steps of: ac-

cumulate, ReLU, accumulate, etc. Note that this is not the

same as an integral/area image, since each step has ReLU.

As shown in Table 8, the number of hidden units does

not have a strong effect on the performance (Table 8), so we

choose 512 as the baseline size for all other experiments. In

the Supplemental, we include additional experiments show-

ing that 2 IRNN layers is optimal on VOC 2007 test. While

stacking more convolution layers tends to make ConvNets

perform better, the same is not always true for RNNs [19].

Finally, we were surprised to discover that removing

the recurrent Whh transition performs almost as well as

learning it (Table 8). It seems that the input-to-hidden and

hidden-to-output connections contain sufficient context that

ROI pooling from:
Seg. # units

Include Whh?

C3 C4 C5 IRNN Yes No

X X X X X 128 76.4 75.5

X X X X X 256 76.5 75.3

X X X X X 512 76.5 76.1

X X X X X 1024 76.2 76.4

Table 8. Varying the hidden transition. We vary the number of

units and try either learning recurrent transition Whh initialized

to the identity, or entirely removing it (same as setting Whh = I).

Variation mAP

Our method 76.5

(a) Left-right then up-down 76.5

(b) Pool out of both IRNNs 75.9

(c) Combine 2x stacked 512x3x3 conv and IRNN 76.5

Table 9. Other variations. Metric: VOC07 test mAP. We list

some other variations that all perform about the same.

the recurrent transition can be removed and replaced with

an addition, saving a large matrix multiply.

5.6. Other variations

There are some other variations on our architecture

that perform almost as well, which we summarize in Ta-

ble 9. For example, (a) the first IRNN only processes

two directions left/right and the second IRNN only pro-

cesses up/down. This kind of operation was explored in

ReNet [42] and performs the same as modeling all four di-

rections in both IRNN layers. We also explored (b) pooling

out of both IRNNs, and (c) pooling out of both stacked con-

volutions and the IRNNs. None of these variations perform

better than our main method.

6. Conclusion

This paper introduces the Inside-Outside Net (ION), an

architecture that leverages context and multi-scale knowl-

edge for object detection. Our architecture uses a 2x stacked

4-directional IRNN for context, and multi-layer ROI pool-

ing with normalization for improved object description. To

justify our design choices, we conducted extensive exper-

iments evaluating choices like the number of layers com-

bined, using segmentation loss, normalizing feature ampli-

tudes, different IRNN architectures, and other variations.

We achieve state-of-the-art results on both PASCAL VOC

and COCO, and find our proposed architecture is particu-

larly effective at improving detection of small objects.
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[30] J. Pont-Tuset, P. Arbeláez, J. Barron, F. Marques, and J. Ma-

lik. Multiscale combinatorial grouping for image segmenta-

tion and object proposal generation. In arXiv:1503.00848,

March 2015. 5

[31] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You

only look once: Unified, real-time object detection. arXiv

preprint arXiv:1506.02640, 2015. 5

[32] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: To-

wards real-time object detection with region proposal net-

works. In NIPS, 2015. 1, 3, 5

[33] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual

Recognition Challenge. arXiv preprint arXiv:1409.0575,

2014. 4

[34] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural

networks. IEEE Transactions on Signal Processing, 1997. 2

[35] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus,

and Y. LeCun. OverFeat: Integrated Recognition, Localiza-

tion and Detection using Convolutional Networks. In ICLR,

2014. 2

[36] P. Sermanet, K. Kavukcuoglu, S. Chintala, and Y. LeCun.

Pedestrian detection with unsupervised multi-stage feature

learning. In CVPR, 2013. 1, 2

[37] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In ICLR, 2015.

1, 3, 4

[38] U. the difficulty of training deep feedforward neural net-

works. Xavier glorot and yoshua bengio. In AISTATS, 2010.

3

2882



[39] A. Torralba. Contextual priming for object detection. IJCV,

2003. 1

[40] J. Uijlings, K. van de Sande, T. Gevers, and A. Smeulders.

Selective search for object recognition. IJCV, 2013. 1, 5, 6

[41] R. Vaillant, C. Monrocq, and Y. LeCun. Original approach

for the localisation of objects in images. IEE Proc. on Vision,

Image, and Signal Processing, 1994. 2

[42] F. Visin, K. Kastner, K. Cho, M. Matteucci, A. Courville,

and Y. Bengio. ReNet: A recurrent neural network

based alternative to convolutional networks. arXiv e-prints,

arXiv:1505.00393 [cs.CV], 2015. 2, 8

[43] C. L. Zitnick and P. Dollár. Edge boxes: Locating object

proposals from edges. In ECCV, 2014. 1, 5, 6

2883


