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Abstract

Event cameras are bio-inspired vision sensors which

mimic retinas to measure per-pixel intensity change rather

than outputting an actual intensity image. This proposed

paradigm shift away from traditional frame cameras of-

fers significant potential advantages: namely avoiding high

data rates, dynamic range limitations and motion blur.

Unfortunately, however, established computer vision algo-

rithms may not at all be applied directly to event cameras.

Methods proposed so far to reconstruct images, estimate

optical flow, track a camera and reconstruct a scene come

with severe restrictions on the environment or on the mo-

tion of the camera, e.g. allowing only rotation. Here, we

propose, to the best of our knowledge, the first algorithm to

simultaneously recover the motion field and brightness im-

age, while the camera undergoes a generic motion through

any scene. Our approach employs minimisation of a cost

function that contains the asynchronous event data as well

as spatial and temporal regularisation within a sliding win-

dow time interval. Our implementation relies on GPU opti-

misation and runs in near real-time. In a series of examples,

we demonstrate the successful operation of our framework,

including in situations where conventional cameras suffer

from dynamic range limitations and motion blur.

1. Introduction

The ‘silicon retina’ or event camera appears to offer

enormous potential for a new level of performance in real-

time geometric vision, and in the longer term a drive to-

wards dramatically more efficient algorithms. It discards

the frame-based paradigm of standard cameras and instead

adopts a bio-inspired approach of independent and asyn-

chronous pixel brightness change measurement. The highly

appealing promise is that all of the information contained

in a standard video stream of tens or more Megabytes of

data per second is present in a natural and much compressed

event stream of only tens or hundreds of kilobytes per sec-

(a) Raw event camera output (b) Standard camera image

(c) Intensity estimate from events (d) Optical flow from events

Figure 1: Results from our method: (a) integrated output of

a DVS128 event camera; (b) the same scene from a standard

camera. (c) and (d) show a snapshots of the intensity and

velocity fields we estimate jointly only from event data. A

color-wheel is used to show the velocity per pixel.

ond — all of the redundancy of sending regular, unchanging

values where motion and intensity change is small is re-

moved. As systems like LSD-SLAM [8] very clearly high-

light, pixels where edges move are the only ones which give

information useful for tracking and reconstruction, and it is

precisely these locations which are highlighted in hardware

by an event camera. On top of this, the pixels of an event
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(a) Event camera output (b) Standard camera image

Figure 2: Desktop scene captured by an event camera (a)

and a standard camera (b). The event camera image is

an accumulation of all events during a period of 33 ms,

where white and black pixels represents positive and neg-

ative events. Areas where no event has fired are grey.

camera with their low latency, microsecond-timestamped

response and shutter-free independent intensity measure-

ment offer the prospect of extreme high speed tracking and

management of high dynamic range scenes.

However, since the original invention of the silicon

retina [14] and the release by iniLabs of the Dynamic Vision

Sensor (DVS) [13] as a research device several years ago,

adoption of these cameras by the wider computer vision

community has been minor. Standard vision algorithms

simply do not transfer to an event camera. Traditional cam-

eras capture images: synchronous intensity measurements;

but events are asynchronous reports of local intensity dif-

ference, and there is no global or persistent measurement of

intensity which would permit normal approaches to corre-

spondence to be used (feature extraction, patch alignment).

In this paper we take a significant step towards prov-

ing the general potential of event cameras for motion and

structure estimation by presenting the first algorithm which

simultaneously estimates scene intensity and motion with

minimal assumptions about the type of scene and motion.

2. Related Work

‘Optical Flow’ is in the title of our paper, because a key

goal is to recover a generic motion field from camera data,

but it is important to clarify the difference between the com-

mon understanding of this term in computer vision and the

rather different type of estimation our algorithm achieves.

Optical flow is normally understood as the correspondence

field between two temporally close intensity images — an

estimation of two parameters per pixel, the horizontal and

vertical displacement between one frame and the next. In

our case, we use the time stream of event data to estimate

a continuously varying motion field at any time resolution.

Therefore, it is more precise to say that we estimate a con-

tinuously time-varying velocity field in image coordinates.

Measuring velocity as a camera observes an arbitrary

moving scene requires and implies knowledge of the corre-

spondence between entities at different points in time, and

this is where we face a particular challenge when the only

input is event data which does not directly record image in-

tensity or even oriented edges. We can only interpret an

event as a measurement of motion if we know about the

intensity gradient in the scene; but on the contrary we can

only interpret it as a measurement of intensity gradient if

we know the motion. Therefore, we must formulate a joint

estimation problem to recover both motion and intensity to-

gether. We will show that weak assumptions about regu-

larity in the overall solutions for motion and intensity are

enough to allow this.

Previous computer vision work using event cameras,

both the DVS and the related Asynchronous Time-based

Image Sensor (ATIS) [19], has not aimed at such generic

estimation, but instead focused on reduced problems. The

first examples presented of the use of the DVS were for the

tracking of simple objects to enable reactive robotic control

(e.g.ball blocking [7] or pencil balancing [5]), highlighting

the new level of performance enabled by the event camera’s

extremely low latency. Object tracking tasks like these have

generally been tackled from a static camera using template

fitting, or even more simply by finding the mean pixel co-

ordinates of current event activity. These methods do not

extend to tracking the independent motion of multiple, vari-

able and highly textured objects.

Increasingly, authors have attempted to apply event cam-

eras to more sophisticated vision tasks. In [15] an event

camera was used to estimate the rapid motion of a quad-

copter by using events to track a known target at low la-

tency. Extending this, in [3] the image from a standard

CMOS camera was used to provide a target for event track-

ing to produce a visual odometry system. Neither of these

systems performed intensity reconstruction from event data.

The pieces of work which are most closely related to our

approach are Benosman et al.’s optical flow estimation tech-

nique [1] and Kim et al.’s work on Simultaneous mosaicing

and tracking [12]. In [1] the authors recovered a motion

field without explicitly estimating image intensity, by as-

suming that events which fire spatially and temporally close

to each other can be put into correspondence and locally fit-

ting spatiotemporal planes to these. In a scene with sharp

edges and monochromatic blocks this works well, but this

approach has trouble in more complicated environments.

After some initial work by Cook et al. on integrating

events into interacting maps [6], Kim et al. [12] demon-

strated the first true high quality joint estimation of scene

intensity and motion from event data, but under the strong

assumption that the only movement is due to pure cam-
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era rotation in an otherwise static scene. They were able

to demonstrate high quality intensity recovery, including

super-resolution and HDR aspects, from purely event data.

It was these results in particular which inspired us to work

towards more generic estimation.

3. Method

Our algorithm is formulated as sliding window varia-

tional optimisation, and has much in common with well

known variational methods for estimating two-view optical

flow from standard video [11, 24]. We pre-define an optimi-

sation time window T , and within this a fine time discretisa-

tion δt. We take all of the events in time window T as input

and solve jointly for the velocity field u and log intensity

L at all cells in the associated spatio-temporal volume. We

then slide the optimisation forward to a highly overlapping

position, initialising the values of all cells to either previous

estimates or predictions, and solve again.

3.1. Event Camera Definitions

Each pixel of an event camera independently measures

intensity and reports an event when that intensity changes

by a pre-defined threshold amount relative to a saved value.

The pixels operate asynchronously but each event is time-

stamped relative to a global clock. The electronics of the

camera gather events from all pixels and transmit them to a

computer as a serial stream.

Each event is therefore defined as a tuple

ei = (xi, ti, ρi)
⊤, where xi ∈ Ω is the position of

the event in the image domain, ti is its time-stamp to

microsecond resolution and ρi ± 1 is its polarity (sign of

the brightness change). An event is fired when a change in

that log intensity exceeds threshold θ:

|L(x, t)− L(x, tp(x, t))| ≥ θ , (1)

where L(x, t) is the log intensity at pixel x at time t and

tp(x, t) is the time when the previous event occurred.

3.2. Estimation Preliminaries

We aim to estimate continously varying image velocity

u and log intensity L at all image pixels over the duration

of our input event sequence. The log intensity is related to

image intensity as follows: L := log(I + b), where b is a

positive offset constant. Since event cameras do not come

with any notion of frames, we note that u is in velocity units

of pixels/second rather than a frame-to-frame displacement.

For brevity we will write partial derivatives as ux := ∂u
∂x

.

As in well-known two-view methods for optical flow

estimation [11, 24], a key assumption of our algorithm is

brightness constancy, which asserts that the brightness value

of a moving pixel is unchanged. In differential form this is:

I(x+ δtu, t+ δt) = I(x, t). (2)

On a per-pixel basis, this equation is under-determined. As

in [11, 24] and many other optical flow methods, we need

to introduce regularisation and perform global optimisation

in order to achieve a well-defined solution across the whole

image domain simultaneously.

But in the case of the input data from an event camera,

Equation (2) cannot be directly applied since event mea-

surements do not provide absolute intensity information but

only differences. To proceed we must formulate our prob-

lem as simultaneous estimation of both intensity and veloc-

ity. The details of our approach follow in the next section.

3.3. Variational Formulation

As mentioned in the previous section, we add regu-

larisers to (2) to determine the system and to handle the

sparse measurements from the event camera. These are,

in essence, smoothness priors which have been applied in

many image processing application for standard cameras,

such as optical flow [23], image denoising [21] and SLAM

[16]. Variational methods have been very successful to in-

clude smoothness priors such as TV-L1 [18], which approx-

imates natural image statistics [20], while leaving the opti-

misation problem convex.

With event cameras, smoothness priors allow us to es-

timate image regions in between events — both spatially

and temporally. In other words, we have sensor regions

where events are firing and giving information about gra-

dients, and we regions with no data and no events firing, but

we can assume smoothness in the absence of events.

Since an event relates an intensity in the past, i.e. pre-

vious event to an intensity at the current event time-stamp,

we opt for assimilating the event measurement data to the

spatio-temporal smoothness and photometric consistency

(optical flow constraint) within a time window. As op-

posed to traditional optical flow estimation, intensities are

unknown, and so is optical flow. Since both quantities are

coupled by the optical flow constraint (2), we need to esti-

mate both jointly. We assume that the intensity change at a

pixel is induced only by optical flow.

We therefore propose the following minimisation:

min
u, L

∫

Ω

∫

T

(

λ1‖ux‖1 + λ2‖ut‖1 + λ3‖Lx‖1+

λ4‖〈Lx, δtu〉+ Lt‖1 + λ5 hθ(L− L(tp))
)

dt dx

+

∫

Ω

|P (x)|
∑

i=2

‖L(ti)− L(ti−1)− θρi‖1dx,

(3)

where the individual λs are positive scalar weights. For

brevity we omit the parameters x and t. Readers who are fa-

miliar with optical flow and image denoising will recognise

the first four terms, which regularise the smoothness of the

flow (both spatially and temporally) and the smoothness of
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the intensities. The fourth term is the first order Taylor ap-

proximation of (2), with 〈·, ·〉 being the inner product, which

ensures temporal consistency in our intensity estimates.

The last two terms of (3) are the data terms of the event

camera: The event data term and the no-event data term.

The event data term is derived from (1), where P (x) is the

set of all events fired at x, with ti and ρi being the time-

stamp and polarity of the i-th element in P (x). For this

term we assume that events are fired as soon as the thresh-

old θ in log intensity is reached. While this term models

events which have been fired, the no-event data term mod-

els the case of no events occurring on a certain pixel: the

absence of events gives us the information that the log in-

tensity, after the last event, has not changed more than the

given threshold θ. Therefore, we constrain the intensity be-

tween two events with an L1-norm cost term containing a

dead-zone, which is denoted by hθ. hθ is defined as

hθ(x) =

{

|x| − θ, if |x| > θ

0, otherwise,
(4)

and takes as input the difference between L and L(tp),
which is the log intensity at last event relative to L. By

using the dead zone, the term does not add any cost when

the difference is in bound of [−θ, θ], but penalises deviation

beyond. We use an L1-norm, in both terms, as we anticipate

outliers. Events may be missed by the chip specifically in a

short period just after an event has fired – and we anticipate

randomly firing events (background noise), which occur in

the sensor due to leakage [13]. Next we will describe the

discretisation and minimisation of (3).

3.4. Discretisation

As described in the previous section, we estimate L and

u over a time period T and over the image domain Ω. For

the minimisation we discretise Ω into a regular pixel grid of

size M ×N , and T into K cells each of length δt microsec-

onds, which forms a spatio-temporal volume. For each el-

ement in the volume created we estimate L and the motion

u by minimising the discretised version of (3). After the

minimisation, we then slide the window in time by δt and

minimise again. Figure 3 visualises this scheme.

Important here is the choice of δt, since a larger choice of

δt allows to estimate slower motions, while a smaller value

is good for fast motions. We use a constant value for δt, but

in future work this choice may be automated by adopting it

to the rate of incoming events. To adapt our event data term

to a lower temporal resolution we linearly interpolate the

intensity at the time of each event, as described in Figure 4.

After shifting the sliding window, the oldest estimates

and related event data terms are dropping out while we add

new incoming events to the window. These new elements

in our volume are initialised by assuming a constant motion

Figure 3: The sliding window (green box) bins the incom-

ing positive events (red bars) and negative events (blue bars)

into a regular grid (dashed lines). When the minimisation

converges, the window is shifts to the right.

from our previous estimate. For this we “copy” the previous

estimates of u into the new grid cells and use the newly

“copied” motion vectors u to bilinearly interpolate from the

previous log intensity estimate.

Unfortunately, by deleting estimates from the oldest

band of grid cells, we lose information about that period.

To compensate this loss, we constrain the oldest estimates

in our sliding window with a prior image and penalise devi-

ations from those values in the next minimisation. The idea

is that consecutive estimates by the sliding window should

be discouraged to discard previous estimates, since they are

based on measurements, which are not included anymore.

To include those priors, we add λ6‖L(x, t1)− L̂(x)‖22 to

(3), where L̂ ∈ Ω is the prior image and t1 is the first event

time-stamp at x in our sliding window. If there is no such

t1 at x, then we use instead of t1 the minimum of T . Before

each minimization, we update L̂(x) by copying the values

of L(x, t1) for all pixels and if there are no events at x, be-

cause they dropped out of the sliding window, we leave the

value in L̂ unchanged. By using this prior image scheme,

we can mitigate the loss of information to a certain extent.

We also want to point out that the prior image scheme

would allow to include intensity measurements from other

sources, e.g. with DAVIS240 [2], which provides a standard

camera image besides an event stream. However, in this

work we focus on exclusively analysing the event stream.

3.5. Optimisation

To minimise (3) we use the preconditioned primal-dual

algorithm [17]. The advantage of that scheme is its opti-

mal convergence and that it is easily parallelisable. To use

the primal dual algorithm we use the duality principle and
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replace individual L1-norms of (3) by their conjugate using

the Legendre-Fenchel transform [10]:

min
u, L

max
|a|∞≤λ1

|b|∞≤λ2

|c|∞≤λ3

|d|∞≤λ4

|y|∞≤1

〈Dxu,a〉 − δλ1A(a) + 〈Dtu,b〉−

δλ2B(b) + 〈D′
xL, c〉 − δλ3C(c)+

〈〈D′
xL,u δt〉+D′

tL,d〉 − δλ4D(d)+

λ6hθ(L−L(tp))+〈EL−z,y〉−δY (y),

(5)

where Dx, D′
x represent the finite difference matrices with

respect to x and Dt, D
′
t are the difference matrices with re-

spect to t. The individual δ(.) terms are the indicator func-

tions regards to the dual variables, such that for example

δλ1A(a) = 0 if ‖a‖ ≤ λ1, otherwise ∞. The other indi-

cator functions are defined likewise. Note that we reformu-

late the event data term to the matrix expression EL − z,

where z is our measurement vector containing signs of all

observed events scaled by θ and E is the event matrix which

transforms the intensity estimate to pairwise differences of

linearly interpolated intensities of the observed events.

The optical flow term in (5) is biconvex, due to the in-

ner product of Lx and u. We following here the minimisa-

tion strategy for a biconvex function in [9] by minimising

this term by alternating between the estimation for L and u.

This gives us the following minimisation scheme of (5):
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Ln+1 = (I+T1λ6∂hθ)
−1(L̄n −T1(D

′
x

⊤
cn

−D′
x

⊤
(ūn dn)−D′

t

⊤
dn −E⊤yn))

L̄n+1 = 2Ln+1 − L̄n

un+1 = (I+T2λ4∂G)−1(ūn −T2(Dx
⊤an

−D⊤
t b

n)))

ūn+1 = 2un+1 − ūn

an+1 = (I+Σ1∂F
∗
1 )

−1(an +Σ1Dxū
n+1)

bn+1 = (I+Σ2∂F
∗
2 )

−1(bn +Σ2Dtū
n+1)

cn+1 = (I+Σ3∂F
∗
3 )

−1(cn +Σ3D
′
xL̄

n+1)

dn+1 = (I+Σ4∂F
∗
4 )

−1(dn +Σ4(〈D
′
xL̄

n+1, ūn+1〉

+D′
tL̄

n+1))

yn+1 = (I+Σ5∂F
∗
5 )(d

n +Σ5(EL̄n+1 − z)),

where Σi and Ti are diagonal pre-conditioning matrices as

described in [17] and I is the identity matrix. Following the

notation in [4], F ∗
i represents the indicator functions and G

is the optical flow term. Their respective resolvent opera-

tors are defined as in [17]. (I +T1∂hθ)
−1 is the resolvent

operator with respect to hθ, which can be solved by a soft-

thresholding scheme for each log intensity estimate Li:

(I+ λ6τihθ)
−1(L̃i) = L̃i+











−λ6τi, if (L̃i − L(tp)) > θ + λ6τi

λ6τi, if (L̃i − L(tp)) < −θ − λ6τi

0, otherwise,

(6)

x

x

x

x

Figure 4: Approximation of the intensity for two given

events e1 and e2 between two intensity estimates L1 and

L2. For the discrete data term, we use the linear approxi-

mations f1 and f2 at the time of each event η1 and η2.

where we fix L(tp) during the minimisation step. A fixed

L(tp) can slow down the convergences of the algorithm, but

in practise we have not experienced such behavior. Next we

discuss the result of this minimisation scheme.

4. Experiments

We present the capabilities of our method in a series of

experiments with the DVS128 camera [13]. For these ex-

periments we choose a spatial discretisation of 128 × 128,

which corresponds to the resolution of the actual camera.

To highlight these results in this paper, we show log inten-

sity and velocity field estimates at certain time-stamps to

highlight how they resemble images and optical flow fields

from standard cameras. However, we believe that these re-

sults are best viewed in the accompanying video on our

project webpage 1, where also show that we can estimate

super-resolution log-intensity and velocity, via a simple ex-

tension to our formulation based on the work of Unger et

al. for standard cameras [22]. Although we do not discuss

the super-resolution method in detail here, it is important to

highlight that event camera data allows us to perform inten-

sity and velocity estimation at sub-pixel resolution.

For the following experiments, we set the sliding win-

dow depth K to 128, which we have found to be an appro-

priate choice for most sequences to capture a large amount

of events. If not specified otherwise, δt is set to 15 mil-

liseconds. For all sequences we set θ = 0.22, λ1 = 0.02,

λ2 = 0.05, λ3 = 0.02, λ4 = 0.2, λ5 = 0.1 and λ6 = 1.0.

All sequences are initialised by assuming no initial mo-

tion and only a uniform gray scale intensity distribution,

which includes the prior image as well. For comparison, we

1http://www.imperial.ac.uk/dyson-robotics-lab/
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mounted the DVS128 next to a standard frame-based cam-

era with standard 640 × 480 resolution, 30 fps and global

shutter settings for all sequences.

4.1. The Benefits of Simultaneous Estimation

We begin with an experiment to argue for the simulta-

neous estimation of intensities and optical flow with event

cameras. In this sequence we compare the intensity esti-

mate of our method with and without using of the optical

flow term as defined in (3) (Figure 5).

From these results we can see that our method, without

the optical flow, can still estimate the intensities well in re-

gions with strong gradient, but between those regions arte-

facts occur which do not correspond with the real intensities

in the scene. Also we see that the term enforces temporal

consistency and without it areas become brighter or darker

from frame to frame.

4.2. Face Sequence

In this sequence we show intensity and velocity recon-

struction of a moving face while the camera is in motion as

well. The results are shown in Figure 6.

At the beginning of the sequence (left), the intensities

have not been properly estimated yet, because only a few

events have been captured. We see that more details be-

come visible in the following frames as more events are pro-

cessed. Velocity visualisation shows clear motion bound-

aries between the head and the background, proving that

our approach can handle motion discontinuities. However,

both the intensities and optical flow show noise, presumably

caused by outlier events and/or missing data.

4.3. High Dynamic Range Scene

In this example, we show the comparison between our

method and a traditional camera in a high dynamic range

scene. In our experiment, we point the cameras out a win-

dow from a dim room, which is a challenging case for a

traditional camera, as can be seen in Fig. 7.

We see that our method recovers details both inside the

room and outside the window, while the traditional camera,

because of its low dynamic range, can only show either the

room or the outside at one time.

4.4. Rapid Motion

Here we present the capability of our method to estimate

fast motion in front of a cluttered background. We throw

a ball in front a desktop scene, while the camera is also in

motion (Figure 8).

For this sequence, we set δt to a smaller value of 4 mil-

liseconds. We see how the traditional camera is affected

by motion blur, while our method is able to recover clear

motion boundaries. However, due to the small δt intensity

details are not estimated as well as in the previous examples.

This gives the impression that the ball is transparent.

4.5. Full Body Motion

In our last example we show a person performing jump-

ing jacks. For this sequence we set δt to 7 ms and reduce

λ1 and λ3 to 0.01, which preserves smaller regions from

being smoothed out in the optical flow and intensity esti-

mate. In Fig. 9 we see that our method can estimate arm

motion well, even though it occupies a small image region.

However, with the decreased smoothness weight, the influ-

ence of noisy events is stronger, which becomes visible in

the motion field.

5. Conclusions

We have shown that event data from a standard DVS128

sensor can be used to reconstruct high dynamic range in-

tensity frames jointly with a dense optical flow field. As

demonstrated experimentally, our sliding window optimi-

sation based method does neither impose any restrictions

on camera motion nor scene content. In particular we have

shown tracking and reconstruction of extreme, rapid motion

and high dynamic range scenes which are beyond the capa-

bilities of frame-based cameras. We thus believe that this

work is important in supporting the claim that event cam-

eras will play a major role in real-time geometric vision —

the information in a low bit-rate event stream really does

contain all of the content of continuous video, and more.

Having proven a very general capability, we plan to further-

more investigate specific efficient estimation algorithms for

particular problems such as model-based 3D tracking, 3D

reconstruction and SLAM.

We also believe that this work strengthens the argument

that research on embodied real-time vision needs to look at

all of the components of a hardware/software vision system

together (sensors, algorithms and ultimately also proces-

sors) in order to reach for maximum performance. Progress

in the specific technology of event cameras must be com-

pared with alternatives, always with an eye on the rapidly

improving and strongly market-driven performance of stan-

dard frame-based cameras.
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(a) Without optical flow (b) With optical flow (c) Camera images

Figure 5: Comparison of intensity estimation without (a) and with (b) the optical flow term. As usual in (c) we show an

image from a standard camera for reference.

Figure 6: Hand-held event camera moving around a person’s head. Here the face is moving from left to right, while the

background is moving in the opposite direction, which can be seen in the estimated velocity field (top row). The middle row

shows high quality and consistent reconstructed intensity. Bottom row: standard video for comparison.

Figure 7: High dynamic range scene. Intensity reconstructions from events (left) contrasted with standard video images

(right). The camera moves from observing the bright outside scene to point towards a shelf inside the dim room.
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Figure 8: Ball thrown across a desktop scene. In the estimated velocity field (top) we see clear segmentation of the ball,

while video from a standard camera (bottom) is heavily blurred. In the intensity reconstruction (middle) we observe good

reconstruction of the monitor which was traversed by the ball, causing many events.

Figure 9: Jumping jacks. In the sequence from a standard camera the arms are blurred, while our reconstruction from events

allows clear delineation of the arms in both the intensity and velocity fields.
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