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Abstract

Regression is an essential tool in Statistical analysis of

data with many applications in Computer Vision, Machine

Learning, Medical Imaging and various disciplines of Sci-

ence and Engineering. Linear and nonlinear regression

in a vector space setting has been well studied in liter-

ature. However, generalizations to manifold-valued data

are only recently gaining popularity. With the exception

of a few, most existing methods of regression for manifold

valued data are limited to geodesic regression which is a

generalization of the linear regression in vector-spaces. In

this paper, we present a novel nonlinear kernel-based re-

gression method that is applicable to manifold valued data.

Our method is applicable to cases when the independent

and dependent variables in the regression model are both

manifold-valued or one is manifold-valued and the other

is vector or scalar valued. Further, unlike most methods,

our method does not require any imposed ordering on the

manifold-valued data. The performance of our model is

tested on a large number of real data sets acquired from

Alzhiemers and movement disorder (Parkinsons and Essen-

tial Tremor) patients. We present an extensive set of results

along with statistical validation and comparisons.

1. Introduction

An essential task in any regression-based analysis in-

volves finding the relation between two sets of variables,

i.e., the independent and the dependent variables. So, given

a training data set {xi, yi} of independent and dependent

∗This research was funded in part by the NSF grant IIS-1525431 and

NIH grant NS066340 to BCV.

variables our goal is to regress between these two sets of

variables, i.e., find a function f : x → y s.t. yi = f(xi). If

both of these variables are vector valued and if there is a lin-

ear relationship between them, i.e., yi = axi + b for some

a, b, any linear least square estimator can be used to find

this relationship. However, in most real applications, this

relationship is rather nonlinear and thus, one resorts to the

use of either nonlinear least-squares or tools such as support

vector regression [1].

Often, one or the other or both the variables lie on a Rie-

mannian manifold which lacks global vector space struc-

ture. This lack of vector space structure means that any

linear combination of points on the manifold does not lie

on that manifold. For example, in general, a linear com-

bination of points on a hypersphere do not lie on that hy-

persphere. Moreover, in a vector space the linear rela-

tion between {xi, yi} can be expressed as a straight line,

yi = axi + b, but on a general Riemannian manifold with

non-zero sectional curvature, straight lines correspond to

geodesic curves. Hence, even for the linear relation, one

can not use the linear least squares method on a general

Riemannian manifold. Instead, a sophisticated technique is

needed even to find a linear relationship for manifold val-

ued data. This poses a restriction on the direct use of well

known vector-space based linear/non-linear least-squares

type techniques on the manifold. Hence, finding a relation-

ship between manifold valued variables poses a formidable

challenge. One may be tempted to use an embedding of the

manifold valued variables in the Euclidean space (using the

Whitney Embedding [2]) and apply the linear/non-linear re-

gression scheme in the Euclidean settings. But, note that of-

ten embedding results in a poor estimation of the underlying

relationship. Moreover, the data dimension after the embed-

ding becomes larger. For example, using the strong Whitney
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embedding, one can embed any n-dimensional manifold in

a 2n-dimensional Euclidean space, i.e., R2n. These prob-

lems motivated the research community to seek a regression

technique applicable to manifold valued data sets. Now, we

will briefly present some earlier work in this context.

The most commonly used regression on Riemannian

manifolds is the geodesic regression, where, some no-

tion of ordering is imposed on the manifold-valued data

[3, 4, 5, 6, 7]. In [4], Fletcher et al. proposed a geodesic

regression technique from real-valued to manifold-valued

data. Hong et al. [8] proposed a shooting spline based re-

gression technique on the Grassmannian. In [9], Hinkle et

al. proposed a polynomial regression method on Rieman-

nian manifolds in a variational framework. The minimiza-

tion in their problem requires the solution to a system of

covariant differential equations. In [10], authors estimate

the correlation between shape and age using manifold re-

gression. Recently, a variational spline regression for the

manifold of diffeomorphisms was presented in a large de-

formation diffeomorphic mapping (LDDMM) setting [11].

In [12], authors formulate the manifold regression problem

in a regularized risk minimization setting. In [13], Skwerer

proposed a regression scheme in phylogenetic tree spaces

(negatively curved spaces). Most of these methods however

are applicable to cases where the independent variable in

the regression problem is scalar valued. Recently, a multi-

variate general linear model (MGLM) to regress from real-

valued vectors to manifold-valued data was proposed in [7].

Further, in [14], Kim et al. generalized the well known

Canonical Correlation Analysis (CCA) to Riemannian man-

ifolds. Both these methods use geodesic regression on the

manifold, which is the equivalent of the linear regression

in vector-spaces. To the best of our knowledge, there is no

nonlinear regression method between manifold valued in-

dependent and dependent variables or even from manifold

to vector valued data.

Recently in [15], authors proposed a non-linear regres-

sion technique where, either of the independent or the de-

pendent variables are manifold-valued. Unlike existing

methods, this method does not require an ordering of the

manifold-valued data. Motivated by their work, in this pa-

per, we propose a novel regression scheme in a more com-

plex setting where both of the variables (independent and

dependent) are manifold-valued (lie on the same or dif-

ferent Riemannian manifold(s)). Such problems are com-

monly encountered in Medical Image Analysis. For e.g.,

given diffusion tensor images (DTIs) derived from diffu-

sion magnetic resonance data sets, to assess changes caused

by pathologies, one needs to warp the given DTI to an atlas

DTI. The information in the warp can be captured using the

Cauchy deformation tensors that are symmetric and positive

definite. This gives another tensor field (one deformation

tensor at each voxel). Finding the relation between the lo-

cal water molecule diffusion in the tissue and the changes

with respect to a reference template (atlas), provides a way

to characterize the population. Several other applications

include finding relationship between diffusion and conduc-

tance tensor fields in Cardiac imaging etc.

The rest of the paper is organized as follows. In section

2, we briefly present some relevant concepts of Riemannian

geometry and notations for subsequent use. In section 3,

we propose our manifold to manifold regression technique.

We report experimental results of our regression method in

section 4. In section 5, we extend our regression method to

a new robust regression technique on manifold valued data

and present experimental results on synthetic data. Finally,

in section 6, we draw the conclusion.

2. Mathematical Preliminaries

In this section, we present some basic definitions

of terms from Riemannian Geometry that will be used

throughout the paper. For further details on these concepts,

we refer the readers to [16]. Let M be a topological space.

A chart of dimension n ≥ 0 on M is a pair (U, φ), U ⊂ M
open, and φ : U → R

n is a diffeomorphism onto an open

subset of R
n. An atlas on M is a collection of charts,

U = {Uα, φα}α∈A such that each pair of charts is C∞

compatible and {Uα} is an open cover of M. A (smooth)

manifold is a pair (M,M), where M is a topological man-

ifold and M is an atlas on M. For simplicity, we will use

M to denote a smooth manifold.

Let p ∈ M. Then, define Sp = {γ : I → M ,

I open, 0 ∈ I, γ(0) = p}. Define an equivalence relation

∼p on Sp as γ1 ∼p γ2 iff γ′
1(0) = γ′

2(0). Then, the tan-

gent space of M at p, denoted by TpM is the set Sp/ ∼,

TpM ≃ R
n, where n = dim(M). The tangent bundle of

M is defined as a set by TM = ∪p∈MTpM.

The Riemannian metric on M is a field g of smoothly

varying inner products on the tangent spaces. A Rieman-

nian manifold, (M, g) is a manifold equipped with a Rie-

mannian metric g. A connection on TM is a map ∇ :
Γ(TM) × Γ(TM) → Γ(TM) which is F−linear in

the first argument and Leibnitzian in the second argument.

There ∃! a torsion-free connection on TM which respects

g. This connection is called the Levi-Civita connection. In

the rest of the paper, we use (M, g) to denote a Riemannian

manifold equipped with a Levi-Civita connection ∇.

A vector field along a smooth map γ is a map Y : I →
TM such that Y (t) ∈ Tγ(t)M. We say that Y is paral-

lel along γ if ∇γ′(t)Y ≡ 0. Let Y0 ∈ Tγ(t0)M, where

t0 ∈ I . Then, ∃! parallel vector field Y along γ, such

that Y (t0) = Y0. Y (t) is called the parallel transport of

Y (t0) along γ. A geodesic is a curve γ : I → M such

that ∇γ′γ′ = 0. For v ∈ TM, ∃! geodesic γv : I → M
with γ′

v
= v. If 1 ∈ I , i.e., γv(1) is defined, then we

can define Exp(v) = γv(1). So, we can define Exp :
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{v ∈ TM|γv(1) is defined} → M. The geodesic distance

function on a connected manifold M determined by g is

ρ = ρg : M×M → R by ρ(p, q) = inf{L(γ)|γ ∈ Ωp,q},

where Ωp,q = {γ : [0, 1] → M piecewise smooth, γ(0) =

p, γ(1) = q. L(γ) =
∫ 1

0
‖γ′(t)‖dt. It’s easy to show

that ρg is a metric and M is a metric space. It can be

shown that, ∀p ∈ M, ∃ open neighborhood W of p,

ǫ > 0, such that ∀q ∈ W , Expq ↾Bǫ(0)⊂TqM is a diffeo-

morphism onto an open neighborhood Uq with q ∈ Uq

and W ⊂ Uq . Expq is called Riemannian Exponential

map. On Uq , Exp−1
q is defined and is called Riemannian

inverse Exponential map (denoted by Log). A Riemannian

manifold is called geodesically complete (or complete) if

domain(Exp) = TM. For a complete manifold, there ex-

ists a minimal geodesic between any two points on the man-

ifold.

Without going into the definition and details of sectional

curvature, for the rest of this paper, we will assume that the

data points lie inside a geodesic ball of convexity radius < ρ
where ρ = 1

2 min(conv(M), π√
∆
) [17] where conv(M) is

the convexity radius of M and ∆ is the upper bound on the

sectional curvature. This assumption is needed to ensure

that the Riemannian ℓp center of mass exists and is unique.

3. Problem Formulation and Algorithm

Let (M, gM) and (N , gN ) be complete Riemannian

manifolds [16] with gM and gN being the Riemannian

metrics on the Riemannian manifolds M and N , respec-

tively. Given {xi, yi}Ni=1 ⊂ M × N , our goal is to find

a function f : M → N s.t., yi = f(xi), ∀i. Let,

dM : M × M → R be the distance function on M, i.e.,

dM(xi, xj) = gMxi
(Logxi

xj ,Logxi
xj), where Log is the

Riemannian inverse Exponential map (Note that the com-

pleteness assumption of manifold ensures that Log map is

defined on the entire manifold, but for a manifold which

is not geodesically complete, within a geodesic ball of ap-

propriate radius (mentioned in Section 2), the Log map is

well defined). Let dN be the distance function on N in-

duced by the Riemannian metric gN . Now, we can es-

timate f by minimizing the following objective function,

E = 1
N

∑N
i=1 dN (yi, ŷi)

2, where ŷi is the predicted yi de-

fined by,

ŷi = f̂(xi) = arg min
µ∈N

k∑

j=1

K(xi, tj)∑k
l=1 K(xi, tl)

dN (cj , µ)
2

(1)

where, {cj}kj=1 ⊂ N and {tj}kj=1 ⊂ M are the represen-

tatives on N and M respectively. K : M×M → R is the

kernel function (not necessarily positive-definite). Thus, ŷ
is approximated as a weighted Fréchet mean (FM) [18] of

{cj}kj=1. We use {tj}kj=1 as the cluster representatives (of

the given manifold-valued data) and estimate {cj}kj=1 using

the steepest descent on the objective function. The direction

of the gradient of E with respect to cj is given by,

DcjE = − 2

N

N∑

i=1

Logŷi
yi Dcj ŷi. (2)

Where, cj and ŷi both are on N , hence, we will use chart

maps [16] to compute Dcj ŷi. Let {Uα,Φα}α∈I be the chart

map of N . Without loss of generality, assume cj ∈ Uα1

and ŷi ∈ Uα2
where, (Uα1

,Φα1
) and (Uα2

,Φα2
) are the

corresponding charts. Note that, by definition, chart maps

are diffeomorphisms. Given a fixed xi, from Eq. 1, let us

define a function F : N k → N by ŷi = F
(
{cj}kj=1

)
.

Now, we can define Dcj ŷi as Dcj ŷi := Dc̃j F̃ , where, c̃j =

Φα1
(cj) and F̃ = Φα2

◦ F ◦ Φ−1
α1

: Rn → R
n, with n =

dim(N ). Hence, Dc̃j F̃ is the Jacobian of F̃ .

Note that, DcjE ∈ TcjN , thus, in order to make the

RHS of Eq. 2 to be in TcjN , we use parallel transport

of Logŷi
yi from ŷi to cj . For a general Riemannian

manifold N , as parallel transport is not easy to compute,

we can approximate this parallel transport, Λcj Logŷi
yi

by, Λcj Logŷi
yi ≈ Logcj yi − Logcj ŷi. Moreover, for

a general Riemannian manifold, as the weighted FM

is not in closed form for more than two samples, F̃ is

not in closed form, hence, computation of the Jacobian

is not feasible. But, recently, an efficient recursive FM

estimator was proposed for several Riemannian manifolds

including the manifold of symmetric positive definite

matrices, SPD(m) [19, 20], hypersphere, S
m [21] and

the Grassmannian, Gr(p,m) [22]. We use this recursive

FM estimator to compute F̃ (and the Jabcobian) in closed

form for these aforementioned manifolds. But, for other

Riemannian manifolds, we approximate Eq. 1 (in the

spirit of [7, 23]) by ŷi ≈ Expp
(∑k

j=1 K(tj , xi) Logp cj
)
,

where, p ∈ N and Exp is the Riemannian Exponential

map. For the sake of completeness, we will briefly present

the recursive FM estimator formulation here (as given in

[19, 21, 22]. Let X1, X2, · · · , Xk be independent samples

drawn from a probability distribution P (X ) on a complete

manifold N with a set of associated weights {wj}kj=1

such that
∑

j wj = 1. Then, we define the weighted

Fréchet mean estimator Mk by the following recursion:

M1 = X1 (3)

Ml+1 = Γ
Xl+1

Ml

(
wl+1/(

l+1∑

i=1

wi)

)
(4)

where, Γ
Xl+1

Ml
: [0, 1] → N is the shortest geodesic between

Ml and Xl+1, i.e., Γ
Xl+1

Ml
(0) = Ml, Γ

Xl+1

Ml
(1) = Xl+1.

Note that, this formulation can be easily extended to any

complete Riemannian manifold (or within a geodesic ball
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of specific radius of any Riemannian manifold) where a

closed form expression of the Riemannian Exponential and

Inverse Exponential map exist. But, in order to be a valid

FM estimator, one needs to show its consistency which

is proved in [19, 21, 22] for SPD(m), Sm and Gr(p,m)
respectively. Hence, for Riemannian manifolds other than

the aforementioned three, we will use the approximation

discussed above. Now, we sketch our manifold regression

algorithm for a general Riemannian manifold below.

Algorithm 1: Nonlinear Regression of Manifold Valued Data,

Training Stage.

Input: {xi}Ni=1 ⊂M, {yi}Ni=1 ⊂ N , k, b, η, ǫ > 0

Output: {tj}kj=1 ⊂M, {cj}kj=1 ⊂ N

1 Compute {tj}kj=1 as k cluster centers of {xi}Ni=1;

2 Compute KN×k matrix, where Ki,j = K(xi, tj);

3 Initialize {cj}kj=1 as,

cj = argminµ∈N

∑
{l|xl∈kj}

wl,j dN (yl, µ), where kj is the

jth cluster, and wl,j = Kl,j/
∑

{l|xl∈kj}
Kl,j ;

4 Compute WN×k matrix, where Wi,j = Ki,j/
∑k

l=1
Ki,l;

5 Compute the objective function E = 1
N

∑
i dN (yi, ŷi)

2, using the

predictions ŷi’s in Eq. (1), and cj values in line (3) above;

6 Eold ← E, and flag← 1;

7 while flag = 1 do

8 Compute DcjE, ∀j = 1, · · · , k, using Eq. (2);

9 cnew
j ← Expcj (−η DcjE);

10 Recompute {ŷi}Ni=1 and E, using {cnew
j }

k
j=1;

11 if ‖DcjE‖ < ǫ, ∀j = 1, · · · , k then

12 flag← 0;

13 end

14 if E < Eold then

15 cj ← cnew
j , and Eold ← E;

16 else

17 cnew
j ← cj , E ← Eold, and η ← 0.9 η;

18 end

19 end

Algorithm 2: Nonlinear Regression of Manifold Valued Data,

Testing Stage.

Input: x ∈M, {tj}kj=1 ⊂M, {cj}kj=1 ⊂ N
Output: ŷ ∈ N

1 Compute {wj}kj=1 as wj = K(x,tj)/
∑k

l=1
K(x,tl);

2 ŷ = argminµ∈N

∑k
j=1 wj dN (cj , µ);

Special Case: SPD(m) → S
n regression

Here, we present the derivation of our regression formula-

tion where, M = SPD(m) and N = S
n. We will use the

GL-invariant Riemannian metric on SPD(m), the induced

distance is given by dM(x, t) = Tr((Log(x−1t))2), where

Log and Tr are the matrix logarithm and matrix trace opera-

tors respectively, and x, t ∈ SPD(m). On S
n, we chose the

arc length metric, and the distance dN (y, c) = arccos(ytc),
where y, c ∈ S

n. Now, using Eq. 1, ŷi is a weighted FM

of {cj}, where the jth weight, wj = K(xi, tj). In this

work, we chose, K(xi, tj) = exp(−b dM(xi, tj)
2/2σ2),

b and σ being the kernel parameters. Using the inductive

FM estimator presented in [21], Dcj ŷi is computed as fol-

lows. ŷi = Mk, i.e., the kth intrinsic mean estimator, hence

Dcj ŷi = DMk−1
Mk DMk−2

Mk−1 · · ·DMj
Mj+1 DcjMj ,

where DMl−1
Ml = (1− sl) sin((1− sl) θl)/ sin(θl) In+1,

and DclMl = sl sin(sl θl)/ sin(θl) In+1. Here, sl =

wl/(
∑l

p=1 wp), θl = arccos(ctlMl−1).

4. Experimental Results

In this section, we evaluate the performance of our pro-

posed nonlinear regression technique via several experi-

ments on real datasets. In all of these experiments, we have

used the kernel parameter σ2 as the data variance. In order

to measure the accuracy of the regression, we use the R2

statistical measure on Riemannian manifolds, described in

[4]. The R2 statistic on a Riemannian manifold captures

the fraction of the data variance that can not be explained

by the regression model. Let the unexplained variance be

defined as
∑N

i=1 dN (yi, ŷi)
2. Then, the R2 statistic is given

by R2 = 1− unexplained variance

datavariance
∈ [0, 1]. The value of the

R2 statistic lies in the interval [0, 1], and a large value indi-

cates a better regression performance. We vary the b value

from 1 to 100 in increments of 1 and select the b value using

a cross-validation scheme. In order to measure the statis-

tical significance of our results, we perform the following

statistical analysis. We executed 100 independent runs with

varying b-value and fit a normal distribution to the 100 R2

statistic values. Let this random variable be denoted by X .

Now, we fit a normal distribution to the R2 statistic from

the 100 independent runs with varying b value and a random

permutation of the independent variables. Let this random

variable be denoted by Y . The null hypothesis is set to, H0:

mean of X = mean of Y . We reject the null hypothesis with

a significance level of 0.01 (this p-value is denoted as p1 in

the rest of this section).

In the second analysis setting, we consider the b value

(denoted by bM ) which yields the largest R2 statistic (de-

noted by r2M ). Now, for b = bM , we execute 100 inde-

pendent runs by randomly permuting the independent vari-

ables and fit a student’s t-distribution to these R2 values.

Let this random variable be denoted by Z . The null hy-

pothesis is then set to, H0 : r2M comes from the distribution

of Z . As before, we reject the null hypothesis with a 0.01
significance level (this p-value is denoted as p2 in the rest

of this section). Moreover as in [4], we performed the fol-

lowing test. For bM , we execute 100 independent runs by

randomly permuting the independent variables and compute

the R2 statistics. Let this 100R2 statistics be denoted by Z.

Then, we report what fraction of Z is larger than r2M (de-

noted by the f -value). Note that, the f -value is in the range
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[0, 1], with smaller values being preferred. The f -value is a

measure used to see if there is a relationship between the in-

dependent and the dependent sets of variables. We now pro-

vide the detailed experimental results on two real datasets.

OASIS data [24]: We used the OASIS data [24] to per-

form several regression tasks. This data consists of 36 T1
magnetic resonance (MR) brain scans of subjects with vary-

ing ages in the range of 18 to 96, including early stage AD

patients.

We construct two different data representations as fol-

lows. (i) First, we segmented the Corpus Callosum (CC)

from these MR brain scans. Then, we take points on the

3D boundary of the CC and map it to S
24575 using the

Schrödinger distance transform (SDT) [25]. (ii) We used a

set of landmark points on the boundary of CC and map each

of these point sets into the Kendall’s shape space (CPn)

[26], which is a complex projective space. In this experi-

ment, n = 249. First, we seek to model the relationship

between CPn and the SDT representation of CC shapes.

The regression results are given in Table 1 and Table 2.

Since this relationship is fairly complex, we can say that

the R2 statistic values are very good even for a small num-

ber of control points (k). We vary k over ⌈N/4⌉, ⌈N/3⌉,

and ⌈N/2⌉, i.e., we took k to be 9, 12 and 18 respectively.

Note that, if k = N , then the model will memorize the data

rather than learn from the data. Hence, a very large k is not

a good choice. Also note that, the R2 statistic values for

CPn to SDT regression are better than the vice-versa case.

This is justified because, SDT does not contain enough in-

formation to recover the shape while one can recover the

shape (up to an rigid transformation) from CPn represen-

tation. Thus, given a point on S
n, representing an SDT,

finding it’s corresponding point in the CPn representation

correctly, is a much harder problem. This justifies the com-

paratively smaller R2 statistics in Table 2. Moreover, as

evident, since the shape of the CC varies a lot with age, it

would be useful to find a regression model from these two

representations of CC shapes to age. The regression results

from CPn and SDT to age are given in Tables 3 4 respec-

tively. From these two tables, one can see that SDT is a

better representative of CC shapes than CPn for the task

of finding a relationship between shape and age. The use-

fulness of SDT features in finding the relationship between

age and CC shapes were also noted in [15], where the au-

thors regressed CC shapes from age information. Moreover,

Kendall’s shape space representation is a canonical repre-

sentation of shapes. Hence, the usefulness of regression be-

tween SDT and CPn is evident. As mentioned before, to

the best of our knowledge there does not exist any manifold

to manifold (or even manifold to real) regression technique

in the literature, so we could not compare the performance

of our method with any previous work in this context.

We have given the performance of our regressor for CC

k bM r2M p1 p2 f -val

9 63 0.479 < 0.01 < 0.01 0
12 59 0.752 < 0.01 < 0.01 0
18 98 0.754 < 0.01 < 0.01 0

Table 1: OASIS: CPn to SDT regression

k bM r2M p1 p2 f -val

9 77 0.348 < 0.01 < 0.01 0
12 62 0.626 < 0.01 < 0.01 0
18 109 0.631 < 0.01 < 0.01 0

Table 2: OASIS: SDT to CPn regression

k bM r2M p1 p2 f -val

9 100 0.888 < 0.01 < 0.01 0
12 93 0.988 < 0.01 < 0.01 0
18 62 0.987 < 0.01 < 0.01 0

Table 3: OASIS: SDT to age (R+) regression

k bM r2M p1 p2 f -val

9 80 0.474 < 0.01 < 0.01 0
12 90 0.737 < 0.01 < 0.01 0
18 56 0.719 < 0.01 < 0.01 0

Table 4: OASIS: CPn to age (R+) regression

shapes in Figure 1. The top row contains six sample shapes

and the bottom two rows have the corresponding regressed

shapes with varying number of control points. We also

present the number of control points and R2 statistics for

these reconstructions. The value of b used here is 109.

These results provide an evidence of the good performance

of our proposed regression method.

Movement Disorder data: This dataset consists of High

Angular Resolution Diffusion Image (HARDI) scans from,

(i) healthy controls, (ii) patients with essential tremor (ET)

and (iii) Parkinson’s disease (PD) patients. This data pool

contains HARDI scans from 25 controls, 15 ET and 26 PD

patients. These HARDI data were acquired using a single-

shot spin echo EPI sequence, with repetition time = 7748
ms, echo time = 86 ms, flip angle = 90◦, field of view

= 224 × 224 mm, voxel size = 2 mm isotropic with no

gap between slices (n = 60), number of diffusion gradi-

ent (monopolar) directions = 64, diffusion gradient timing

DELTA/ delta = 42.4/10 ms, b-values: 0, 1000 s/ mm2, fat

suppression was performed using SPIR, in-plane, SENSE

factor = 2. The dimension of each image is 112× 112× 60.
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Figure 1: Reconstruction of Corpus Callosum shapes. The top row depicts the original shapes and the bottom two rows depict

the regressed shapes.

From each of these images, we identify the region of inter-

est (ROI) (40 voxels in size) containing the Substantia Ni-

gra, a neuroanatomical structure known to be affected most

by PD and ET. Then, from the HARDI data within the ROI

we compute the ensemble average propagator (EAP), a lo-

cal probability density function that fully captures the local

diffusional characteristics of the tissue. The EAP density

function is extracted using methods described in [27] and

represented by a Gaussian mixture model, with fixed eigen

values for their covariance matrices. This is done to facil-

itate the representation of multiple neuronal fiber bundles

in a voxel and since the fibers are tubular in structure, the

eigen values are assumed to satisfy λ1 > λ2 = λ3. Thus

the degrees of freedom are controlled by the eigen vector

orientations. We choose 321 directions for tessellation of

the sphere (of directions), using an icosadodecahedron as

in [27]. Thus, the EAP field now has a discrete representa-

tion of 40 voxels, with each voxel containing a probability

vector of size 321.

In morphometric analysis, it is common to use the

Cauchy deformation tensor (CDT) field to capture changes

in a patient scan with respect to a reference template/ atlas.

Thus, in order to capture changes in a patient HARDI scan

with respect to the control atlas, we first nonrigidly register

each EAP-field estimated from the HARDI data to the EAP

atlas and obtain the CDT at each voxel in the ROI, given

by
√
JJT , where, J is the Jacobian of the non-rigid trans-

formation [28]. The CDT is a symmetric positive definite

matrix (SPD) of dimension 3 × 3 in this case. Hence, for

each patient we extract a CDT field of dimension 3×3×40.

In this experiment, we seek to find the relationship between

structural information in the form of CDT and clinical mea-

sures such as the MDS-UPDRS (Movement Disorder Soci-

ety’s Unified Parkinson’s Disease Rating Scale) [29]. The

MDS-UPDRS score is widely used to follow the longitudi-

nal course of PD. These scores are obtained via interviews

and clinical observations by an expert. In this experiment,

available to us are the MDS-UPDRS scores of 58 subjects in

the population under consideration, including 21 controls,

13 ET, and 24 PD patients. This score is a nonnegative inte-

ger, with smaller values indicating normality of the patient.

For these 58 patients, we first find a relationship between

the EAP field and the MDS-UPDRS score by regressing

the EAP against the MDS-UPDRS. We did the similar ex-

periment as before. We vary k to be ⌈N/4⌉, ⌈N/3⌉, and

⌈N/2⌉. The results are given in Table 5. From the results,

it is evident that even for small number of control points,

i.e., k = 15, the R2 statistic is quite high (very high) and

the statistical significance of our result can be ensured by

examining the two p-values. Like before the f -value de-

notes the number of times the regression result on a random

permutation of independent variables is better than the re-

ported R2 statistic. And the small f -values, i.e., 0 signify

that there is indeed a relationship between the two sets of

variables. So, by examining the combination of these sta-

tistical measures reported, one can see that the regression

result is good not because there is over fitting but because,

there exists a relationship (inferred from f -value) which is

captured well (inferred from R2 statistics and p-values) by

our method.

Finally, we present an experiment to find a relation be-

tween the two distinct structural representations derived

from the HARDI data, namely, the EAP field and Cauchy

deformation tensor field. The former captures the local dif-

fusional characteristics of the tissue being imaged and the

latter captures the changes between the imaged sample and

the control atlas. We first regress the Cauchy deformation

tensor field to EAP field and the regression result is given
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k bM r2M p1 p2 f -val

15 98 0.815 < 0.01 < 0.01 0
20 74 0.868 < 0.01 < 0.01 0
29 25 0.925 < 0.01 < 0.01 0

Table 5: Movement Disorder: EAP to MDS-UPDRS (N ∪
{0}) regression

in Table 6. Note that, here we have taken all the subjects,

i.e., sample size is 67. Analogous to the previous exper-

iments we vary k and b. Though the results reported are

statistically significant, the R2 statistics are not very high.

The possible reasons behind this comparatively small R2

statistics are two-fold. (i) The dimensionality of either of

the independent or dependent variable is very large. More-

over they lie on different Riemannian manifolds, which are

far more “complex” compared to a vector space. (ii) The

relationship between Cauchy deformation tensor and EAP

is highly nonlinear and complex, and the number of sam-

ple points, i.e., 67 is far less compared to the dimension

of either of the independent or dependent variable. Hence,

in this example with a complex relationship, the relatively

small R2 statistic values are justified.

k bM r2M p1 p2 f -val

17 25 0.339 < 0.01 < 0.01 0
23 25 0.426 < 0.01 < 0.01 0
34 20 0.599 < 0.01 < 0.01 0

Table 6: Movement Disorder: Cauchy tensor field to EAP

field regression

k bM r2M p1 p2 f -val

17 15 0.331 < 0.01 < 0.01 0
23 10 0.407 < 0.01 < 0.01 0
34 10 0.573 < 0.01 < 0.01 0

Table 7: Movement Disorder: EAP field to Cauchy tensor

field regression

Now, we present the regression from EAP field to

Cauchy deformation tensor field. The results for this re-

gression are reported in Table 7. From a statistical accuracy

view point, these results are analogous to the earlier case

of mapping between the Cauchy deformation tensor field to

the EAP field regression. This is justified given that both

Cauchy and EAP tensor fields are equally good representa-

tives of HARDI data.

Data
Our method CCA

k bM r2M CC

SPD(3) → SPD(3) 20 4 0.895 0.771
S
9 → S

9 100 5 0.998 0.996

Table 8: Comparative results with CCA

Comparison with CCA [14]: We now compare our man-

ifold regression technique with Cross Correlation Analysis

for manifold-valued data by Kim et al. [14]. CCA can be

applied to find the relation between two manifold valued

data, X and Y , on the same Riemannian manifold. Since

for none of our data sets, independent and dependent vari-

ables are on the same manifold, we present a comparison

for two synthetic data sets. The first data is on SPD(3),
here we first draw 1000 samples in R

6 from Normal distri-

bution with 0 mean and small variance. Then we create a

3× 3 symmetric matrix from each of these vectors. Each of

these symmetric matrices lie on the tangent space anchored

at I3 (the 3 × 3 identity matrix). As SPD(n) is geodesi-

cally complete, we use Exp map to map each tangent vector

to a point on SPD(3). Now, for each A ∈ SPD(3), obtain

B ∈ SPD(3) using RART , where R is a randomly gen-

erated matrix in SO(3). Note that, all the eigenvalues of A
and B are same. Now, we do regression and CCA between

{A} and {B}. For the second data, we randomly generate

1000 points on S
9 and scale and translate these points and

project them back on S
9. Then, we applied CCA and regres-

sion to these two sets of variables. But, as cross-correlation

(CC) and R2 statistic are different metrics, the rationale be-

tween comparing the two is as follows. Note that, R2 statis-

tic can be thought as a square of the CC between {Y } and

{Ŷ }. Moreover, for only one independent variable regres-

sion, it is also the square of the CC between {X} and {Y }.

Hence, there is a relation (though not explicit for the mani-

fold valued cases) between these two measures. Moreover,

a high absolute CC value and an R2 statistic value close to

1 imply there is a strong relation between these two sets of

variables. Hence, though they are different metrics, it is still

meaningful to compare and contrast them. The comparison

results are presented in Table 8. From this table,it is evident

that for both the synthetic data sets, our regression method

yields a comparatively better performance than CCA.

5. Robust formulation for manifold value re-

gression

In this section, we show how to extend the nonlinear re-

gression formulation presented earlier to cope with outliers

in the data. This leads to a new and robust formulation

for the regression of manifold valued data. Let (M, gM)
and (N , gN ) be complete Riemannian manifolds. Given
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{xi, yi}Ni=1 ⊂ M × N , our goal is to find a function

f : M → N s.t., yi = f(xi), ∀i. But, in this section, we as-

sume that {yi} are corrupted with outliers. It is well known,

that an ℓ1 norm based formulation is much more robust to

outliers than the one based on the ℓ2 norm. Hence, instead

of using the weighted Fréchet mean (FM) of {cj}kj=1 as in

Eq. 1, we use the weighted Fréchet median (FMd). For

X1, X2, · · · , Xk ∈ N , with associated weights {wj} with∑
wj = 1, the weighted FMd, M̄ is defined as follows:

M̄ = arg min
µ∈N

k∑

j=1

wj dN (µ,Xj) (5)

Using this formulation, we reformulate Eq. 1 as follows:

ŷi = f̂(xi) = arg min
µ∈N

k∑

j=1

K(xi, tj)∑k
l=1 K(xi, tl)

dN (cj , µ) (6)

As in the case of the FM, the FMd also has no closed

form expression. Hence, we use the incremental FMd

computation formulation in spirit of the work in [30].

Note that in [30], the formulation involves a stochas-

tic gradient descent for finding the ℓp FM, while our

formulation is deterministic, i.e., the next data point

is fixed and not selected at random within the neigh-

borhood. The incremental FMd formulation is given

below. Assuming the above hypothesis holds, we de-

fine the incremental FMd estimator, M̄k as follows:

M̄1 = X1 (7)

M̄l+1 = ExpM̄l

(
wl+1

(
∑l+1

i=1 wi

vl)

)
(8)

where vl = LogM̄l
(Xl+1)/dN (M̄l,Xl+1). Though this

method is deterministic in contrast to [30], one might prove

the consistency of M̄k to the true FMd in a similar way as

in [30]. Notice that, the formulation in Eq. 7 requires only

the Riemannian Exponential and the inverse Exponential

maps, respectively. For example, on S
n, M̄l+1 is:

M̄l+1 = cos(sl+1) M̄l + sin(sl+1)
Xl+1 − M̄l cos(θl)

sin(θl)
,

(9)

where, θl = arccos(M̄ t
lXl+1). In the next section, we dis-

cuss some experimental results on a synthetic data with out-

liers.

5.1. Experimental Results of Robust Regression

In this section, we give some preliminary regression re-

sults of our Fréchet median (FMd) based regressor to show

its effectiveness on synthetic data corrupted with outliers.

We compare the performance with our earlier formulation,

i.e., using the incremental FM estimator. In our future work,

Outliers (%)
FMd FM

bM r2M bM r2M
0 5 0.280 8 0.349
10 5 0.265 5 0.222
15 5 0.251 5 0.092
20 5 0.262 3 −0.043
25 4 0.350 2 −0.170
30 5 0.377 1 −0.527
50 6 0.354 0 −7.151

Table 9: SPD(3) to S
2 regression with outliers

we will apply this method to real datasets. First, we gener-

ated 1000 i.i.d. samples on SPD(3) from a Log-Normal

distribution [31] with a variance of 0.25 and an expectation

of I3 (the identity matrix). Then, for each of these matri-

ces, we compute the principal eigen vector which lies on

S
2. Then, we added random noise only to a fraction of the

dependent variables in order to create outliers, and perform

a regression from SPD(3) to S
2. The values of this frac-

tion are varied during the experiments and given in the Table

9. The R2 statistic results using both the FM (Eq. 6) and

the FMd (Eq. 1) formulations are reported in Table 9. We

use N − 1 cluster representatives, where N is the number

of sample points, and perform leave-one-out analysis. We

varied b from 1 to 20 in unit increments.

From the results, when there are no outliers, our FM for-

mulation gives a better R2 statistic, whereas with increasing

outliers, the intrinsic FMd yields a far better performance.

Moreover, for more than 15% outliers, the R2 statistic for

regression based on the FM formulation is negative. The

negative value denotes that the regressor performed worse

than the most trivial choice, which is FM of {yi} for any

given x value. This result depicts the robustness of our re-

gressor with the ℓ1 norm and justifies its choice over the FM

in this situation.

6. Conclusion

In this paper, we presented a novel nonlinear kernel-

based regression technique for manifold-valued data sets.

Our method is applicable to a variety of situations inclusive

of regression between the manifold valued independent and

dependent variables. We presented an extensive set of ex-

periments on MR and diffusion MR scans from Alzheimers

and movement disorder patients respectively. Further, we

validated our results using the R2-statistic and permutation

tests. As an extension to our regression model, we presented

a way to make the regression robust to outliers and showed

its performance on synthetic data. Our future efforts will be

focused on further developing and experimenting with the

robust model.
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