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Figure 1: Semantic parsing of a large-scale point cloud. Left: the raw point cloud. Middle: the results of parsing the point cloud into

disjoint spaces (i.e. the floor plan). Right: the results of parsing a detected room (marked with the black circle) into semantic elements.

Abstract

In this paper, we propose a method for semantic parsing

the 3D point cloud of an entire building using a hierarchi-

cal approach: first, the raw data is parsed into semantically

meaningful spaces (e.g. rooms, etc) that are aligned into a

canonical reference coordinate system. Second, the spaces

are parsed into their structural and building elements (e.g.

walls, columns, etc). Performing these with a strong nota-

tion of global 3D space is the backbone of our method. The

alignment in the first step injects strong 3D priors from the

canonical coordinate system into the second step for dis-

covering elements. This allows diverse challenging scenar-

ios as man-made indoor spaces often show recurrent geo-

metric patterns while the appearance features can change

drastically. We also argue that identification of structural

elements in indoor spaces is essentially a detection prob-

lem, rather than segmentation which is commonly used. We

evaluated our method on a new dataset of several buildings

with a covered area of over 6, 000m2 and over 215 million

points, demonstrating robust results readily useful for prac-

tical applications.

1. Introduction

During the past few years, 3D imaging technology ex-

perienced a major progress with the production of inexpen-

sive depth sensors (e.g. Kinect [2]). This caused a leap in

the development of many successful semantic segmentation

methods that use both RGB and depth [26, 31, 7]. How-

ever, the 3D sensing field has recently undergone a follow-

up shift with the availability of mature technology for scan-

ning large-scale spaces, e.g. an entire building. Such sys-

tems can reliably form the 3D point cloud of thousands of

square meters with the number of points often exceeding

hundreds of millions (see Fig. 1 left). This demands seman-

tic parsing methods capable of coping with this scale, and

ideally, exploiting the unique characteristics of such data.

Large-scale scans of buildings pose new chal-

lenges/opportunities in semantic parsing that are different

from, or not faced in, small-scale RGB-D segmentation:

Richer Geometric Information: Large-scale point clouds

make the entire building available at once. This allows

utilizing recurrent geometric regularities common in man-

made structures. Such possibilities are beyond what a
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single-view depth sensor would provide, as they have part

of one room or at most few rooms in their scope.

Complexity: Existing semantic segmentation methods de-

signed for small-scale point clouds or RGB-D images are

not immediately applicable to large-scale scans due to com-

plexity issues and the fact that choosing a set of represen-

tative views from an unbounded number of feasible single-

views is non-trivial.

Introduction of New Semantics: Large-scale point clouds

of indoor spaces introduce semantics that did not exist in

small-scale point clouds or RGB-D images: disjoint spaces

like rooms, hallways, etc. Parsing a raw point cloud into

such spaces (essentially a floor plan) is a relatively new and

valid problem.

Novel Applications: A number of novel applications be-

comes feasible in the context of whole building point

clouds, such as, generating space statistics, building analy-

sis (e.g., workspace efficiency), or space manipulation (e.g.,

removing walls between rooms).

Aforementioned points signify the necessity of adopt-

ing new approaches to semantic parsing of large-scale point

clouds. In this paper, we introduce a method that, given a

raw large-scale colored point cloud of an indoor space, first

parses it into semantic spaces (e.g., hallways, rooms), and

then, further parses those spaces into their structural (e.g.

floor, walls, etc.) and building (e.g. furniture) elements (see

Fig. 1). One property of our approach is utilizing in seman-

tic element detection the geometric priors acquired from

parsing into disjoint spaces, and then, reincorporating the

detected elements in updating the found spaces (Sec. 3.2).

Another key property is reformulating the element pars-

ing task as a detection problem, rather than segmentation.

Existing segmentation paradigms start with the assumption

that each point must belong to a single segment/class. How-

ever, the problem of building element parsing better fits a

detection approach. Clutter can occlude parts of important

elements, e.g. a white board can occlude a wall. To a seg-

mentation technique, this wall would be an irregular entity

with a hole on it, while detecting the wall as a whole pro-

vides a better structural understanding of it (see Sec. 4).

The contributions of this paper can be summarized as:

I) We claim and experimentally evaluate that space di-

viders (i.e. walls) can be robustly detected using the empty

space attributed to them in the point cloud. In other words,

instead of detecting points belonging to the boundaries of a

room, we detect the empty space bounded by them.

II) We show that structural and building elements can be

robustly detected using strong geometric priors induced by

space parsing. We demonstrate satisfactory parsing results

by heavily exploiting such features.

III) We collected a large-scale dataset composed of col-

ored 3D scans1) of indoor areas of large buildings with var-

1Collection of points with 3D coordinates and RGB color values.

ious architectural styles. A few samples of these spaces can

be seen in Fig. 1 and 5. We annotated the semantic spaces

and their elements in 3D. We further collected a set of RGB-

D images registered on the colored point cloud to enrich the

dataset (not used by our method). Annotations are consis-

tent across all modalities (3D point cloud and RGB, and

depth images). The dataset, annotations, the code and pars-

ing results of the proposed framework are available to pub-

lic at buildingparser.stanford.edu.

2. Related Work

We provide an overview of the related literature below,

but as a brief summary, the following main points differ-

entiate our approach from existing techniques: 1) process-

ing a large-scale point cloud of an entire building (indoor

spaces), rather than one or few RGB-D images, 2) detection

of space dividers (walls) based on their void (empty) space

rather than planar-surface/linear-boundary assumptions, 3)

utilizing a set of geometric priors extracted in a normalized

canonical space, 4) adopting a detection-based approach,

rather than segmentation, to element parsing.

Semantic RGB-D and 3D segmentation have been in-

vestigated in a large number of papers during the past few

years. For instance, [30, 24] proposed an RGB-D segmen-

tation method using a set of heuristics for leveraging 3D

geometric priors. [21] developed a search-classify based

method for segmentation and modeling of indoor spaces.

These are different from our method as they address the

problem in a small-scale. A few methods attempted using

multiple depth views [29, 14], yet they as well remain lim-

ited to a small-scale and do not utilize the advantages of

a larger scope. [22] performed semantic parsing of build-

ings but for outdoor spaces. To parse a panoramic RGB-

D image, [41] uses the global geometry of the room and

cuboid like objects. Though an RGB-D panorama includes

more information than a typical RGB-D image, it is not

as comprehensive as a 3D point cloud. There also ex-

ist many object detection methods developed for RGB-D.

These methods either try to extend the RGB methods di-

rectly into RGB-D by treating depth as a fourth channel

[13, 19, 31, 26, 3] or use external sources like CAD models

[32]. These methods use image-specific features and do not

extend to point clouds. They are also not designed to handle

large structural elements, such as floor and ceiling.

In the context of floor plan estimation, [4] proposed an

approach based on trajectory crowd sourcing for estimating

a floor plan, while we use an automatically generated 3D

point cloud. [38] reconstructed museum type spaces based

on Hough transform which is challenged in cluttered scenes

(as verified by our experiments), though their goal is not es-

timation of floor plan. [40] also employs similar planar sur-

face assumption in order to estimate the semantics of a sin-

gle room using contextual information. [20] reconstructed
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Figure 2. Left: Convolution of the devised filter with the histogram signal. The Histogram signal along axis x is the histogram of x

coordinates of all points. Right: Space divider detection algorithm. We start with the density histogram signal (a), convolve it with the

filter bank (b), and perform max-pooling (c) to identify the space dividers (d).

cluttered indoor spaces but their method as well as that of

[23] require prior knowledge of scan locations and extrac-

tion of planar patches as candidate walls. [36] generated

a minimalistic floor plan by first triangulating the 2D floor

plan and then merging adjacent segments to obtain the final

space partitioning. Their approach does not handle occlu-

sions effectively and requires the scan locations. Liu et al.

[18] reconstructed a building in 3D given monocular images

and the floor-plan. On the contrary, we find the floor-plan as

well as semantic elements therein given a 3D point cloud.

3. Parsing Point Cloud into Disjoint Spaces

Our hierarchical parsing method starts with parsing the

whole building into spaces that are semantically meaningful

(e.g. rooms). This step yields an understanding of the spatial

layout and the spaces therein, which will play a central role

in the formulation of the second step (Sec. 3.2).

3.1. Detection incorporating void spaces

Each scanned element in a point cloud is represented as a

group of points encompassing its inner void (empty) space.

The scanned points belong to the exterior surfaces of the

element since only this outer shell is visible to a 3D sensor.

However, the inner void is a crucial component in defining

the element and its overall shape. This perspective suggests

that void space could be actively incorporated in detecting

and understanding 3D elements.

Space dividers (e.g. walls) separating neighboring en-

closed spaces are not an exception. Previous efforts towards

detecting walls in point clouds overlook this and try to to fit

planar surfaces (e.g. [40]) or linear boundaries employing

algorithms, such as RANSAC or Hough Transform. These

are easily challenged in practice since walls are often clut-

tered with furniture, and sometimes even not visible.

In contrast, we follow the “void-based” approach and de-

tect space dividers based on their signature in point clouds:

a space divider is depicted as a void space bounded by two

coarsely parallel margins. This signature remains robust

even if the enclosed space is severely cluttered, since we

do not detect surfaces or space boundaries but the void in-

between. This is shown in Fig. 2 left (b) which depicts

two adjacent rooms. The wall and its void space are in-

dicated with red lines. If we form a 1 dimensional his-

togram of density of points along the x axis (i.e. the signal

in Fig. 2 left (b)), the wall appears with the signature of two

peaks with an empty space in-between. Attempting to find

a wall through detecting planar surfaces would be equiva-

lent to looking for peaks in this signal. As apparent, many

strong peaks (e.g. due to the bookcase or table side) appear

which make detection of walls difficult. Instead, the peak-

gap-peak structure is significantly more discriminative and

robust. This signature is one of the useful consequences of

having the point cloud of the entire building at once.

3.1.1 Detecting the peak-gap-peak pattern

In order to detect the peak-gap-peak pattern, we follow a

template matching approach using a bank of peak-gap-peak

filters and perform the matching operation via convolutions

on a density histogram signal (Fig. 2 left (a)). This filter

bank is shown in Fig. 2 right (b) and has the characteristic of

two peaks separated by void with varying widths. The blue

curve in Fig. 2 left (c) is the convolution response which

shows the filter has strongly responded to the peak-gap-

peak signature and suppressed the other peaks. It should

be noted that the employed filter assumes buildings with

roughly planar walls, and hence, does not handle circular

and oval shaped rooms or other configurations that devi-

ate from the major axes of the building. However, as non-

rectangular rooms make up for a considerably small portion

of indoor space layouts [33], this assumption is considered

reasonable. A remedy to irregular walls/rooms would be to

employ a similar approach, but with a 2D filter bank that

is also parametrized over curvature. Since though they ac-

count for a small portion, the practical importance of this

improvement would not be obvious.

In greater detail, given a raw point cloud, we first align

the three main axes 2 of x − y − z with the general struc-

2We used PCA. However, there are other methods dedicated to this task

(Manhattan frame estimation) that could be employed off-the-shelf in more

complex cases [12, 34].
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Figure 3. Merging the over-segments: We start with a set of over-segments (b) generated from the point cloud (a) and create their neighbor

graph (c). Then, we merge nodes (d-e) as explained in Sec. 3.1.2. We update (f) the results given the output of element detection (Sec. 4.2).

ture of the building. We form a 1 dimensional histogram

of density of points along one of the three axes, say H(s).
Then, we create a bank of filters parametrized by the pass-

width (c) and the stop-width (δ) as shown in Fig. 2 right (b).

The filters can be represented as gδ,c(s) =
1
2CΠ δ

2
+C(s) −

1
2CΠ δ

2

(s) where Πk(s) = 1[|s| ≤ k] and 1[A] is an indica-

tor function which is 1 when A is true and 0 otherwise.

We compute responses of filters when convolved with

H(s) as shown in Fig. 2 right (b). Each convolution results

in a 3-dimensional score function over the axis of choice

s and the parameters c and δ. We then apply max-pooling

across s (i.e. pooling parameters are c and δ) to detect a set

of wall candidates over the axis of choice. Finally, we apply

non-maximum suppression to detect the final wall locations

(see [5] for details). We use a bank of filters and pooling

since the shape characteristics of space dividers (e.g. width)

is not known a priori.

The found dividers decompose the point cloud into slices

along the direction of the detection axis. We then perform

the same procedure for the 2nd and 3rd axes on each slice

to fully partition the point cloud. Since we process each

axis independently, any divider is elongated in its original

direction resulting in an over-segmented grid (see Fig. 3

(b)). This is due to the fact that we detect the dividers in

a 1-dimensional manner (i.e. by considering one axis at a

time). This reduction to 1 dimension enables us to scale to

large point clouds (linearly with respect to covered area),

but it cannot count for the fact that a divider may not ex-

tend across the entire building, thus leading to an over-

segmentation. In order to efficiently recover the correct seg-

mentation, we perform a series of merging operations.

3.1.2 Merging

In order to merge the over-segments, we adopt a bottom-

up approach by recursively merging neighbors. We form a

graph in which each oversegment is represented by a node,

and edges exist between each node and its closest spatial

neighbors (see Fig. 3 (c)). We then examine each edge

for the existence of a divider between its incident nodes.

We check this by detecting the peak-gap-peak on the chunk

of point cloud formed by the two incident nodes using the

same method of Sec. 3.1.1. If a divider is detected, the

edge is removed from the graph. When all edges are ex-

amined, the surviving ones (shown in Fig. 3 (d)) denote the

over-segments that should be merged. Therefore, the final

spaces (Fig. 3 (e)) are the Connected Components of the

graph with survived edges (each Connected Component is

one space). Through transitivity, the merging operation can

extend to any shape and size. In other words, any two over-

segments with a path between them will be merged (e.g.,

see the large room in the middle of Fig. 3 (a)).

In summary, by exploiting the void-based principle we

developed an unsupervised, parameter-free and efficient al-

gorithm to parse a large point cloud into disjoint spaces.

3.2. Canonical Coordinate System Among Spaces

Decomposing the raw point cloud into disjoint spaces

provides geometric priors for detecting semantic elements.

This is mostly because spaces have recurrent structure and

layout configuration. This structure can be easily exploited

by creating a common coordinate system for all spaces.

Specifically, we perform the following operations on one se-

mantic space (e.g. a room, hallway, etc.) to form an x−y−z

Cartesian reference coordinate system.

I) We choose the (z) axis of the reference system as the

gravitational axis.

II) We align the x axis along the entrance to the room.

Consequently, y axis will be perpendicular to the entrance

wall. (see [5] for details).

III) We then scale the space into a unit cube by simply

normalizing the coordinates of the aligned points to range

in [0,1]. This allows better generalization and information

transfer across different spaces and buildings.
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An example reference system is shown in Fig. 4. This

procedure puts each space in a unit cube aligned across all

detected spaces. It results in a geometric representation of

it in a single and coherent coordinate system. Such a proce-

dure is not straightforward in the conventional single-view

3D or RGB-D scans since global context is not captured.

4. Parsing Disjoint Spaces into Elements

Given a space in the common reference system, we wish

to detect and label the semantic elements therein.

Parsing-by-Detection: Structural building analysis and

augmented reality are some of the applications that benefit

from parsing a point cloud into semantic elements. An anal-

ysis of such applications suggests that assuming every point

must belong to one class, as in the conventional segmenta-

tion paradigm, is not a concrete assumption since it results

in elements of incomplete geometry (e.g. hole in wall seg-

ment due to clutter). The applications can benefit from a

notion of the parsed element and its structural characteris-

tics as a whole regardless of occlusions (Sec. 1). Also, there

is always a considerable number of points that either do not

belong to any class or are not in the interest of the appli-

cation. Hence, we argue that a more suitable approach is

detecting and localizing each element, rather than segmen-

tation.

Representing Detections: Our detection framework fol-

lows a 3D sliding window approach; we slide a set of can-

didate windows (boxes in 3D) for each class and classify

if there is an object of the class of interest in the window.

These classifiers, window sizes, and their shapes are all

learned.

In order to learn the size and shape of the candidate win-

dows, we first need a representation for 3D windows. Since

the semantic spaces are normalized with respect to the com-

mon coordinate system, our candidate windows should lie

in it as well. In addition to the size, we also need to rep-

resent the shape. We create K-by-K-by-K voxel grid by

dividing the window into equal sized sub-3D windows and

define the occupancy pattern Bi for i ∈ [K−by−K−by−K]
as Bi is 1 if the sub-window i is part of the shape and 0 oth-

erwise. To summarize, a candidate window is represented

by its position P (location of the bottom-left corner in the

common coordinate system), its 3D size S in the unit cube,

and its occupancy pattern B.

To classify each candidate window as an object or not we

need a set of features which can discriminatively represent

the geometry and appearance of the volume specified by the

window. Since our points lie in the normalized unit cube,

P and S are informative about the global geometry of the

window with respect to the space (global features). We also

compute a set of features for each occupied sub-window as

local geometry and appearance features (local features). We

Table 1. Features that represent each 3D window. The number

in the parenthesis shows the dimensionality of the feature compo-

nent.

Global Features

P Position: normalized position of the 3D window (3)

S Size: normalized size of the 3D window (3)

Local Features (per voxel l ∈ [K ×K ×K])
Bl Occupancy: 1 if l is occupied, 0 otherwise (1)

dl Ratio: ratio of the number of points in the l to the

total number of points in the window (1)

Cr
l , C

g
l , C

r
l Color: average color of the points in the l (3)

nx
l , n

y
l , n

z
l Normal: surface normal of the points in the l (3)

κ Curvature: Surface curvature of points in the l (1)

list our features in Table 1 and visualize them in Fig. 4.

Learning to Detect Elements: Our learning approach con-

sists of learning candidate window shapes and learning ob-

ject detectors. Learning candidate windows: In order to

learn a dictionary of candidate detection windows, we com-

pute a set of detection windows as the tightest bounding

boxes and their occupancy pattern for each element in the

training data. We then group this set into clusters using

Affinity Propogation [10] with distance metric intersection-

over-union and the occupancy pattern. After clustering, we

compute a single detection window per cluster with size

equal to the average of the cluster members size and occu-

pancy pattern equal to the mode of that of the cluster mem-

bers. Training element detectors: In order to learn the el-

ement detectors, we use linear classifiers such that given a

feature vector Φ of the detection window and the classifier

w, Φ⊺w > τ means the candidate window corresponds to a

semantic element. We train a linear classifier per class via

LIBLINEAR [9]. Negative examples include both elements

of other classes and randomly mined hard negatives.

Semantic Element Proposal Generation: Our learning

procedure results in element detectors we and a dictionary

of shapes per class. Given the learnt parameters, we use a

sliding window approach to detect element proposals. At

each sliding position, the SVM detectors are evaluated for

each shape atom in the dictionary. The resulting detections

are further eliminated with non-maximum suppression pro-

ducing a final set of proposals as {(Di, ei, li)}1...N where

Di is the position of the detection, ei is the label of the se-

mantic element class, and li is the detection score .

4.1. Enforcing Contextual Consistency using CRF

The element proposal generation step does not exploit

the context of space, as all elements are generated with no

explicit consideration of others. However, there is a strong

context among semantic elements since the location of one

gives a prior over the location of the others. To exploit this

property, we employ a graphical model based approach.
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Figure 4. Detection box in the unit cube reference coordinate

system and features for a sample object (table). Our features

are the detection anchor point, size and features of each sub-box.

Features of non-occupied voxels are 0 (see Table 1 for all features).

Given a collection of detection proposals, we want to

choose a subset of them as the final elements. We define

our model based on a graph G(V, E) in which the nodes

correspond to the detection proposals and the edges model

the relationship among elements. Each node is connected to

its ke nearest proposals from each class e. Hence, we have

(
∑

e ke)‖V‖ edges. For each node, we want to infer if it

should be in the final detection set or not which results in

a binary label space as yv ∈ {0, 1}. The edge features are

Φe=(v,w) = [Bv, Bw, Sv, Sw, |Pv − Pw|, ], where | · | is the

absolute value function. The unary feature is the detection

score acquired from the SVM classifier.

Following the log-linear model [15], we predict the final

elements as a maximization problem of the energy function:

argmax
y

∑

v∈V

w0lvyv +
∑

(u,v)∈E

yvyu (weu,ev · Φu,v) , (1)

which can be written as an integer program by introducing

auxiliary variables yuv = yuyv ∀u, v ∈ V as:

argmax
y

∑

v∈V

w0lvyv +
∑

(u,v)∈E

yvu (weu,ev · Φu,v)

s.t.yuv ≤ yu ∀u ∈ V, ∀v ∈ N (u)

s.t.yu + yv ≤ yuv + 1 ∀u, v ∈ E .

(2)

This maximization is performed using an off-the-shelf

LP/MIP solver and the weight vectors w are learned using

Structured SVM [35]. Our implementation follows the ex-

isting S-SVM-CRF implementations [16, 17, 28] and the

details can be found in the supplementary [5].

4.2. Updating the Disjoint Space Parsing Results

Since ‘wall’ is one of the classes in the element detec-

tion step, we utilize the identified walls to update the space

dividers found by the peak-gap-peak method of Sec. 3.1.1.

This may recover the walls missed by the peak-gap-peak

filters as the element detection step incorporates additional

features, such as, color or local geometry. In a similar way

to the merging operation discussed in Sec. 3.1.2, we obtain

the neighbors graph of the found spaces, and for each pair

of neighbors we check if there is a detected wall in the con-

nection area; the only difference is that the walls now come

from the element detection step and not the peak-gap-peak

filters. We then remove edges from the graph when no wall

is found and use a connected components graph to form the

final space parsing (see Fig. 3 (f)).

5. Experiments

In this section, we present our experimental results and

share the insights we drew from them.

5.1. Dataset

Our dataset is composed of five large-scale indoor ar-

eas from three different buildings, each covering approxi-

mately 1900, 450, 1700, 870 and 1100 square meters (total

of 6020 square meters). These areas show diverse proper-

ties in architectural style and appearance and include mainly

office areas, educational and exhibition spaces, and confer-

ence rooms, personal offices, restrooms, open spaces, lob-

bies, stairways, and hallways are commonly found therein.

One of the areas includes multiple floors, whereas the rest

have one. The entire point clouds are automatically gen-

erated without any manual intervention using the Matter-

port [1] scanner (only 3D point clouds; no images used by

our method). Parts of these areas can be seen in Fig. 5.

We detect 12 semantic elements, which are structural

elements (ceiling, floor, wall, beam, column, window and

door) and commonly found items and furniture (table,

chair, sofa, bookcase and board). Notice that these classes

are more fine-grained and challenging than many of the se-

mantic indoor segmentation datasets [31, 39].

5.2. Parsing into Disjoint Spaces

The qualitative results of the proposed space parsing

method for several sample areas in the dataset are provided

in Fig. 5. Parts (a), (g), and (e) show the raw point cloud,

manually generated ground truth, and our results before

the update step, respectively. Part (d) illustrates the over-

segmented space before merging which shows the effec-

tiveness of the merging step. It is worth mentioning that

the hallways are sometimes over-segmented although they

belong to one segment in the ground truth. This is attributed

to “bottleneck” areas in some hallways which in combina-

tion with their narrow width creates the illusion of a space

divider in the density histogram. However, after updating

the parsed spaces such issues are resolved (Part (f)).

Baselines: We compare our method with a RANSAC-based

plane fitting and a Hough transform-based line fitting meth-

ods. These approaches were used in two prominent [27, 38]

papers in this area. Even though their goal is not space pars-

ing their intermediate results can be adopted. To make the

baselines appropriate for space segmentation we post pro-

cess their detections and well tweaked their parameters. The

results shown in Fig. 5 and Table 2 were achieved using

these parameters.
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Figure 5. Space Parsing Qualitative Results.

Table 2. Evaluation of space parsing (floor plan generation).

Ours RANSAC 2D Hough

Building final over-segm based [27] based [38]

(1) 0.94 0.59 0.29 0.27

(2) 0.82 0.76 0.30 0.31

(3) 0.69 0.44 0.14 0.37

(4) 0.66 0.42 0.15 0.3

mean 0.77 0.55 0.2 0.31

Quantitative Results: Table 2 provides quantitative results

for space parsing. We adopt the standard unsupervised clus-

tering metric Adjusted Rand Index (ARI) [25] as the mea-

sure. Given the ground truth and the parsing result, ARI

considers all feasible matching between space labels and

computes a weighted average of accuracy of each match-

ing. Both the final and oversegmented results of the pro-

posed method outperform the baselines.

5.3. Parsing into Semantic Elements

Baselines: We compare our method against the top per-

forming algorithms from the KITTI object detection [11]

dataset, mBOW [6] and Vote3D [37]. We only compare

against the algorithms only using point clouds, not RGB-D.

In order to evaluate the contribution of each feature, we

also compare against: No Local Geometry: We remove the

surface normal (nx
l , n

y
l , n

z
l ), point densities (dl) and the cur-

vature (κ) from the feature set to evaluate the importance of

local geometry, No Global Geometry: We remove the nor-

malized position P x
i , P

y
i , P

z
i to evaluate the importance of

global geometry, No Color: We remove the RGB color val-

ues Cr
l , C

g
l , C

b
l to evaluate the importance of color.

Experimental Setup: We use k-fold strategy such that each

building is a single fold. Hence, the models do not see any

part of the test building during training.

Qualitative Results: We visualize the semantic elements

parsed by our algorithm and the baselines in Fig. 6. Our re-

sults are provided in three different granularities: as detec-

tion boxes (h), voxelized detection boxes (g) and points (i).

Our algorithm outputs the voxelized detection box (Sec. 4),

and we find the others by computing the tightest bounding

box and point memberships. Unlike us, the baselines em-

ploy a segmentation-based approach ((b) and (c)).

Fig. 6 shows that the drop in accuracy due to no color or

local geometry modelling is minor, suggesting that global

features are the most important ones. Moreover, the local

geometry and the color modeling are more useful in fine-

localizing objects, while the global geometry is particularly

crucial for roughly detecting the object or labeling. This

is expected since global features can only provide a very

rough location. As shown in Fig. 6, although our results al-

most always capture the context and structure, the method

sometimes fails to localize the element precisely resulting in

empty areas in the voxel/point level results. This is mostly

due to not including detailed features such as edges or HOG.

It is also interesting to note that although the localization

accuracy changes drastically when using different features,

the number of objects is consistently accurate in diverse

cases. We hypothesize that this can be attributed to the

strong context learnt by the CRF.

Quantitative Results: For the quantitative analysis, we fol-

low the Pascal VOC [8] detection conventions. We consider

a detection box with an overlap greater than 0.5 with the

ground truth as a true positive and the rest as false posi-

tive. Each detection is assigned to at most one ground truth

object, and duplicate ones to the same ground truth object

are taken as false positives. After computing the detection

results, we draw class-level ROC curves (we defer them

to [5]) and compute the mean average precision (mAP).

Table 4 provides the mAP of each algorithm and shows

the relative importance of global geometry, which is consis-

tent with our motivation of understanding the semantic ge-

ometry of a building by parsing into spaces. The appearance

1540



a. Input j. GTh. Ours, Boxesd. No Local Geom. f. No Color

 

floor wall windowbeam doorcolumn chairtable boardbookcase

g. Ours, Voxels i. Ours, Points

cluttersofaceiling

 e. No Global Geom.b. mBOW [5] c. Vote3D [33]

Baselines Feature-based Self-Baselines Our Results

Figure 6. Qualitative results of parsing spaces into their semantic elements. Notice the heavy contribution of our global geometry features.

The baselines employ a segmentation-based approach.

Table 3. Class specific average precision of our method when using different features.

Structural Elements Furniture overall

ceiling floor wall beam column window door mean table chair sofa bookcase board mean mean

Ours(full) 71.61 88.70 72.86 66.67 91.77 25.92 54.11 67.38 46.02 16.15 6.78 54.71 3.91 25.51 49.93

Ours(no glob.) 48.93 83.76 65.25 62.86 83.15 22.55 41.08 57.27 37.57 11.80 4.57 45.49 3.06 20.35 41.87

Ours(no loc.) 50.74 80.48 65.59 68.53 85.08 21.17 45.39 58.73 39.87 11.43 4.91 57.76 3.73 23.78 44.19

Ours(no col.) 48.05 80.95 67.78 68.02 87.41 25.32 44.31 59.73 50.56 11.83 6.32 52.33 4.76 25.30 45.41

Table 4. Quantitative evaluation of semantic element detection.

mBOW Vote3D Ours

[6] [37] no local g. no global g. no color full

mAP 36.11 39.21 44.19 41.87 45.41 49.93

features help the least, which is expected since it is harder to

generalize due to intra-class variance among different build-

ings. Similarly, our method’s performance on structural ele-

ments is high, however on furniture is limited (see Table 3).

We attribute this to the generalization of the structural el-

ements among different buildings, something that does not

apply to the same extent on furniture. Also, structural el-

ements show a stronger spatial regularity (captured by our

global features) compared to furniture.

Emerging Applications: Using the detection results we

propose three emerging applications: space statistics, nat-

ural illumination modeling and space manipulation. For

more details see [5].

5.4. Comparison with Conventional RGBD

We compare our method against semantic RGB-D segmenta-

tion baselines mainly to evaluate the performance of our 3D pars-

ing method against such techniques (results in Table 5). We also

aim to answer the question whether it is better to carry out seman-

tic parsing on RGB-D images or to perform it in 3D on the point

cloud and transfer the results onto image domain. To this end,

we enriched our dataset with 300 RGB-D images registered on

the point cloud in a semi-automatic way and used the image-point

Table 5. Evaluation as RGB-D segmentation: Mean intersection-

over-union of our method and [7]

method RGB-D [7] Ours

mIOU 20.9 38.5

cloud correspondences to transfer the 3D semantic annotations.

We use the trained models3 of [7] as the RGB-D baseline and

generate the segmentation masks for our images. Similar to trans-

ferring annotations, we project the label of each point from our

point-level parsing results to the RGB-D images. The results are

tabulated in Table 5.

6. Conclusion

We proposed a detection-based semantic parsing method for

large-scale building point clouds and argued that such 3D scans

pose new challenges and potentials compared to conventional

RGB-D images or small point clouds. Our approach can parse a

raw point cloud into disjoint spaces and enables extraction of rich,

discriminative and low-dimensional features in a common refer-

ence system. This helps with parsing spaces into their compos-

ing elements. Such a scene understanding can serve as a stepping

stone for greater analysis of man-made structures both in breadth

and depth and to developing systems, agents, and applications for

smart indoor environments.
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ments No. 247586 and 334241.

3We considered semantic classes common in both NYU-RGBD [31]
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