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Abstract

We present a solution to the rolling shutter (RS) absolute

camera pose problem with known vertical direction. Our

new solver, R5Pup, is an extension of the general mini-

mal solution R6P, which uses a double linearized RS cam-

era model initialized by the standard perspective P3P. Here,

thanks to using known vertical directions, we avoid double

linearization and can get the camera absolute pose directly

from the RS model without the initialization by a standard

P3P. Moreover, we need only five 2D-to-3D matches while

R6P needed six such matches. We demonstrate in simulated

and real experiments that our new R5Pup is robust, fast and

a very practical method for absolute camera pose compu-

tation for modern cameras on mobile devices. We compare

our R5Pup to the state of the art RS and perspective meth-

ods and demonstrate that it outperforms them when vertical

direction is known in the range of accuracy available on

modern mobile devices. We also demonstrate that when us-

ing R5Pup solver in structure from motion (SfM) pipelines,

it is better to transform already reconstructed scenes into

the standard position, rather than using hard constraints on

the verticality of up vectors.

1. Introduction

Computing camera pose from image points to 3D point cor-

respondences, the Perspective-n-point problem (PnP) [5],

is an important component of structure from motion, ob-

ject localization, and visual odometry. PnP is one of the

oldest camera calibration problems studied [8]. It can be

formulated as a system of algebraic equations and solved

from three image to 3D point correspondences. Vari-

ous formulations, numerical stability, computational effi-

ciency and different approaches how to calculate the cam-

era pose from three and more correspondences were stud-

ied [22, 26, 30, 3, 23, 28, 18] in the past.

All that previous work builds on the perspective projec-

tion, which is the right model for cameras with global shut-

ter. In this work, we present a solution to the rolling shutter

(RS) [21] absolute camera pose problem with known verti-

cal direction (R5Pup). It is an extension of the very recent

work [2]. We are providing much more practical absolute

camera pose computation than [2] for modern cameras on

mobile devices.

Vast majority of contemporary cameras, including smart-

phones and DLSR’s, uses the rolling shutter to capture im-

ages. Global shutter images are exposed to the light at once,

whereas RS images are captured row (or column) by row at

different times. When an RS camera moves while capturing

an image, smear, skew or wobble distortion often appear.

The most importantly, the perspective camera model is no

longer valid and must be replaced by a new RS camera pro-

jection model.

It has been observed [1, 11, 10] that image distortions

caused by a moving RS camera can break 3D reconstruction

and camera pose estimation down. To alleviate this prob-

lem, image rectification has been proposed to remove RS

distortions [14, 24] and a structure from motion method for

videos taken by rolling shutter cameras was developed [10].

It has been demonstrated [19] that using an RS model sig-

nificantly improves the quality of mapping and tracking on

mobile phones.

Authors of [1] solved the problem of RS absolute pose

using a non-linear optimization with the initial guess ob-

tained by a linear method using 81/2 points and assuming

planar scenes. A globally optimal solution using polyno-

mial equations and Gloptipoly [13] solver to solve rolling

shutter PnP was developed in [20]. It has been shown that

the method is capable of providing better results than [1] if

seven or more correspondences were used. In [2], the first

minimal, non-iterative solution to the absolute pose prob-

lem for images from rolling shutter cameras has been pre-

sented. A double linearized rolling shutter camera model
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has been used to demonstrate a significant improvements in

terms of camera pose accuracy and the number of inliers

verified by RANSAC. However, with the camera orienta-

tion being linearized, the method [2] requires a good initial

estimate for camera orientation from, e.g., a P3P algorithm.

The availability of cheap and precise accelerometers

and gyroscopes implies that almost every mobile phone is

equipped with an inertial measurement unit (IMU). IMUs

have also made their way into consumer cameras and allow

for controlling and navigating robots as well as unmanned

aerial vehicles (UAV). In general, IMUs provide the “up

vector”, which is the orientation of the gravitational acceler-

ation in the device frame, from which one can calculate the

device rotation around two axes, e.g., pitch and roll. The

accuracy of the orientation angular measurements is about

0.5◦ for the low-cost IMUs and under 0.02◦ for the high end

ones.

Using the IMU “up vector” information, we can elimi-

nate some unknown parameters involved in the camera ori-

entation estimation and thus make algorithms more effi-

cient. Moreover the IMU “up vector” information reduces

the number of correspondences needed. In [17], a solu-

tion to the absolute pose problem using the “up vector” and

two correspondences for calibrated cameras, or three cor-

respondences for cameras with unknown focal length and

radial distortion, has been presented. Minimal solutions to

the calibrated relative pose problem using three point cor-

respondences for two known orientation angles were pro-

posed in [6, 15]. Relative pose for multi-camera systems

with the aid of IMU has been presented in [12].

1.1. Motivation

It has been established that it is important to incorporate

a rolling shutter camera model for correct camera pose esti-

mation and accurate Structure from Motion when the cam-

era is moving during the image capture. Existing methods

for absolute camera pose estimation have either special re-

quirements on the type of data (e.g. video sequences [10],

planar scenes [1]), are computationally demanding [20] or

require a complete orientation estimate [2]. With the wide

availability of inertial measurement units in cellphones,

cameras, cars and robots, we propose to simplify and im-

prove the absolute pose algorithm of [2] using the ”up vec-

tor” information.

1.2. Contribution

In this paper, we present a new solution to the rolling

shutter absolute pose problem with known vertical direc-

tion – the R5Pup solver. The proposed solution is based on

the linearized rolling shutter camera model used in [20], but

requires only five 2D ↔ 3D correspondences in contrast to

seven in [20] and six in [2]. Unlike [1], it works for gen-

eral scenes and does not require video sequences compared

to [10]. Using the vertical direction information we remove

the requirement of prior initialization by P3P used in R6P

algorithm [2]. The solver is also much faster than R6P [2]

(140µs compared to more than 1ms of R6P).

We analyze different camera motions and the severity of

induced image deformations pointing out where the pro-

posed method brings the largest improvement. We show

that R5Pup solver works with data from IMU present in

common smartphones and we present an RS aware Struc-

ture from Motion pipeline that uses R5Pup and handles im-

precise upvector measurements as well.

Section 2 contains the formulation of the absolute pose

problem for rolling shutter cameras with known vertical di-

rection. Section 3 describes how to solve the problem ef-

ficiently and for general scene configuration. The solver is

verified experimentally and compared to P3P, [2], [17], [18]

and another relevant methods in section 4. Thorough exper-

iments on real data including 3D reconstructions using RS

aware SfM pipeline are presented in section 4 as well.

2. Problem Formulation

Let us now consider the problem of estimating absolute

pose of a calibrated camera from n 2D ↔ 3D point corre-

spondences, i.e. the PnP problem. For standard perspective

camera model, the projection equation has the form

αiui = RXi +C, (1)

where R ∈ SO(3) and C ∈ R
3 is the rotation and the

translation transforming a 3D point Xi ∈ R
3 from a world

coordinate system to the camera coordinate system with

ui = [xi, yi, 1]
⊤

, and αi ∈ R is a scalar.

In the rolling shutter model, when the camera is moving

during the image capture, every image row or image col-

umn is captured at a different time and hence at different

positions. Therefore, the rotation R and the translation C

are functions of the image row yi or the image column xi.

Here we assume that image is captured by-row, therefore we

are getting the following rolling shutter projection equation

αiui =





xi
yi
1



 = R(yi)Xi +C(yi). (2)

We used the model from [20], which assumes a linear

approximation to the camera rotation during image capture.

This model deviates from the reality with increasing rolling

shutter effect. However, it has been observed [20, 2] that it

is usually sufficient for the amount of rolling shutter rotation

present in real situations.

Let R0 and C0 be the unknown rotation and translation

of the camera at time τ = 0 which we choose to be the time

when the middle row y0 ∈ R is being captured. To get a

linear approximation of the rotation during the capture, we
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linearize the rotation around this initial rotation R0 using the

first order Taylor expansion. The translation C(yi), equa-

tion (2), is decomposed into initial translation C0 and the

translation dependent on the captured row yi. This gives

the rolling shutter projection equation

αi





xi
yi
1



=(I+ (yi − y0)[w]x) R0Xi +C0 + (yi − y0)t,

(3)

where y0 is the image row where our model equals to a per-

spective camera, C and t are unknown translation vectors

and

[w]x =





0 −w3 w2

w3 0 −w1

−w2 w1 0



 (4)

is an unknown skew-symmetric matrix to be found.

In this paper we assume that we know the vertical direc-

tion of the camera, i.e. the coordinates of the world vector

[0, 1, 0]
⊤

in the camera coordinate system. This ”up vec-

tor” can be obtained from vanishing points, e.g. [4], or from

IMUs of mobile devices.

The ”up vector” returned by the IMU gives us the rota-

tion Rv of the camera around two axes, in this case the x-axis

and the z-axis. Note, that IMU sometimes returns directly

two angles ψx and ψz of the rotation

Rv=











cos(ψz) − sin(ψz) 0

sin(ψz) cos(ψz) 0

0 0 1





















1 0 0

0 cos(ψx) − sin(ψx)

0 sin(ψx) cos(ψx)











(5)

of the camera around x and z axes.

With the known rotation matrix Rv around the x-axis and

the z-axis, the only unknown parameter in the camera rota-

tion matrix R0 in (3) is the rotation angle ψy around the

vertical y-axis. Thus, we can write

R0 = R0(ψy) = RvRy(ψy), (6)

where Rv is the known rotation matrix (5) and

Ry(ψy) =









cos(ψy) 0 − sin(ψz)

0 1 0

sin(ψy) 0 cos(ψz)









(7)

is the unknown rotation matrix around the y.

This parametrization of the rotation matrix Ry contains

trigonometric functions sin and cos. To eliminate sin and

cos and to obtain polynomial equations, we use the substi-

tution q = tan(
ψy

2 ) for which there holds cos(ψy) =
1−q2

1+q2

and sin(ψy) =
2q

1+q2 . We can write

Ry(ψy) =
1

1 + q2













1− q2 0 −2q

0 1 + q2 0

2q 0 1− q2













=
R̂y(q)

1 + q2
. (8)

With this parametrization of the rotation, we can write the

projection equation (3) as

αiui=(I+ (yi − y0)[w]x)
RvR̂y(q)

1 + q2
Xi+C0+(yi−y0)t.

3. R5Pup solver

The R5Pup solver for absolute pose of a rolling shut-

ter camera with known vertical direction from a minimal

number of point correspondences starts with the projection

equation (3) and the parametrization of the rotation (8). The

scalar value αi can be eliminated from equation (3) by mul-

tiplying it from the left by the skew symmetric matrix

Si =





0 −1 xi
1 0 −yi

−xi yi 0



 . (9)

Moreover, to get rid of rational functions in the parametriza-

tion (8) we multiply projection equation (3) by the denom-

inator 1 + q2 to transform the equations into polynomi-

als. To simplify the resulting system, we replace vector

(1 + q2)C0 by vector Ĉ0 of three new unknowns and the

vector (1 + q2)t by vector t̂. This leads to the following

matrix projection equation

Si (I+ (yi − y0)[w]x) RvR̂ (q)Xi + Ĉ0 + (yi − y0)t̂ = 0.

(10)

This matrix equation results in three polynomial equa-

tions for each 2D ↔ 3D point correspondence. However,

since the skew symmetric matrix Si has rank two, only two

of these equations are linearly independent.

There are ten unknowns in equation (10), six unknown

translation parameters C0 and t, three unknown parame-

ters in w and unknown rotation parameter q. Therefore, the

minimal number of 2D ↔ 3D point correspondences neces-

sary to solve the absolute pose rolling shutter problem with

known vertical direction is five.

For five point correspondences, the projection equa-

tion (10) results in 10 linearly independent equations in ten

unknowns. These equations are linear in the unknown trans-

lation parameters Ĉ0 and t̂. Therefore, these translation

parameters can be easily eliminated from (10) by Gauss-

Jordan (G-J) elimination of a matrix representing the input

equations (10). Note that it is necessary to consider all 15
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linearly dependent equations from (10) in this G-J elimina-

tion because different equations are linearly independent in

different scene configurations.

Since six of the ten linearly independent equations

of (10) are used for the elimination of Ĉ0 and t̂, we are left

with four equations in four unknowns w and q. Elements of

the unknown vector w appear linearly in these four equa-

tions and thus the equations can be rewritten

















p
[2]
11(q p

[2]
12(q) p

[2]
13(q) p

[2]
14(q)

p
[2]
21(q) p

[2]
22(q) p

[2]
23(q) p

[2]
24(q)

p
[2]
31(q) p

[2]
32(q) p

[2]
33(q) p

[2]
34(q)

p
[2]
41(q) p

[2]
42(q) p

[2]
43(q) p

[2]
44(q)

































w1

w2

w3

1

















=M(q)

















w1

w2

w3

1

















=0,(11)

where pij(q) is a polynomial in q and the upper index [·]
denotes its degree. We know that the matrix equation equa-

tion (11) has a non-trivial solution if and only if the determi-

nant of the 4×4 polynomial coefficient matrix M(q) is equal

to zero. This determinant directly leads to a degree 8 poly-

nomial equation in unknown rotation parameter q. Its so-

lutions can be efficiently found using the Sturm sequences

method [29]. After recovering up to eight real solutions for

q, we can back-substitute them into equation (11) to recover

w linearly. Finally, we back-substitute q and w into (10) to

linearly determine the translation vectors Ĉ0 = (1+ q2)C0

and t̂ = (1 + q2)t.

4. Experiments

In this section we analyze the performance of R5Pup.

The properties of the solver behavior under different condi-

tions were thoroughly evaluated on synthetic data. On the

real data, R5Pup was compared against P3P and P5P algo-

rithms which are the plausible alternatives used for perspec-

tive cameras.

We compared R5Pup to the following relevant algo-

rithms for camera absolute pose estimation:

• R6P - a rolling shutter absolute pose from six points

presented in [2],

• P3P - standard implementation based on [9],

• P2Pup - two-point perspective absolute pose solver us-

ing “up-vectop” presented in [17],

• P5PLM - PnP on five correspondences using itera-

tive Levenberg-Marquardt optimization implemented

in OpenCV,

• EP5P - PnP on five correspondences using the EPnP

method of [18] implemented in OpenCV.

• UPNP - PnP on six correspondences using the UPnP

method of [16].
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Figure 1: Results for varying camera angular velocity only.
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Figure 2: Results for varying both camera angular velocity

and translational velocity.

4.1. Synthetic data

Experiments using synthetic data were aimed at showing

R5Pup performance under different camera motions, pres-

ence of noise and erroneous estimates of the gravity vec-

tor. The data consisted of randomly placed points in a cube

with side length 2 centered at the origin. Cameras were then

placed randomly in the distance of ⟨1; 3.3⟩ from the origin.

Cameras were calibrated with their field of view of 45 de-

grees. Since the solver returns up to 8 solutions we selected

the one closest to the ground truth, since it would most

likely be the one selected by RANSAC. Errors were mea-

sured in the camera orientation and position for all tested

methods. For R5Pup we also evaluated the error in esti-

mated angular velocity and translational velocity.

First, the algorithm was tested in the presence of cam-

era motion and zero noise. Three cases were considered:

(1) rotational movement only, (2) translational movement

only and (3) both together. The camera motion was sim-

ulated using constant translational velocity and the Cayley

parametrization model shown in [2]. For the case of rota-

tional camera movement, the results in figure 1 show that

the solver is able to deliver camera poses with relative po-

sition error under 1% and camera orientation error well un-

der 0.5 degrees even for rapid camera rotation with more

than 30 degrees per frame capture. The same results were

observed for both camera rotational and translational move-
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Figure 3: Comparing R5Pup pose estimates to other meth-

ods on data with varying camera angular velocity and trans-

lational velocity.

ment, figure 2, showing that the camera translation move-

ment does not have significant effect on the performance of

R5Pup. The translation was varied up to 30% of the aver-

age distance of the camera from the 3D points. For pure

translational movement in the absence of noise the solver

produced exact results up to the machine precision which

was expected since the model perfectly fits the data. This

holds also for the case of zero camera rotation velocity in

both figures 1 and 2.

Next, the susceptibility of R5Pup to noise was analyzed.

The results in figure 4 show that noisy measurements in

the presence of rolling shutter distortion do not significantly

affect the performance of perspective camera methods and

only slightly influence the result of R5Pup and R6P. We ac-

count this to the fact that the distortion caused by rolling

shutter acts itself as noise of high magnitude for the per-

spective camera absolute pose algorithms and the noise

added by imprecise feature detection or camera quantiza-

tion is negligible compared to the RS effect.

The important question is, how does the error in the ver-

tical direction estimation influence the results. Today even

low cost IMU’s can provide the gravity direction with ac-

curacy under 0.5 degrees. However, during larger camera

movements which cause significant RS image distortions

we expect the gravity direction error to be higher. There-

fore, we tested errors up to two degrees. The rotational ve-

locity was set to 20 degrees per frame and relative transla-

tional velocity as 10%. It is clear that the precision of the

IMU is critical for R5P. Results in figure 5 show that R5Pup

outperforms other methods in the camera orientation esti-
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Figure 4: Comparing R5Pup pose estimates to other meth-

ods on data with varying noise in the 2D measurements.
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Figure 5: Introducing different errors on the vertical direc-

tion information.

mation up to two degrees of angular gravity direction error

and in the camera center estimation up to one degree angu-

lar gravity direction error.

4.2. Real data

We focused on two typical use cases of absolute pose

algorithms in our real experiments. The camera pose esti-

mation for augmented reality and 3D model reconstruction

using Structure from motion. Data was collected using a
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Figure 6: Using ArUco pattern to obtain 2D-3D correspon-

dences. Camera pose estimation allows to place objects in

the scene.
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Figure 7: Visualization of the tested camera motions in real

data experiments. Notice that the skew effect caused by

translation along x axis as well as the shrink/extend effect

caused by translation along y axis are different from the

ones caused by yaw and pitch since they affect distant ob-

jects less and near objects more.

cellphone Samsung Galaxy S5 which recorded both images

and the IMU measurements to provide upvectors.

For the first case, camera pose was estimated from data

obtained by augmented reality library ArUco [7]. A planar

marker was detected in the image providing twelve 2D-3D

correspondences. Such marker can be used to set-up a co-

ordinate system and place objects in the scene as in figure 6

From these twelve correspondences, five were chosen for

camera pose computation using R5Pup, P5PLM and EP5P.

Outer points were selected primarily in order to cover the

most of the image area. For P3P and P2Pup three and

two correspondences were selected respectively. In order

to make the comparison fair, all possible pairs and triplets

from the five points used by other algorithms were tested.

R6P was not evaluated here, since we found that it does not

work on planar scenes.

Experiments focused on different camera motions to ob-

serve and identify cases where R5Pup brings improvement

over standard algorithms. Five experiments were conducted

with camera rotating in either roll, pitch or yaw and translat-

ing in x or y image direction. Each motion creates different

RS distortion effects.
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Figure 8: Mean reprojection error on the detected points of

the ArUco pattern.

R5Pup P2Pup P3P P5PLM EP5P

roll 0.325 0.527 0.868 0.543 0.346

pitch 0.128 0.379 0.822 0.329 0.286

yaw 0.111 0.590 0.343 0.200 0.269

Table 1: Histograms of distances from the mean camera

center for the second ArUco experiment. In the experiment

the camera center was not moving, therefore smaller dis-

tances mean better result.

Results in figure 8 show that R5Pup models the distor-

tions caused by moving RS camera better than all other

methods. It is clear that some motions induce more difficult

distortions for perspective camera models to handle than the

others. The most noticeable difference between perspective

camera model and our model is during translation along the

x image axis. As the rows are read out sequentially in the

direction of y axis, this causes skew effect in the image. In

contrast to that, translating in the y direction causes shrink-

ing or inflating along the x direction in the image. From the

rotational movements, most significant problems for P3P

were caused by yaw rotation, i.e., around the y axis in the

image. This also causes skew effects, whereas pitch, the

rotation around x image axis, causes again shrinking and

extending in the y image axis.

Next experiment was aimed at determining the precision

of the computed camera pose. In the absence of precise

ground truth camera position data, we developed an exper-

iment that shows the accuracy of retrieved camera poses.

ArUco marker of the size of 1m was printed and placed on a

ground plane. To induce the RS effect in the measurement,

we rotated the camera around its three axes as in the first

experiment, but this time with no translation. The camera

sensor motion is negligible compared to the distance of the

camera from the pattern (around 1.5m) and we can consider

the camera having constant projection centre.

Therefore, reconstructed camera centers should be ap-

proximately in one spot, which is their mean. The his-

tograms of distances from the mean was measured and is

shown in figure 9. Lower distance from the mean camera
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Figure 9: Camera center distances from the mean camera position. In the experiment, camera was purely rotating with no

translation, therefore lower numbers mean better position estimation.

center means better result. The standard deviations of the

distances are shown in table 1. R5Pup outperforms all the

other algorithms which don’t account for RS effect.

4.2.1 Structure from Motion

A very interesting question is how will R5Pup perform

when incorporated in a Structure from Motion pipeline

working with real data. To investigate this, we developed

a RS aware SfM pipeline which uses R5Pup to estimate ab-

solute pose. A classic approach introduced in [25] was used

and its key parts (point triangulation, bundle adjustment)

were adjusted to incorporate the same RS model as in the

R5Pup solver.

The initial geometry estimation is still global shutter,

since there is no available RS relative pose algorithm. The

initial cameras are, however, immediately optimized using

BA with RS model. After that, new cameras are added to

the model using R5Pup and the RS parameters w and t are

used throughout the optimization.

Due to transformations and deformations occurring dur-

ing the reconstruction, the upvector direction in the scene

is not guaranteed to remain [0, 1, 0]. An obvious solution

would be to fix the upvector directions measured by the

IMU so that the y-axis of each camera is fixed and only

the rotation around y is optimized.

Unfortunately, we found the measurements from the

cellphone IMU not precise enough for the reconstruction,

which was poor or failed completely when the upvectors

were fixed in the bundle adjustment.

To solve this issue, we developed the following ap-

proach. We don’t force the upvectors to stay fixed during

bundle adjustment. The upvectors are used only for adding

new cameras using R5Pup. As mentioned before, this does

not guarantee that the orientation of the scene will remain

such that the upvectors of cameras would point upwards.

This eventually causes problems when adding a new camera

and the reconstruction fails. We solve this by aligning the

subset of points which are used to estimate the new cam-

era’s pose such that their downward direction is as close

to [0, 1, 0] as possible. To do this, we find all the cameras

which see the points from such subset, take the average of

their upvector direction in the world coordinate frame rep-

resented by vector gavg and find a rotation Ralign such that

Raligngavg =
[

0 1 0
]⊤

and apply this rotation to the

subset of points used for R5Pup. After obtaining the new

camera’s orientation with respect to the aligned points Rlocal
we can compute the actual camera orientation in the scene

as Rscene = RlocalRalign.

With this approach we have been able to reconstruct the

datasets using upvectors from the cellphone IMU.

We compared our RS pipeline (R5P) to the widely

known SfM pipeline Visual SfM [27] (VSFM) created by

Changchang Wu. Data was obtained again using Samsung

Galaxy S5 cellphone. We show only datasets where there

was a observable qualitative difference between both meth-

ods. For the other datasets, the results were visually compa-

rable. Results as well as sample pictures from the datasets

are shown in figure 10.

Pictures from datasets House, Park and Street were cap-

tured while walking while holding the phone. Although

there was some hand shaking, their camera trajectories

should resemble a smooth line. Camera in dataset Tree

was translating vertically and in dataset Bench horizontally.

Dataset Door has the largest RS effect since the camera was

moving and rotating quite rapidly with no specific pattern.

In dataset House, there is a noticeable scatter in the cam-

eras reconstructed by VSFM whereas R5P gives a straight

line ax expected. A noticeably larger portion of the building

is reconstructed using R5P. Reconstruction of dataset Park

failed completely using VSFM but was reconstructed well

using R5P. In dataset Tree R5P reconstructed all 22 cam-

eras, whereas VSFM only 11. Notice also the missing tree.

Dataset Street was reconstructed quite well using both

methods but the trajectory of R5P cameras is again more

smooth and also the house walls are more consistent. In

dataset Door VSFM performed significantly worse presum-
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Figure 10: Structure from motion results on real data.

ably due to the large RS effect. Only the door was recon-

structed using VSFM where R5P reconstructed much larger

part of the visible scene. In dataset Bench it is difficult

to evaluate the quality of the model, but the cameras re-

constructed by VSFM are significantly more scattered and

some of them are off by a large amount.

5. Conclusion

In this paper, we presented a solution to the rolling shut-

ter absolute camera pose with known vertical direction.

Compared to the general minimal solution R6P, knowing

the vertical direction allows us to avoid double-linearization

and to solve for the camera orientation directly without us-

ing P3P as an initialization. It also reduces the number of

required 2D-to-3D correspondences to five. We have shown

how to construct an efficient solver based on hidden variable

resultant method. The solver gives up to 8 solutions and our

implementation runs in 140 µs which is much faster than

R6P [2]. We demonstrated the performance of the solver

thoroughly on synthetic as well as real data. The synthetic

experiments show great improvement in camera pose esti-

mation precision on rolling shutter data. When the upvector

is known precisely, the performance is at least the same or

better than the performance of R6P. According to our ex-

periments, we can expect improvements in camera pose es-

timation compare to the global shutter solvers up to the error

of 1.5 degree in the vertical direction measurement. That is

a value easily achievable using high quality IMU sensors,

but we have demonstrated that even using a common smart-

phone IMU we can obtain precise enough vertical direction

measurements for the solver to outperform others. Last but

not least, we have developed a RS aware SfM pipeline using

the new R5Pup solver to incrementally add cameras to the

scene. We have presented an approach to handling impre-

cise vertical direction measurements in such pipeline which

is necessary in order to get a good reconstruction. By com-

paring to the state-of-the-art SfM piepline Visual SfM we

have demonstrated the strengths of the R5Pup solver and its

practical use for 3D reconstruction.
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