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Abstract

Pedestrians follow different trajectories to avoid obsta-

cles and accommodate fellow pedestrians. Any autonomous

vehicle navigating such a scene should be able to foresee

the future positions of pedestrians and accordingly adjust

its path to avoid collisions. This problem of trajectory pre-

diction can be viewed as a sequence generation task, where

we are interested in predicting the future trajectory of peo-

ple based on their past positions. Following the recent suc-

cess of Recurrent Neural Network (RNN) models for se-

quence prediction tasks, we propose an LSTM model which

can learn general human movement and predict their future

trajectories. This is in contrast to traditional approaches

which use hand-crafted functions such as Social forces. We

demonstrate the performance of our method on several pub-

lic datasets. Our model outperforms state-of-the-art meth-

ods on some of these datasets . We also analyze the tra-

jectories predicted by our model to demonstrate the motion

behaviour learned by our model.

1. Introduction

Humans have the innate ability to “read” one another.

When people walk in a crowed public space such as a side-

walk, an airport terminal, or a shopping mall, they obey a

large number of (unwritten) common sense rules and com-

ply with social conventions. For instance, as they consider

where to move next, they respect personal space and yield

right-of-way. The ability to model these rules and use them

to understand and predict human motion in complex real

world environments is extremely valuable for a wide range

of applications - from the deployment of socially-aware

robots [41] to the design of intelligent tracking systems [43]

in smart environments.

Predicting the motion of human targets while taking into

account such common sense behavior, however, is an ex-

tremely challenging problem. This requires understanding

∗indicates equal contribution

Figure 1. The goal of this paper is to predict the motion dynam-

ics in crowded scenes - This is, however, a challenging task as

the motion of each person is typically affected by their neighbors.

We propose a new model which we call ”Social” LSTM (Social-

LSTM) which can jointly predict the paths of all the people in

a scene by taking into account the common sense rules and so-

cial conventions that humans typically utilize as they navigate in

shared environments. The predicted distribution of their future tra-

jectories is shown in the heat-map.

the complex and often subtle interactions that take place be-

tween people in crowded spaces. Recent research in com-

puter vision has successfully addressed some of these chal-

lenges. Kitani et. al. [32] have demonstrated that the in-

ferred knowledge about the semantics of the static environ-

ment (e.g., location of sidewalks, extension of grass areas,

etc) helps predict the trajectory of pedestrians in future in-

stants more accurately than a model which ignores the scene

information. Pioneering works by [24, 50, 35] have also

proposed ways to model human-human interactions (often

called ”social forces”) to increase robustness and accuracy

in multi-target tracking problems.

However, most of these works are limited by the follow-

ing two assumptions. i) They use hand-crafted functions

to model ”interactions” for specific settings rather than in-

ferring them in a data-driven fashion. This results in fa-
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voring models that capture simple interactions (e.g. repul-

sion/attractions) and might fail to generalize for more com-

plex crowded settings. ii) They focus on modeling inter-

actions among people in close proximity to each other (to

avoid immediate collisions). However, they do not antici-

pate interactions that could occur in the more distant future.

In this work, we propose an approach that can address

both challenges through a novel data-driven architecture for

predicting human trajectories in future instants. Inspired

by the recent success of Long-Short Term Memory net-

works (LSTM) for different sequence prediction tasks such

as handwriting [20] and speech [21] generation, we extend

them for human trajectory prediction as well. While LSTMs

have the ability to learn and reproduce long sequences, they

do not capture dependencies between multiple correlated

sequences.

We address this issue through a novel architecture which

connects the LSTMs corresponding to nearby sequences. In

particular, we introduce a “Social” pooling layer which al-

lows the LSTMs of spatially proximal sequences to share

their hidden-states with each other. This architecture, which

we refer to as the “Social-LSTM”, can automatically learn

typical interactions that take place among trajectories which

coincide in time. This model leverages existing human tra-

jectory datasets without the need for any additional anno-

tations to learn common sense rules and conventions that

humans observe in social spaces.

Finally, we demonstrate that our Social-LSTM is capable

of predicting trajectories of pedestrians much more accu-

rately than state-of-the-art methods on two publicly avail-

able datasets: ETH [49], and UCY [39]. We also analyze

the trajectory patterns generated by our model to understand

the social constraints learned from the trajectory datasets.

2. Related work

Human-human interactions Pioneering work from Hel-

bing and Molnar [24] presented a pedestrian motion model

with attractive and repulsive forces referred to as the Social

Force model. This has been shown to achieve competitive

results even on modern pedestrian datasets [39, 49]. This

method was later extended to robotics [41] and activitiy un-

derstanding [43, 73, 50, 38, 37, 9, 10].

Similar approaches have been used to model human-

human interactions with strong priors for the model.

Treuille et. al. [62] use continuum dynamics, Antonini et.

al. [2] propose a Discrete Choice framework and Wang et.

al. [69], Tay et. al. [59] use Gaussian processes. Such

functions have alse been used to study stationary groups

[74, 48]. These works target smooth motion paths and do

not handle the problems associated with discretization.

Another line of work uses well-engineered features and

attributes to improve tracking and forecasting. Alahi et. al.

[1] presented a social affinity feature by learning from hu-

man trajectories in crowd their relative positions, while Yu

et. al. [74] proposed the use of human-attributes to improve

forecasting in dense crowds. They also use an agent-based

model similar to [6]. Rodriguez et al. [54] analyze videos

with high-density crowds to track and count people.

Most of these models provide hand-crafted energy po-

tentials based on relative distances and rules for specific

scenes. In contrast, we propose a method to learn human-

human interactions in a more generic data-driven fashion.

Activity forecasting Activity forecasting models try to

predict the motion and/or action to be carried out by peo-

ple in a video. A large body of work learns motion patterns

through clustering trajectories [26, 30, 46, 77]. More ap-

proaches can be found in [45, 52, 34, 3, 16, 33]. Kitani et.

al. in [32] use Inverse Reinforcement Learning to predict

human paths in static scenes. They infer walkable paths in

a scene by modeling human-space interactions. Walker et

al. in [68] predict the behavior of generic agents (e.g., a ve-

hicle) in a visual scene given a large collection of videos.

Ziebart et al. [78, 23] presented a planning based approach.

Turek et al. [63, 40] used a similar idea to identify

the functional map of a scene. Other approaches like

[27, 19, 42, 36] showed the use of scene semantics to pre-

dict goals and paths for human navigation. Scene seman-

tics has also been used to predict multiple object dynamics

[17, 36, 34, 28]. These works are mostly restricted to the

use of static scene information to predict human motion or

activity. In our work, we focus on modeling dynamic crowd

interactions for path prediction.

More recent works have also attempted to predict future

human actions. In particular, Ryoo et. al. [55, 8, 71, 67,

44, 58] forecast actions in streaming videos. More relevant

to our work, is the idea of using a RNN mdoel to predict

future events in videos [53, 57, 66, 56, 31]. Along similar

lines, we predict future trajectories in scenes.

RNN models for sequence prediction Recently Recur-

rent Neural Networks (RNN) and their variants including

Long Short Term Memory (LSTM) [25] and Gated Recur-

rent Units [12] have proven to be very successful for se-

quence prediction tasks: speech recognition [21, 11, 13],

caption generation [64, 29, 75, 15, 72], machine translation

[4], image/video classification [7, 22, 70, 47], human dy-

namics [18] to name a few. RNN models have also proven

to be effective for tasks with densely connected data such

as semantic segmentation [76], scene parsing [51] and even

as an alternative to Convolutional Neural Networks [65].

These works show that RNN models are capable of learn-

ing the dependencies between spatially correlated data such

as image pixels. This motivates us to extend the sequence

generation model from Graves et al. [20] to our setting. In

particular, Graves et al. [20] predict isolated handwriting
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sequences; while in our work we jointly predict multiple

correlated sequences corresponding to human trajectories.

3. Our model

Humans moving in crowded scenes adapt their motion

based on the behaviour of other people in their vicinity.

For instance, a person could completely alter his/her path or

stop momentarily to accommodate a group of people mov-

ing towards him. Such deviation in trajectory cannot be pre-

dicted by observing the person in isolation. Neither, can it

be predicted with simple ”repulsion” or ”attraction” func-

tions (the traditional social forces models [24, 43, 73, 50])

This motivates us to build a model which can account for

the behavior of other people within a large neighborhood,

while predicting a person’s path. In this section, we describe

our pooling based LSTM model (Fig. 2) which jointly pre-

dicts the trajectories of all the people in a scene. We refer

to this as the “Social” LSTM model.

Problem formulation We assume that each scene is first

preprocessed to obtain the spatial coordinates of the all peo-

ple at different time-instants. Previous work follow this

convention as well [41, 1]. At any time-instant t, the ith

person in the scene is represented by his/her xy-coordinates

(xi
t, y

i
t). We observe the positions of all the people from

time 1 to Tobs, and predict their positions for time instants

Tobs+1 to Tpred. This task can also be viewed as a sequence

generation problem [20], where the input sequence corre-

sponds to the observed positions of a person and we are in-

terested in generating an output sequence denoting his/her

future positions at different time-instants.

3.1. Social LSTM

Every person has a different motion pattern: they move

with different velocities, acceleration and have different

gaits. We need a model which can understand and learn

such person-specific motion properties from a limited set of

initial observations corresponding to the person.

Long Short-Term Memory (LSTM) networks have been

shown to successfully learn and generalize the properties of

isolated sequences like handwriting [20] and speech [21].

Inspired by this, we develop a LSTM based model for our

trajectory prediction problem as well. In particular, we have

one LSTM for each person in a scene. This LSTM learns

the state of the person and predicts their future positions as

shown in Fig. 2. The LSTM weights are shared across all

the sequences.

However, the naive use of one LSTM model per person

does not capture the interaction of people in a neighbor-

hood. The vanilla LSTM is agnostic to the behaviour of

other sequences. We address this limitation by connecting

neighboring LSTMs through a new pooling strategy visual-

ized in Fig. 3,2.

Figure 2. Overview of our Social-LSTM method. We use a sepa-

rate LSTM network for each trajectory in a scene. The LSTMs are

then connected to each other through a Social pooling (S-pooling)

layer. Unlike the traditional LSTM, this pooling layer allows spa-

tially proximal LSTMs to share information with each other. The

variables in the figure are explained in Eq. 2. The bottom row

shows the S-pooling for one person in the scene. The hidden-states

of all LSTMs within a certain radius are pooled together and used

as an input at the next time-step.

Social pooling of hidden states Individuals adjust their

paths by implicitly reasoning about the motion of neighbor-

ing people. These neighbors in-turn are influenced by oth-

ers in their immediate surroundings and could alter their be-

haviour over time. We expect the hidden states of an LSTM

to capture these time varying motion-properties. In order

to jointly reason across multiple people, we share the states

between neighboring LSTMS. This introduces a new chal-

lenge: every person has a different number of neighbors and

in very dense crowds [1], this number could be prohibitively

high.

Hence, we need a compact representation which com-

bines the information from all neighboring states. We han-

dle this by introducing “Social” pooling layers as shown in

Fig. 2. At every time-step, the LSTM cell receives pooled

hidden-state information from the LSTM cells of neighbors.
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While pooling the information, we try to preserve the spatial

information through grid based pooling as explained below.

The hidden state ht
i of the LSTM at time t captures the

latent representation of the ith person in the scene at that in-

stant. We share this representation with neighbors by build-

ing a “Social” hidden-state tensor Hi
t . Given a hidden-state

dimension D, and neighborhood size No, we construct a

No ×No ×D tensor Hi
t for the ith trajectory:

Hi
t(m,n, :) =

∑

j∈Ni

1mn[x
j
t − xi

t, y
j
t − yit]h

j
t−1, (1)

where h
j
t−1 is the hidden state of the LSTM corresponding

to the jth person at t− 1, 1mn[x, y] is an indicator function

to check if (x, y) is in the (m,n) cell of the grid, and Ni is

the set of neighbors corresponding to person i. This pooling

operation is visualized in Fig. 3.

We embed the pooled Social hidden-state tensor into a

vector ati and the co-ordinates into eti.These embeddings are

concatenated and used as the input to the LSTM cell of the

corresponding trajectory at time t. This introduces the fol-

lowing recurrence:

eit = φ(xi
t, y

i
t;We) (2)

ati = φ(Hi
t ; Wa),

ht
i = LSTM

(

ht−1

i , eti, a
i
t; Wl

)

where φ(.) is an embedding function with ReLU non-

linearlity, We and Wa are embedding weights. The LSTM

weights are denoted by Wl.

Position estimation The hidden-state at time t is used to

predict the distribution of the trajectory position (x̂, ŷ)it+1

at the next time-step t+1. Similar to Graves et al. [20], we

assume a bivariate Gaussian distribution parametrized by

the mean µi
t+1 = (µx, µy)

i

t+1
, standard deviation σi

t+1 =

(σx, σy)
i

t+1
and correlation coefficient ρit+1. These param-

eters are predicted by a linear layer with a 5 × D weight

matrix Wp. The predicted coordinates (x̂i
t, ŷ

i
t) at time t are

given by

(x̂, ŷ)
i

t ∼ N (µi
t, σ

i
t, ρ

i
t) (3)

The parameters of the LSTM model are learned by min-

imizing the negative log-Likelihood loss (Li for the ith tra-

jectory):

[

µi
t, σ

i
t, ρ

i
t

]

= Wph
t−1

i (4)

Li(We,Wl,Wp) = −

Tpred
∑

t=Tobs+1

log
(

P(xi
t, y

i
t|σ

i
t, µ

i
t, ρ

i
t)
)

,

h
1 

h
3 

h
2 

h
1 

h
3 

h
2 h

1+
+h

2 

h
3 

Figure 3. We show the Social pooling for the person represented

by a black-dot. We pool the hidden states of the neighbors (shown

in yellow, blue and orange) within a certain spatial distance. The

pooling partially preserves the spatial information of neighbors as

shown in the last two steps.

We train the model by minimizing this loss for all the tra-

jectories in a training dataset. Note that our “Social” pool-

ing layer does not introduce any additional parameters.

An important distinction from the traditional LSTM is

that the hidden states of multiple LSTMs are coupled by

our “Social” pooling layer and we jointly back-propagate

through multiple LSTMs in a scene at every time-step.

Occupancy map pooling The ”Social” LSTM model can

be used to pool any set of features from neighboring tra-

jectories. As a simplification, we also experiment with a

model which only pools the co-ordinates of the neighbors

(referred to as O-LSTM in the experiments Sect. 4). This

is a reduction of the original model and does not require

joint back-propagation across all trajectories during train-

ing. This model can still learn to reposition a trajectory to

avoid immediate collision with neighbors. However, in the

absence of more information from neighboring people, this

model would be unable to smoothly change paths to avoid

future collisions.

For a person i, we modify the definition of the tensor

Hi
t , as a No × No matrix at time t centered at the person’s

position, and call it the occupancy map Oi
t . The positions of

all the neighbors are pooled in this map. The m,n element

of the map is simply given by:

Oi
t(m,n) =

∑

j∈Ni

1mn[x
j
t − xi

t, y
j
t − yit], (5)

where 1mn[.] is an indicator function as defined previ-

ously. This can also be viewed as a simplification of the so-

cial tensor in Eq. 1 where the hidden state vector is replaced

by a constant value indicating the presence or absence of

neighbors in the corresponding cell.

The vectorized occupancy map is used in place of Hi
t in

Eq. 2 while learning this simpler model.

Inference for path prediction During test time, we use

the trained Social-LSTM models to predict the future posi-

tion (x̂i
t, ŷ

i
t) of the ith person. From time Tobs+1 to Tpred,
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we use the predicted position (x̂i
t, ŷ

i
t) from the previous

Social-LSTM cell in place of the true coordinates (xi
t, y

i
t)

in Eq. 2. The predicted positions are also used to replace

the actual coordinates while constructing the Social hidden-

state tensor Hi
t in Eq. 1 or the occupancy map Oi

t in Eq.

5.

3.2. Implementation details

We use an embedding dimension of 64 for the spatial co-

ordinates before using them as input to the LSTM. We set

the spatial pooling size No to be 32 and use a 8x8 sum pool-

ing window size without overlaps. We used a fixed hidden

state dimension of 128 for all the LSTM models. Addi-

tionally, we also use an embedding layer with ReLU (recti-

fied Linear Units) non-linearity on top of the pooled hidden-

state features, before using them for calculating the hidden

state tensor Hi
t . The hyper-parameters were chosen based

on cross-validation on a synthetic dataset. This synthetic

was generated using a simulation that implemented the so-

cial forces model. This synthetic data contained trajectories

for hundreds of scenes with an average crowd density of 30
per frame. We used a learning rate of 0.003 and RMS-prop

[14] for training the model. The Social-LSTM model was

trained on a single GPU with a Theano [5] implementation.

4. Experiments

In this section, we present experiments on two publicly

available human-trajectory datasets: ETH [49] and UCY

[39]. The ETH dataset contains two scenes each with 750
different pedestrians and is split into two sets (ETH and

Hotel). The UCY dataset contains two scenes with 786
people. This dataset has 3-components: ZARA-01, ZARA-

02 and UCY. In total, we evaluate our model on 5 sets of

data. These datasets represent real world crowded settings

with thousands of non-linear trajectories. As shown in [49],

these datasets also cover challenging group behaviours such

as couples walking together, groups crossing each other and

groups forming and dispersing in some scenes.

We report the prediction error with three different met-

rics. Similar to Pellegrini et al. [49] we use:

1. Average displacement error - The mean square error

(MSE) over all estimated points of a trajectory and the

true points. This was introduced in Pellegirini et al.

[49].

2. Final displacement error - The distance between the

predicted final destination and the true final destination

at end of the prediction period Tpred.

3. Average non-linear displacement error - The is the

MSE at the non-linear regions of a trajectory. Since

most errors in trajectory-prediction occur during non-

linear turns arising from human-human interactions,

we explicitly evaluate the errors around these regions.

We set a heuristic threshold on the norm of the second

derivative to identify non-linear regions.

In order to make full use of the datasets while training

our models, we use a leave-one-out approach. We train and

validate our model on 4 sets and test on the remaining set.

We repeat this for all the 5 sets. We also use the same train-

ing and testing procedure for other baseline methods used

for comparison.

During test time, we observe a trajectory for 3.2secs and

predict their paths for the next 4.8secs. At a frame rate of

0.4, this corresponds to observing 8 frames and predicting

for the next 12 frames. This is similar to the setting used

by [49, 39]. In Tab. 4, we compare the performance of our

model with state-of-the-art methods as well as multiple con-

trol settings:

• Linear model (Lin.) We use an off-the-shelf Kalman

filter to extrapolate trajectories with assumption of lin-

ear acceleration.

• Collision avoidance (LTA). We report the results of

a simplified version of the Social Force [73] model

which only uses the collision avoidance energy, com-

monly referred to as linear trajectory avoidance.

• Social force (SF). We use the implementation of the

Social Force model from [73] where several factors

such as group affinity and predicted destinations have

been modeled.

• Iterative Gaussian Process (IGP). We use the imple-

mentation of the IGP from [61]. Unlike the other base-

lines, IGP also uses additional information about the

final destination of a person.

• Our Vanilla LSTM (LSTM). This is a simplified setting

of our model where we remove the “Social” pooling

layers and treat all the trajectories to be independent of

each other.

• Our LSTM with occupancy maps (O-LSTM). We show

the performance of a simplified version of our model

(presented in Sec. 3.1). As a reminder, the model only

pools the coordinates of the neighbors at every time-

instance.

The naive linear model produces high prediction errors,

which are more pronounced around non-linear regions as

seen from the average non-linear displacement error. The

vanilla LSTM outperforms this linear baseline since it can

extrapolate non-linear curves as shown in Graves et al.

[20]. However, this simple LSTM is noticeably worse than

the Social Force and IGP models which explicitly model
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Metric Methods Lin LTA SF [73] IGP* [60] LSTM our O-LSTM our Social-LSTM

Avg. disp.

error

ETH [49] 0.80 0.54 0.41 0.20 0.60 0.49 0.50

HOTEL [49] 0.39 0.38 0.25 0.24 0.15 0.09 0.11

ZARA 1 [39] 0.47 0.37 0.40 0.39 0.43 0.22 0.22

ZARA 2 [39] 0.45 0.40 0.40 0.41 0.51 0.28 0.25

UCY [39] 0.57 0.51 0.48 0.61 0.52 0.35 0.27

Average 0.53 0.44 0.39 0.37 0.44 0.28 0.27

Avg. non-linear

disp. error

ETH [49] 0.95 0.70 0.49 0.39 0.28 0.24 0.25

HOTEL [49] 0.55 0.49 0.38 0.34 0.09 0.06 0.07

ZARA 1 [39] 0.56 0.39 0.41 0.54 0.24 0.13 0.13

ZARA 2 [39] 0.44 0.41 0.39 0.43 0.30 0.20 0.16

UCY [39] 0.62 0.57 0.54 0.62 0.31 0.20 0.16

Average 0.62 0.51 0.44 0.46 0.24 0.17 0.15

Final disp.

error

ETH [49] 1.31 0.77 0.59 0.43 1.31 1.06 1.07

HOTEL [49] 0.55 0.64 0.37 0.37 0.33 0.20 0.23

ZARA 1 [39] 0.89 0.66 0.60 0.39 0.93 0.46 0.48

ZARA 2 [39] 0.91 0.72 0.68 0.42 1.09 0.58 0.50

UCY [39] 1.14 0.95 0.78 1.82 1.25 0.90 0.77

Average 0.97 0.74 0.60 0.69 0.98 0.64 0.61

Table 1. Quantitative results of all the methods on all the datasets. We present the performance metrics as follows: First 6 rows are the

Average displacement error, row 7 to 12 are the Average displacement error for non-linear regions, and the final 6 rows are the Final

displacement error. All methods forecast trajectories for a fixed period of 4.8 seconds. (*) Note that IGP uses the intended ground truth

destination of a person during test time unlike other methods.

human-human interactions. This shows the need to account

for such interactions.

Our Social pooling based LSTM and O-LSTM outper-

form the heavily engineered Social Force and IGP models

in almost all datasets. In particular, the error reduction is

more significant in the case of the UCY datasets as com-

pared to ETH. This can be explained by the different crowd

densities in the two datasets: UCY contains more crowded

regions with a total of 32K non-linearities as opposed to the

more sparsely populated ETH scenes with only 15K non-

linear regions.

In the more crowded UCY scenes, the deviation from lin-

ear paths is more dominated by human-human interactions.

Hence, our model which captures neighborhood interac-

tions achieves a higher gain in UCY datasets. The pedes-

trians’ intention to reach a certain destination plays a more

dominant role in the ETH datasets. Consequently, the IGP

model which knows the true final destination during testing

achieves lower errors in parts of this dataset.

In the case of ETH, we also observe that the occupancy

and Social LSTM errors are at par with each other and

in general better than the Social force model. Again, our

Social-LSTM outperforms O-LSTM in the more crowded

UCY datasets. This shows the advantage of pooling the en-

tire hidden state to capture complex interactions in dense

crowds.

4.1. Analyzing the predicted paths

Our quantitative evaluation in the Sec. 4 shows that the

learned Social-LSTM model outperforms state-of-the-art

methods on standard datasets. In this section, we try to gain

more insights on the actual behaviour of our model in differ-

ent crowd settings. We qualitatively study the performance

of our Social-LSTM method on social scenes where indi-

viduals interact with each others in a specific pattern.

We present an example scene occupied by four individ-

uals in Figure 4. We visualize the distribution of the paths

predicted by our model at different time-instants. The first

and third rows in Figure 4 show the current position of each

person as well as their true trajectory (solid line for the fu-

ture path and dashed line for the past). The second and

fourth rows show our Social-LSTM prediction for the next

12.4 secs. In these scenes, we observe three people(2,3,4)

walking close to each other and a fourth person(1) walking

farther away from them.

Our model predicts a linear path for person(1) at all

times. The distribution for person (1) is similar across time

indicating that the speed of the person is constant.

We can observe more interesting patterns in the predicted

trajectories for the 3-person group. In particular, our model

makes intelligent route choices to yield for others and pre-

empt future collisions. For instance, at time-steps 2, 4, and 5

our model predicts a deviation from the linear paths for per-

son(3) and person(4), even before the start of the actual turn.
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- 1 will go straight, and  
- 2,3,4 will interact 

- 3 will turn to avoid 1,  
- 4 is turning around 3 
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- 4 updated the turn  
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 linear path 
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Figure 4. We visualize the probability distribution of the predicted paths for 4 people moving in a scene across 6 time steps. The sub-caption

describes what our model is predicting. At each time-step: the solid lines in rows 1,3 represents the ground-truth future trajectories, the

dashed lines refer to the observed positions till that time-step and the dots denote the position at that time-step. We notice that our model

often correctly predicts the future paths in challenging settings with non-linear motions. We analyze these figures in more details in Sec. 4.1.

Note that T stands for time and the id (1 to 4) denote person ids. More examples are provided in the supplementary material.

At time-step 3 and 4, we notice that the Social-LSTM pre-

dicts a “halt” for person(3) in order to yield for person(1).

Interestingly at time-step 4, the location of the haling point

is updated to match the true turning-point in the path. At the

next time-step, with more observations, the model is able to

correctly predict the full turn anchored at that point.

In Figure 5, we illustrate the prediction results of our

Social-LSTM, the SF model [49] and the linear baseline on

one of the ETH datasets. When people walk in a group or as

e.g. a couple, our model is able to jointly predict their trajec-

tories. It is interesting to note that unlike Social Forces[73]

we do not explicitly model group behavior. However, our

model is better at predicting grouped trajectories in a holis-

tic fashion. In the last row of Figure 5, we show some fail-

ure cases, i.e., when our predictions are worse than previous

works. We either predict a a linear path (2nd column) or de-
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Linear!

Social-LSTM!

GT !

SF [73]!

Figure 5. Illustration of our Social-LSTM method predicting trajectories. On the first 3 rows, we show examples where our model success-

fully predicts the trajectories with small errors (in terms of position and speed). We also show other methods such as Social Forces [73]

and linear method. The last row represents failure cases, e.g., person slowed down or took a linear path. Nevertheless, our Social-LSTM

method predicts a plausible path. The results are shown on ETH dataset [49].

celerate earlier (1st and 3rd column) than needed. Although

the trajectories do not match the ground-truth in these cases,

our Social-LSTM still outputs ”plausible” trajectories, i.e.

trajectories that humans could have taken. For instance, in

the first and third columns, our model slows down to avoid

a potential collision with the person ahead.

5. Conclusions

We have presented a LSTM-based model that can jointly

reason across multiple individuals to predict human trajec-

tories in a scene. We use one LSTM for each trajectory and

share the information between the LSTMs through the in-

troduction of a new Social pooling layer. We refer to the re-

sulting model as the “Social” LSTM. Our proposed method

outperforms state-of-the-art methods on two publicly avail-

able datasets. In addition, we qualitatively show that our

Social-LSTM successfully predicts various non-linear be-

haviors arising from social interactions, such as a group of

individuals moving together. Future work will extend our

model to multi-class settings where several objects such as

bicycles, skateboards, carts, and pedestrians share the same

space. Each object will have its own label in the occupancy

map. In addition, human-space interaction can be modeled

in our framework by including the local static-scene image

as an additional input to the LSTM. This could allow jointly

modeling of human-human and human-space interactions in

the same framework.
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