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Abstract

Scaling up visual category recognition to large numbers

of classes remains challenging. A promising research direc-

tion is zero-shot learning, which does not require any train-

ing data to recognize new classes, but rather relies on some

form of auxiliary information describing the new classes.

Ultimately, this may allow to use textbook knowledge that

humans employ to learn about new classes by transferring

knowledge from classes they know well. The most success-

ful zero-shot learning approaches currently require a par-

ticular type of auxiliary information – namely attribute an-

notations performed by humans – that is not readily avail-

able for most classes. Our goal is to circumvent this bot-

tleneck by substituting such annotations by extracting mul-

tiple pieces of information from multiple unstructured text

sources readily available on the web. To compensate for

the weaker form of auxiliary information, we incorporate

stronger supervision in the form of semantic part anno-

tations on the classes from which we transfer knowledge.

We achieve our goal by a joint embedding framework that

maps multiple text parts as well as multiple semantic parts

into a common space. Our results consistently and signifi-

cantly improve on the state-of-the-art in zero-short recogni-

tion and retrieval.

1. Introduction

The acquisition of visual concepts in humans and ma-

chines is still very different. It is hypothesized that early

concept acquisition in children mostly follows a learning

by example approach where visual concepts are directly

grounded in sensory information and linked across modali-

ties [40]. However, this alone does not explain the diverse

visual knowledge of an adult. A lot of our knowledge is

preserved and conveyed via text and nowadays online re-

sources. This enables humans to recognize objects without

ever having seen a single instance of that object. Therefore

the knowledge of the class is no longer solely grounded in

sensory information, but rather transferred from prior expe-

riences to new classes. A practical example includes field
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Figure 1: We propose to jointly embed multiple language

representations and multiple semantic visual parts for fine-

grained zero-shot recognition. Our novel Noun-Attribute-

Difference (NAD) representations are based on differences

and distances between vectors in the word2vec space.

guides that describe different animal species via a range of

categorizations and part descriptions [45] and allow to rec-

ognize an animal without expert knowledge.

Recent work on zero-shot learning for visual recogni-

tion aims at equipping computer vision systems to recog-

nize novel classes without a single training example. The

required “knowledge” for the recognition task is transferred

via auxiliary information of different types. The most suc-

cessful techniques utilize human annotations of attributes

for each class. This is a particular type of auxiliary informa-

tion that is not readily available in large quantities. This lim-

itation hampers the progress of large-scale zero-shot learn-

ing. We argue that ultimately zero-shot learning techniques
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should leverage the same “auxiliary information” in terms

of text books and online articles that humans use, as those

are readily available in large quantities.

Realizing that such sources might be more noisy and dif-

ficult to leverage, we propose to combine them and to addi-

tionally use existing strong supervision for the visual infor-

mation. In particular, on the fine grained recognition task

that we investigate, detailed semantic part annotations are

available and on other datasets such as Pascal 3D [48] de-

tailed annotations of key-points are available. Such infor-

mation provides strong visual supervision and has shown to

greatly improve recognition accuracy [51, 35]. Our goal is

to compensate the loss in performance by using weaker –

but more broadly available – auxiliary language informa-

tion with a stronger visual supervision for classes that we

are transferring from.

Following the multi-modal embeddings paradigm for

zero-shot learning [47, 16, 1, 2, 4], we build a new frame-

work that uses strong visual supervision in an embedding

formulation that is flexible enough to accommodate a wide

range of textual sources. Our contributions are as follows.

(1) We propose to adapt Deep Fragment Embeddings [23]

used for language generation to zero-shot learning facilitat-

ing a joint embedding of multiple language cues and visual

information into a joint space. Our framework supports and

integrates a wide range of textual and visual sources. (2)

We propose a novel language embedding method leveraging

unstructured text as well as attributes without requiring any

human annotation. (3) We use strong supervision in terms

of semantic part annotations to compensate for weaker but

more broadly available auxiliary language information. We

improve the state-of-the-art for fine-grained zero-shot learn-

ing, both using unsupervised text sources as auxiliary infor-

mation and supervised attribute annotations if available. (4)

We show that the use of stronger visual annotations during

training allows to improve zero-shot performance without

requiring the same strong supervision during recognition.

The rest of the paper is organized as follows. Sec 2 sum-

marizes related work, Sec 3 details our multi-modal embed-

ding framework for zero-shot learning with strong supervi-

sion, Sec 4 presents our motivations for using visual parts

as strong supervision, Sec 5 details existing and proposed

text embedding methods for language parts, Sec 6 presents

our experiments, and Sec 7 concludes.

2. Related Work

Our work handles the challenging zero-shot problem [50,

39, 21, 26, 1, 34, 17] of the lack of labeled training data.

Since the training and test classes are disjoint, traditional su-

pervised learning methods which require per-image class la-

bels cannot be directly applied. Therefore, side information

that models the relationship between classes is required.

Attributes [15, 12, 26] relate different classes through

well-known, shared and human-interpretable traits. They

are often collected manually [21, 36, 11] and have shown

promising results for image classification [26, 1]. On the

other hand, the attribute collection through human anno-

tations becomes a costly process for fine-grained data col-

lections [45] where often only subtle visual differences be-

tween the objects exist. Therefore one needs a large num-

ber of attributes some of which can only be recognized

and discriminated by field experts. This greatly increases

the cost of annotations. Side information can also be col-

lected automatically [32, 19] from a large text corpora such

as wikipedia. Word2vec [32] learns a word’s representa-

tion based on the word occurrence statistics, BoW [19] uses

a pre-defined vocabulary to build word histograms. La-

bel embedding methods [5] have been shown effective in

modeling latent relationships between classes. For opti-

mizing a multi-class classification objective through label

embeddings, WSABIE [46] uses images and correspond-

ing labels to learn a label embedding. For zero-shot learn-

ing, DeViSE [16] employs a ranking based bi-linear label

embedding objective with image and distributed text repre-

sentations as input/output embeddings. Similarly, ALE [1]

employs an approximate ranking objective that uses images

and class-based attributes. ConSe [34] uses the probabilities

of a softmax-output layer to weigh the semantic vectors of

all the classes. [2] evaluates class-based vector representa-

tions built on fine-grained datasets for the zero-shot setting.

Similar embedding principles, often combined with re-

current neural networks [20] or a dependency parser [8],

have recently been applied to image-to-text retrieval [30, 22,

24], language generation [42, 23, 10], and question answer-

ing about images [29, 18, 38]. Our work follows the latest

research in joint modeling of language and vision features

by formulating an embedding of visual and textual repre-

sentations in a joint space. In contrast to prior work, our

approach accommodates and effectively integrates a wide

range of textual representations and uses strong supervision

in the form of semantic parts that remain optional at test

time. In other words, we combine the advantages of two

frameworks, i.e. joint image-text embeddings for zero-shot

learning [1, 2] and sentence generation through pairwise

similarity between visual and textual fragments [22, 23],

within a unified framework.

3. Zero-Shot Multi-Cue Embeddings

Following the state of the art zero-shot classification ap-

proaches in visual recognition [47, 16, 1, 2, 4], we cast

image classification as learning a compatibility function

between images and their textual descriptions. The best

known results have been obtained using human attribute de-

scriptions [2], which limits the applicability of zero shot ap-

proaches due to the necessity of human intervention. Con-

sequently, there is a desire to replace such human input and
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transition to an unsupervised setting that only leverages data

readily available, e.g. from online text sources. Yet, prior

evaluation [2] of such unsupervised approaches, which use

data automatically extracted from large text corpora, have

shown a significant drop in accuracy. While resources like

wikipedia most likely contain more information on a target

class than a few human-annotated attributes, it has not yet

been possible to leverage them to their fullest.

To better leverage readily available textual sources in an

unsupervised setting, we argue for holistic embedding tech-

niques that combine multiple and diverse language repre-

sentations together in order to capture the content of rich

textual sources in multiple textual parts allowing for a bet-

ter transfer of knowledge to unknown classes. Additionally,

we suggest a stronger supervision on the visual side, e.g.

in terms of semantic part annotations, that extracts visual

information from the known classes. In the following, we

will present our embedding formulation that achieves both

objectives.

We map semantic visual parts and language parts into a

common embedding space by combining the compatibility

learning framework based on embeddings [16, 1, 2] and the

Deep Fragment embeddings (DeFrag [23]) objective in a

single framework for zero-shot learning.

Objective. We define a zero-shot prediction function

that for given visual input (x), chooses the corresponding

class (y) with the maximum compatibility score:

f(x) = argmax
y

F (x, y). (1)

The compatibility function F is defined over the language

and visual parts as follows:

F (x, y) =
1

|gx||gy|

∑

i∈gx

∑

j∈gy

max(0, vTi sj) (2)

where gx is a set of visual parts for the image x and gy is

a set of language parts describing class y. We define our

multi-cue language and visual part embeddings as follows:

sj = f

(

∑

m

W language
m lm + blanguage

)

vi = W visual[CNNθc(Ib)] + bvisual (3)

lm is a token from a language modality m (we use human

annotated class-attributes, word2vec, and BoW as language

cues in our experiments), and all W
language
m are the encoders

for each modality that embed the language information into

a joint space. f(.) is the Rectified Linear Unit (ReLU)

which computes x← max(0, x). CNN(Ib) denotes a part

descriptor extracted from the bounding box Ib surrounding

the image part annotation b using deep convolutional neural

networks. The extracted descriptor is subsequently embed-

ded into the space of visual parts via the encoder W visual.

The max is truncated at 0 because the scores that are greater

than 0 are considered as correct assignments.

Finally, our objective function takes the form:

C(θ) = CP (θ) + α‖θ‖2
2

(4)

with θ = {W language,W visual} being the parameters of

the framework and the constraints are defined as:

F (xn, y) + ∆ ≤ F (xn, yn), ∀y ∈ Y (5)

where (xn, yn) denotes corresponding image-class pairs

available during training. Intuitively, we optimize for a

compatibility function that scores higher by at least a mar-

gin of ∆ for true image-class pairs.

The part alignment objective (CP ) in Eq 4 enforces a

language part to have a high score if that language part is

relevant to the image:

CP (θ) =
∑

i

∑

j

max(0, 1− yijv
T
i sj) (6)

In practice, we solve Eq. 6 via yij := sign(vTi sj), a heuris-

tic for Multiple Instance Learning [3] as it offers an efficient

alternative to direct optimization.

Optimization. The objective function (Eq. 4) is optimized

with Stochastic Gradient Descent (SGD) with mini-batches

of 100, momentum 0.9, and 20 epochs through the data. We

learn the word vectors lm and part descriptors CNN(Ib)
once and keep them fixed during the entire optimization

procedure. We validate the margin ∆, the learning rate and

the dimensionality of the embedding space based on the ac-

curacy on a validation set.

4. Semantic Visual Parts

Using parts for visual recognition has a long and suc-

cessful history for general object recognition including [14,

27, 13]. The notion of semantic parts plays a central role

in domains such as human pose estimation [49, 6], action

recognition [9, 37, 7] and face detection [55]. For fine-

grained classification [43, 26, 25, 44] where several object

parts are shared across categories, discriminative parts are

important for good performance [51, 52]. Also, CNNs have

been shown to implicitly [53, 54] model discriminative parts

of objects and images.

Based on the success of using parts in various forms for

object recognition we hypothesize that using strong super-

vision in the form of (semantic) part annotations should help

fine-grained zero-shot learning. Also intuitively, an object

class can be determined given the visual parts that it is com-

posed of, e.g. a large sea bird with black feet and curved

beak is a black footed albatross. Therefore, using strong su-

pervision in the form of part annotations we seek to mitigate

the loss of accuracy by using weaker auxiliary information
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in the form of unsupervised language representations. Note,

that in this work we only rely on having the part positions

annotated but do not use any other information such as part

name or part type. In fact, the objective of our embedding

method is formulated so that it does not require such one-

to-one correspondence between textual and visual parts.

More specifically, in this work, we use a pre-trained deep

convolutional network (CNN) to extract multiple semantic

visual parts from 19 bounding boxes surrounding different

image part annotations, i.e. the whole image, head, body,

full object, and 15 part locations annotated by fine-grained

object experts [45].

5. Language Parts

Zero-shot learning approaches have been struggling to

carry over the success from human attribute annotations to

less explicit but readily available descriptions like wikipedia

articles. In order to advance the transfer of class knowledge,

we study a wide range of language part representations that

all can be accommodated by our embedding approach. We

investigate traditional human attribute annotations, two es-

tablished word vector extraction methods, word2vec and

BoW, as well as propose two novel methods as an improve-

ment of these two, NAD and MBoW.

5.1. Prior Representations of Attributes and Text

Attributes [26] are distinguishing properties of objects,

e.g. curved beak, eats planktons, lives in water, etc. that are

easily recognized by humans and interpreted by computers.

Attributes are typically obtained through a two-step manual

annotation process. The first step is building a set of distin-

guishing properties that are related to a specific class while

the second step is about rating the presence/absence or the

strength of every attribute for each class. In the context

of fine-grained data collections, as most of the properties

are common across categories, the number of distinguish-

ing visual properties required is large which increases the

annotation cost. We refer to them in our experiment as the

supervised scenario and aim to develop solutions for the un-

supervised scenario where such human annotations are not

necessary anymore.

Word2vec [32] maps frequently occurring words in a

document to a vector space. It is a two-layer neural net-

work that learns to predict a set of target words from a set

of context words within a context window. Word2vec sum-

marizes a document and converts it into a vector. In our

case, one class, e.g. black footed albatross, is one document

and therefore can be represented as a vector. Word2vec has

been previously shown [2] to be effective for image classi-

fication and even fine-grained visual recognition. We use

existing [2] fine-grained class-word2vec vectors for direct

comparison of their and our frameworks.

Bag-of-Words is constructed as a per-class histogram of

frequently occurring words. We use wikipedia documents

that corresponds to the class of interest. The vocabulary

of frequently occurring words is defined by counting the

number of frequently repeating words inside the entire doc-

ument that contains all the classes. The least and most fre-

quently occurring words are eliminated from the vocabulary

due to their irrelevance or redundancy. We use the BoW

vectors of [2] for a fair comparison.

5.2. NAD: Noun­Attribute­Differences

Parallel to our multiple visual parts argument, we aim to

exploit semantic relationships of different words to derive

multiple language parts. Word2vec (Sec 5.1) builds a vec-

torial representation of each word that belongs to a learned

vocabulary. The word2vec vector space is constructed with

the aim to capture semantics and as a result word2vec cap-

tures several semantic regularities [31, 28] which can be

measured by doing simple arithmetic operations in this vec-

tor space.

In our novel word2vec extensions, we exploit the addi-

tive property of word2vec vectors in the context of fine-

grained zero-shot learning. A concrete example for this

property is as follows [33]. When we subtract the vector of

man from the vector of king and add the vector of woman,

the resulting vector is closest to the vector of queen. Our

fine-grained image classification task requires finding subtle

differences between two words describing two different bird

species. In the following we assume that we have a list of

attributes that name properties of different bird species. In-

stead of asking for human judgement on how related a cer-

tain class, i.e. black footed albatross, and a certain attribute,

curved beak, we want to automatically determine this sim-

ilarity using the vector differences of words in word2vec

space. We propose three Noun-Attribute-Difference (NAD)

variants to capture relevant language information (sketched

in Fig 1).

The first version leads to a single language part, the sec-

ond version consists of a constant number of parts per each

class, and the third version leads to a variable number of

language parts for each class. In the following formulations,

we define a set of classes C ∈ {c1, .., cn} with n being the

number of classes and a set of attributes A ∈ {a1, .., am}
with m being the total number of attributes. Moreover,

w2v(.) defines the vectorial representation of a word in the

word2vec space. Accordingly, wC(.) is the word2vec of a

class and wA(.) is the word2vec of an attribute.

NAD1. In this version, we aim to build a vector that repre-

sents the similarity of class words and attribute words in the

semantic word2vec space. We define NAD1 as follows:

NAD1(ci, j) = ‖wC(ci)− wA(aj)‖, ∀aj ∈ A (7)
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The NAD1 of a particular class is defined as the magni-

tude of the distance between the word2vec of a class and

the word2vec of each attribute for all the classes. As the

number of attributes is fixed, there is a single NAD1 vector

that is associated with each class. In other words, NAD1

corresponds to a single language part, i.e. LP=1.

NAD2. As an alternative to using all attributes and all

class names (NAD1), we aim to eliminate attributes that are

not relevant for a particular class. Classically this is de-

termined by human (expert) annotations which we want to

avoid. Instead we argue that this human annotation effort

can be eliminated by considering the similarity of class and

attribute words in the word2vec space.

Based on the magnitude of the distance in the word2vec

space, we define the set of attributes that are relevant for a

class as follows. B(ci) = {aj |aj ∈ Atop−n(ci)} where

Atop−n(ci) is a set of attributes that are the top− n nearest

neighbors in word2vec space to class ci. Accordingly, our

second NAD version is formulated as follows:

NAD2(ci) = {wC(ci)− wA(aj)|aj ∈ B(ci)} (8)

The NAD2 leads to the same number of language parts for

each class. However, as for each class the most similar

top − n attributes are highly likely to be different, the set

of attributes that are used in NAD2 is naturally not the same

for each class. We select LP = {5, 10, 25, 50, 75, 100} and

build six different sets of NAD2 representations.

NAD3. For the definition of the final alternative, we addi-

tionally assume that we know which attributes are present

for which class even though we do not know how important

an attribute is for any class. NAD3 is defined as follows:

NAD3(ci) = {wC(ci)− wA(aj)|aj ∈ A(ci)} (9)

where A(ci) is the set of attributes associated to class ci. In

the experiments below A(ci) is obtained by thresholding the

continuous attribute strengths which is known to introduce

errors [39]. It is important to note that only NAD3 requires

set A(ci) and that the other two NAD variants only require

the list of attributes that is relevant to all classes and use the

similarities of attributes and classes in word2vec space to

automatically generate language parts.

5.3. MBoW: Multiple Bag­of­Words

Similar to the NAD in Sec 5.3, we build multiple lan-

guage parts associated for each class as an extension to the

BoW method. We use wikipedia articles that corresponds

to each class as our text corpus. We build three different

versions of multiple bag-of-words.

MBoW1. As a baseline, we extract a single BoW histogram

from the entire wikipedia article of each class. This leads to

one language part per class.

MBoW2. Here, we divide the wikipedia articles of each

class into a constant number of paragraphs. This number

is selected from the set P = {2, 3, 4, 5}. As the wikipedia

article of each class has different length, the MBoW2 vec-

tors that correspond to classes with shorter articles will get

sparser with the increasing number of P .

MBoW3. As wikipedia articles have a structural organi-

zation of their own, in this version of multi-bag-of-words,

we use this wikipedia structure. We divide the articles into

different subject-separated partitions. As different articles

have different number of sections, MBoW3 leads to a vari-

able number of vectors for each class.

6. Experiments

In our experimental evaluation we use the fine-grained

Caltech UCSD Birds-2011 (CUB) [45] dataset that contains

200 classes of different North-American bird species popu-

lated with ≈60 images each. Each class is also annotated

with 312 visual attributes. In the zero-shot setting, 150

classes are used for training and the other 50 classes for

testing. For parameter validation, we also use a zero-shot

setting within the 150 classes of the training set i.e. we use

100 classes for training and the rest for validation.

We extract image features from the activations of the

fully connected layers of a deep CNN. We re-size each

image to 224×224 and feed into the network which was

pre-trained following the model architecture of the 16-layer

VGG network [41]1. As multiple visual parts, we use im-

age features extracted from the annotated part locations of

the images. For this, we crop the image on the overlapping

bounding boxes with the size 50×50 2 that we draw around

that particular part location (Sec. 4), resize each bounding

box to 224×224 and follow the rest of the pipeline.

As supervised language parts (Sec. 5), we use human-

annotated per-class attributes with continuous values that

measure the strength of the attribute for each class.

As unsupervised language parts we automatically extract

word2vec [32] from the entire 13.02.2014 wikipedia dump

and Bag-of-Words from the wikipedia articles that corre-

spond to our 200 object classes. For NAD, i.e. our novel

Noun-Attribute-Differences, we take the word2vec vectors

of 200 classes and 312 attributes. For MBoW, we use the

same vocabulary as before and extract BoW histograms

from different parts of wikipedia articles.

6.1. Effect of Learning Method

As a baseline for our evaluation, we employ Structured

Joint Embedding (SJE) [2] which learns a bilinear compat-

ibility function between an image and its class embedding.

1We use the publicly-available MatConvNet library [41]
2We have empirically found that 50×50 performs well for the task
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Supervised Unsupervised

Method VP Attributes word2vec BoW

Ours 1 43.3 25.0 21.8

SJE [2] 1 50.2 24.2 20.0

Table 1: Comparison with the state-of-the-art using a sin-

gle visual part (VP=1, we use only the whole image as a

“part”) and a single language part (LP=1) obtained using

supervised attributes or unsupervised word2vec and BoW.

Train Test Supervised Unsupervised

VP VP Attributes word2vec BoW

1 1 43.3 25.0 21.8
19 1 47.0 26.8 22.6
19 19 56.5 32.1 26.0

Table 2: Multiple visual parts (VP) for classification. VP

are extracted from the annotations that are provided with the

dataset. (Top-1 avg per-class top-1 acc on unseen classes.)

SJE obtains the current state-of-the-art for zero-shot learn-

ing on CUB. We re-evaluate SJE using our 4K-dim VGG-

CNN [41] as input embedding3. We use attributes as su-

pervised output embeddings, word2vec and bag-of-words

as unsupervised output embeddings. On the other hand,

our joint part embedding framework learns two compati-

bility functions parameterized by W language and W visual

with an integrated non-linearity computation. Tab. 1 com-

pares SJE and our joint embedding using the standard aver-

age per-class Top-1 image classification accuracy on previ-

ously unseen classes. Using a single visual part per image,

our joint embedding performs worse in the supervised set-

ting (attributes) but slightly better than SJE in the unsuper-

vised setting. Namely, joint part embeddings achieve 25.0%
for word2vec while SJE obtains 24.2% and 21.8% for Bag-

of-Words whereas SJE obtains 20.0% accuracy. Here, the

language parts are extracted from wikipedia without using

any human annotation. This result is important as we aim

to increase the zero-shot learning performance on the CUB

dataset for this unsupervised setting. The following section

exploits our flexible framework to incorporate both strong

visual supervision as well as multiple language parts.

6.2. Strong Supervision by Part Annotations

Apart from using a non-linear embedding objective, our

joint part embedding benefits from using multiple visual or

language parts. We extract 19 parts from each image that

correspond to the whole image, head, body and full bound-

ing box [51], bounding boxes drawn around 15 part loca-

3Note that [2] reports slightly better performance using GoogLeNet

features instead of VGG as here.

tions whose annotations are available within the dataset. We

evaluate the effect of parts in the following way: (1) train-

ing and testing with a single part, (2) training with multiple

parts and testing with a single part, and (3) training and test-

ing with multiple parts.

Zero-Shot Image Classification. For zero-shot image clas-

sification, we calculate the mean per-class Top-1 accuracy

obtained on unseen classes. In other words, we consider

the prediction as positive only if the predicted class label

matches the correct class label for that image. We average

the predictions on a per-class basis. The results are pre-

sented in Table 2. For attributes, using multiple visual parts

at training time already improves the accuracy from 43.3%
to 47.0%, improving the state-of-the-art. On the other hand,

using multiple visual parts also at test time achieves 56.5%
accuracy, further improving the supervised state-of-the-art

on this dataset. For Bag-of-Words, using multiple visual

parts improves the accuracy 26.0%. For word2vec, multiple

visual parts achieves an impressive 32.1% accuracy which

becomes the new state-of-the-art obtained without using hu-

man supervision on the language side. These results sup-

port our intuition that using strong supervision of semantic

visual parts leads to more discriminative image representa-

tions and thus is helpful for zero-shot fine-grained image

classification.

Zero-Shot Image Retrieval. For zero-shot image retrieval,

we use two popular evaluation methods: the average re-

call at position 1, 5 and 10 (R@1,R@5 and R@10) on the

ranked list of labels predicted for each image and the mean

area under the Precision-Recall curve (mAUC). We present

our results in Tab 3. The state-of-the-art [4] retrieval ac-

curacy reported on unseen classes without human super-

vision on the CUB dataset is 13.0% mAUC. Using VP=1

both BoW (mAUC of 16.2%) and word2vec (22.8%) out-

perform the state-of-the-art. Using V P = 19 further im-

proves performance for BoW (22%) and word2vec (30.7%).

Using supervised text annotation, i.e. attributes, the unseen

class mAUC increases to 46.6%. These results indicate

that strong visual supervision helps both image retrieval and

classification in a zero-shot learning setting.

6.3. Using Multiple Language Parts

We now explore the effects of using multiple language

parts and to associate them to multiple visual parts extracted

using strong supervision.

NAD. We evaluate the three proposed noun-attribute dis-

tance (NAD) variants (Sec 5.3) as language parts. NAD1

measures noun-attribute distances between all classes and

all attributes and results in a single language part (LP=1).

For NAD2, the noun-attribute distances are computed be-

tween all classes and top 5-100 most discriminative at-

tributes. Thus, it corresponds to LP=5-100. NAD3, mea-
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Supervised Unsupervised

Train Test Attributes word2vec BoW

VP VP R@1 R@5 R@10 mAUC R@1 R@5 R@10 mAUC R@1 R@5 R@10 mAUC

1 1 47.0 91.7 95.9 36.5 37.5 55.6 73.2 22.8 33.2 49.8 61.0 16.2
19 1 65.7 87.7 91.8 38.7 40.6 59.0 67.3 24.5 30.8 46.6 57.0 17.3
19 19 61.6 93.9 100.0 46.6 43.1 69.5 71.5 30.7 30.6 48.6 50.7 22.0

Table 3: Multiple visual parts (VP) for retrieval. VP are extracted from the annotations that are provided with the dataset. We

measure recall at 1,5,10 (R@1,5,10) and mean AUC on unseen classes.
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Figure 2: Effect of multiple language parts. NAD uses noun-

attribute distance as a measure of similarity.

suring noun-attribute distances between all classes and all

the relevant attributes for that class. Therefore, NAD3 uses

different number (≈ 150) of language parts for each class.

We present our results with NAD on Fig 2. NAD1 and

NAD3 both do not obtain impressive results. In the case of

NAD1 this can be explained with the fact that it only con-

tains a single language part. For NAD3 we suspect that this

is due to the fact that there is a large imbalance in the num-

ber of descriptive attributes for each class. NAD2 on the

other hand obtains promising results. In fact using 50 lan-

guage parts (NAD2 LP=50) obtains 33.9% (see also Tab. 4)

that improves over the previous unsupervised state-of-the-

art using word2vec alone.

MBoW. As an alternative multiple language parts setting to

NAD, we use MBoW (Sec 5.3) also extracted three differ-

ent ways. For MBoW1, we construct the BoW using the

entire wikipedia article for a bird which results in a single

language part (LP=1). For MBoW2, same number of mul-

tiple language parts (LP=2-5) are extracted by partitioning

the wikipedia articles into 2,3,4 or 5 parts. For MBoW3, we

extract variable number of language parts (≈ 4) based on

wikipedia’s own content-grouped paragraphs.

We present our results on Fig 3. MBoW1 as well as

the different versions of MBoW2 obtain reasonable per-

formance even though staying below the best performance
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Figure 3: Effect of multiple language parts. MBoW uses

multiple parts from wikipedia articles.

Visual Parts (VP)

Train→ 1 19 19

Test ↓→ 1 1 19

Language Parts 1 25.0 26.8 32.1

(LP) 50 23.6 30.5 33.9

Table 4: Summary of our results with single or multiple

visual and language parts. We improve over the state-of-

the-art with unsupervised embeddings significantly.

achieved by NAD2. The results of MBoW3 are not that im-

pressive. As this representation is based on the wikipedia

article structure itself and as mentioned before the length

of the paragraphs is variable and thus the histogram based

representation might be not reliable enough.

Summary of results. We investigate the effects of using a

single visual part for training + test and using multiple vi-

sual parts either only on training or both on training + test.

The results are summarized in Tab 4. In our framework,

we can use a single visual part in combination with either

a single language part or multiple language parts. The for-

mer configuration leads to 25.0% accuracy whereas the lat-

ter obtains a lower accuracy of 23.6%. This indicates that
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Unsupervised Test

LP W2V BoW NAD2 VP=1 VP=19

1

X 26.8 32.1
X 22.6 26.0

X X 33.2 34.7

50

X 30.5 33.9
X X 31.0 32.1

X X 30.0 34.3

Table 5: Combining different number of language parts

(LP). word2vec: class-based vectors extracted from

wikipedia. BoW: histogram of word occurrences per

wikipedia article of a class. NAD2: Using noun-attribute

distance as a measure of similarity between classes. We use

multiple visual parts at training and either single or multiple

visual parts at test time.

multiple language parts help only if they are supported with

multiple visual parts.

Another interesting configuration is using multiple vi-

sual parts during training and, at test time, evaluating the

multiple language parts in these cases with or without strong

visual annotation. In the former case, again, there are two

configurations,i.e. with a single language part and with mul-

tiple language parts. With a single language part we obtain

26.8% accuracy which is already higher than 25.0% with a

single visual part at training time. On the other hand, with

multiple language parts we achieve an impressive 30.5%
accuracy. This shows that multiple language parts indeed

help even if they are supported by strong visual supervision

only at training time. If we use multiple visual parts also

at test time, we further improve our results to 33.9%, estab-

lishing a new state-of-the-art when using unsupervised text

embeddings.

6.4. Multi­Cue Language Embeddings

We finally explore combinations of different language

parts in our joint part embeddings framework. For single

language part setting (LP=1), we combine word2vec and

BoW. For training, we use multiple visual parts (VP=19),

whereas for testing we either use multiple visual parts

(VP=19) or single visual part (VP=1). The results are

presented in Table 5. Combining word2vec with BoW

using VP=1 for testing leads to 33.2% accuracy improv-

ing both word2vec (32.1%) and BoW (26.0%). Addition-

ally, the same combination with VP=19 for testing leads to

34.7% accuracy which again improves word2vec (32.1%)

and BoW (26.0%) on the same setting. These results are

consistent and encouraging because they provide a large im-

provement over the state-of-the-art (24.2%, Table 1) and re-

duces the gap between the state-of-the-art obtained through

human annotation (50.2%, Table 1).

For the setting with multiple language parts, we use the

best performing NAD2 with VP=50. This method measures

the similarity of word2vec vectors between class and at-

tribute names with the most relevant (top50) attributes to

each class. Using a single visual part for testing leads to

30.5% accuracy whereas using multiple visual parts obtains

33.9% accuracy. Compared to the single-part word2vec

(32.2%) and BoW (26.0%), this is a significant improve-

ment which indicates that combining multiple language

parts also help. Moreover, word2vec contains latent rela-

tionships between class and attribute names which are re-

leased when these nouns are considered relative to each

other.

Finally, the last row of Table 5 shows that the combina-

tion of NAD2 (33.9%) and BoW (26.0%) leads to 34.3%
accuracy which is again higher than NAD2 and BoW alone.

This indicates that our approach can exploit the comple-

mentarity of the NAD2 and BoW representations.

7. Conclusion

For the challenging problems of zero-shot fine-grained

classification and retrieval, we have presented a formula-

tion that allows to integrate diverse class descriptions and

detailed part annotations and consequently improves sig-

nificantly on the state-of-the-art on both tasks in a range

of experimental conditions. In particular, we have demon-

strated how to compensate for the loss of accuracy by us-

ing weaker auxiliary information with detailed visual part

level annotations. Our approach facilitates a joint embed-

ding of multiple language parts and visual information into

a joint space. With strong visual supervision and human-

annotated attributes we improve the state-of-the-art on the

CUB dataset to 56.5% (from 50.2%) in the supervised set-

ting. In addition, we show how to use multiple language

sources and extract diverse auxiliary information from un-

labeled text corpora, i.e. word2vec and BoW. We build mul-

tiple parts on the language side, i.e. NAD and MBoW and

thereby improve the state-of-the-art also in the unsupervised

setting to 33.9% (from 24.2%). Finally, we combine differ-

ent unsupervised text embeddings and further improve the

results for the unsupervised setting to 34.7%.

As a conclusion, we propose several extensions for fine-

grained zero-shot learning. First, using multiple visual parts

when available, i.e. training or test time, rather than using

a single visual part leads to a significant boost in perfor-

mance. Second, these multiple visual parts can be sup-

ported with multiple language parts for further improve-

ments. Third, word2vec space indeed contains some latent

information and distance between class and attribute names

can eliminate the costly human annotation of class-attribute

associations. Following these practices, we improve the

fine-grained zero-shot state-of-the-art on CUB for both su-

pervised and unsupervised text embeddings.
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