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Abstract

Appearance-based gaze estimation is believed to work

well in real-world settings, but existing datasets have been

collected under controlled laboratory conditions and meth-

ods have been not evaluated across multiple datasets. In

this work we study appearance-based gaze estimation in

the wild. We present the MPIIGaze dataset that contains

213,659 images we collected from 15 participants during

natural everyday laptop use over more than three months.

Our dataset is significantly more variable than existing

ones with respect to appearance and illumination. We also

present a method for in-the-wild appearance-based gaze es-

timation using multimodal convolutional neural networks

that significantly outperforms state-of-the art methods in

the most challenging cross-dataset evaluation. We present

an extensive evaluation of several state-of-the-art image-

based gaze estimation algorithms on three current datasets,

including our own. This evaluation provides clear insights

and allows us to identify key research challenges of gaze

estimation in the wild.

1. Introduction

Appearance-based gaze estimation is well established

as a research topic in computer vision because of its rele-

vance for several application domains, including gaze-based

human-computer interaction and visual behaviour analy-

sis [31]. Purely learning-based methods were recently pro-

posed to learn generic gaze estimators from large amounts

of person, and head pose-independent training data [10, 34,

39]. Such methods have the potential to bring appearance-

based methods into settings that do not require any user- or

device-specific training. Gaze estimation using monocular

cameras is particularly promising given the proliferation of

such cameras in hand-held and portable devices, such as

mobile phones and laptops, as well as interactive displays.

While appearance-based gaze estimation is believed to

perform well in everyday settings, state-of-the-art learning-

based methods are still developed and evaluated on datasets
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Figure 1: Overview of our method for in-the-wild

appearance-based gaze estimation using multimodal convo-

lutional neural networks.

collected under controlled laboratory conditions. These con-

ditions are characterised by limited variability of eye appear-

ances as well as the assumption of accurate head pose esti-

mates. Current appearance-based gaze estimation methods

are also not evaluated across different datasets, which bears

the risk of significant dataset bias – a key problem also in

object recognition [43] and salient object detection [23].

In this work we make the first step towards appearance-

based gaze estimation in the wild. Given a lack of real-

istic data, we created the MPIIGaze dataset that contains

213,659 images collected from 15 laptop users over several

months (see Figure 2). MPIIGaze covers a realistic variabil-

ity in appearance and illumination and therefore represents

a significant advance over existing datasets. Laptops not

only allow us to record in the wild but they also have con-

siderable potential as an application platform, such as for

gaze interaction [28]. The dataset and annotations are pub-

licly available online.

We study two key tasks through extensive evaluations of

appearance-based gaze estimation algorithms on three pub-

licly available gaze estimation datasets:

1. Handling appearance differences between training and

testing data. Since we cannot always assume a training

dataset that can cover the whole test space, the impor-

tant question is how robustly the estimator can handle

unknown appearance conditions.

1



Figure 2: Sample images from our MPIIGaze dataset showing the considerable variability in terms of place and time of

recording, directional light and shadows. For comparison, the last column shows sample images from other current publicly

available datasets (cf. Table 1): UT Multiview [39] (top), Eyediap [8] (middle), Smith et al. [37] (bottom).

2. Pursuing the performance gain for domain-specific

training. If we can assume that training data is directly

collected in the target daily-life environment, the goal

is to fully utilise the rich training data.

While better performances can be expected for the sec-

ond domain-specific training task where both the training

and testing data come from the same dataset, the ultimate

goal of person-independent gaze estimation is to handle the

first cross-domain training task, which leads to the most

challenging but practically most important use cases.

The contribution of this work is threefold. First, we intro-

duce the first large-scale dataset for appearance-based gaze

estimation in the wild. Our dataset is one order of magni-

tude larger than existing datasets and significantly more vari-

able with respect to illumination and appearance. Second,

we present an extensive evaluation of state-of-the-art gaze

estimation algorithms on three current datasets, including

our own, and identify key research challenges of in-the-wild

settings. Third, we present a method for appearance-based

gaze estimation that uses multimodal convolutional neural

networks and that significantly outperforms state-of-the-art

methods in the most challenging cross-dataset evaluation.

2. Related Work

2.1. Gaze Estimation Methods

Gaze estimation methods can be model-based or

appearance-based [12]. Model-based methods use a geo-

metric eye model and can be further divided into corneal-

reflection and shape-based methods, depending on whether

they require external light sources to detect eye features.

Early works on corneal reflection-based methods focused

on stationary settings [36, 30, 13, 51] and were later ex-

tended to handle arbitrary head poses using multiple light

sources or cameras [52, 53]. In contrast, shape-based meth-

ods [16, 4, 50, 44] directly infer gaze directions from ob-

served eye shapes, such as pupil centre or iris edges. Al-

though they have recently been applied to more practical

application scenarios [18, 11, 41, 49], their accuracy is

lower and it is unclear whether shape-based approaches

can robustly handle low image quality and variable light-

ing conditions. Appearance-based gaze estimation methods

directly use eye images as input and can therefore poten-

tially work with low-resolution eye images. While early

works assumed a fixed head pose [3, 42, 48, 35, 27, 24],

recent works focused on methods for 3D head pose estima-

tion [25, 26, 9, 6]. However, appearance-based methods

require larger amounts of user-specific training data than

model-based methods, and it remains unclear if the learned

estimator can generalise to unknown users. Similarly, pre-

vious methods typically assumed accurate 3D head poses

as input, which is a strong assumption for unconstrained in-

the-wild settings.

2.2. CalibrationFree Gaze Estimation

The requirement to collect person-specific training data

during a calibration step is a key limitation of both model-

based and appearance-based methods. To address this limi-

tation, several previous works used interaction events, such

as mouse clicks or key presses, as a proxy for the user’s on-

screen gaze position [40, 15]. Alternatively, visual saliency

maps [5, 38] or pre-recorded human gaze patterns of the pre-

sented visual stimuli [1] were used as bottom-up, probabilis-

tic training data to learn the estimation function. However,

all of these approaches rely on observations of a specific

person and environment, which limits their applicability.

Purely data-driven approaches leverage large amounts of

training data to learn gaze estimators that generalise to ar-

bitrary users without the need for person-specific calibra-

tion [34, 10, 39] settings. These methods have significant

potential to bring gaze estimation to new settings, includ-



Participants Head poses
On-screen

gaze targets

Illumination

conditions

Duration

(days)
Images

McMurrough et al. [29] 20 1 16 1 1 videos

Villaneuva et al. [45] 103 1 12 1 1 1,236

Weidenbacher et al. [46] 20 19 2-9 1 1 2,220

Smith et al. [37] 56 5 21 1 1 5,880

Eyediap [8] 16 continuous continuous 2 1 videos

UT Multiview [39] 50 8 + synthesised 160 1 1 64,000

MPIIGaze (ours) 15 continuous continuous daily life 45.7 213,659

Table 1: Comparison of current publicly available appearance-based gaze estimation datasets with respect to number of

participants, head poses and on-screen gaze targets (discrete or continuous), number of different illumination conditions,

average duration of data collection per participant, and total number of images.

ing mobile devices, public displays, and egocentric cam-

eras. However, the generalization capability of learning-

based methods has not been examined yet. Moreover, prior

work used 3D input for head pose information [10, 39],

while we are the first to evaluate the whole pipeline for fully

automatic monocular appearance-based gaze estimation for

person-independent training scenario.

2.3. Datasets

Because most existing gaze estimation datasets are de-

signed for coarse gaze estimation, the sampling density

of gaze and head pose space is not sufficient to train

appearance-based gaze estimators [29, 45, 46, 37] (see Ta-

ble 1 for an overview of existing datasets). More compara-

ble to MPIIGaze, the Eyediap dataset contains 94 video se-

quences of 16 participants looking at three different targets

(discrete and continuous markers displayed on a monitor,

and floating physical targets) under both static and free head

motion [8]. The UT Multiview dataset also contains dense

gaze samples of 50 participants as well as 3D reconstruc-

tions of eye regions that can be used to synthesise images

for arbitrary head poses [39]. However, as discussed before,

both datasets have the significant limitation that they were

recorded under controlled laboratory settings. Although the

Eyediap dataset includes two different illumination condi-

tions, recordings under the second condition were provided

only for a subset of the participants.

3. The MPIIGaze dataset

We designed our data collection procedure with two

main objectives in mind: 1) to record images of partici-

pants outside of controlled laboratory conditions, i.e during

their daily routine, and 2) to record participants over sev-

eral months to cover a wider range of recording locations

and times, illuminations, and eye appearances. We opted

for recording images on laptops not only because they are

suited for long-term daily recordings but also because they

are an important platform for eye tracking applications [28].

Laptops are personal devices, therefore typically remaining

with a single user, and they are used throughout the day and

over long periods of time. They also come with high resolu-

tion front-facing cameras that are in a fixed position relative

to the screen. We further opted to use an experience sam-

pling approach to ensure images were collected regularly

throughout the data collection period [19].

3.1. Collection Procedure

We implemented custom software running as a back-

ground service on participants’ laptops. Every 10 minutes

the software automatically asked participants to look at a

random sequence of 20 on-screen positions (a recording ses-

sion), visualised as a grey circle shrinking in size and with a

white dot in the middle. Participants were asked to fixate on

these dots and confirm each by pressing the spacebar once

the circle was about to disappear. This was to ensure par-

ticipants concentrated on the task and fixated exactly at the

intended on-screen positions. No other instructions were

given to them, in particular no constraints as to how and

where to use their laptops. Because our dataset covers dif-

ferent laptop models with varying screen size and resolution,

on-screen gaze positions were converted to physical 3D po-

sitions in a camera coordinate system. We obtained the in-

trinsic parameters from each camera beforehand. 3D posi-

tions of each screen plane were estimated using a mirror-

based calibration method [33].

We also asked human annotators to provide face annota-

tions for a random subset of 10,848 images to increase the

value of the dataset for other tasks, such as face detection

and alignment. They annotated these images with a total of

12 facial landmarks, following an extended LFW style [14],

that additionally contained a face bounding box and two eye

bounding boxes, as well as the left and right pupil position.

3.2. Dataset Characteristics

We collected a total of 213,659 images from 15 partici-

pants. The number of images collected by each participant

varied from 34,745 to 1,498. Figure 3 (left) shows a his-

togram of times of the recording sessions. Although there

is a certain bias towards working hours, the figure shows

the high variation in recording times. Consequently, our
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Figure 3: Key characteristics of our dataset. Percentage of images collected at different times over the day (left), having

different mean grey-scale intensities within the face region (middle), and having horizontally different mean grey-scale

intensities from the left to right half of the face region (right). Representative samples at the top.
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Figure 4: Distributions of head angle (h) and gaze angle (g)

for the MPIIGaze, UT Multiview, and Eyediap datasets (cf.

Table 1).

dataset also contains larger variability in illumination. To

visualise the different illumination conditions, Figure 3 (bot-

tom) shows a histogram of mean grey-scale intensities in-

side the face region. Figure 3 (right) further shows a his-

togram of the mean intensity differences from the right side

to the left side of the face region, which approximates the

statistics of directional light sources. These figures under-

line the complexity of our dataset in terms of appearance

variations.

To further characterise our MPIIGaze dataset in compar-

ison with the other recent datasets [8, 39], Figure 4 sum-

marises distributions of the head and gaze angles h, g in the

normalised space. The normalisation was done as described

in Section 4.2. Each figure corresponds to a 2D histogram

of either pose or gaze, colour-coded from blue (minimum)

to red (maximum). Although the UT Multiview dataset (see

Figures 4b and 4e) is recorded under a controlled lighting

condition, it contains synthesised eye images which largely

(a) MPIIGaze (b) MPIIGaze

(c) UT Multiview (d) Eyediap

Figure 5: Example images from the MPIIGaze (non-

eyeglasses and wearing eyeglasses), UT Multiview, Eye-

diap datasets.

cover both gaze and pose spaces. Although the Eyediap

dataset has mainly two different gaze targets, Figures 4c

and 4f show distributions of 2D screen targets, which is

closer to our setting. Our MPIIGaze dataset covers a 2D

screen space as in the Eyediap dataset; however, the gaze an-

gle distributions are not overlapping, due to the difference in

camera positions (see Figures 4a and 4d). This indicates that

the Eyediap dataset does not cover the range of gaze direc-

tions that can occur during laptop interactions and that our

MPIIGaze can serve as a more appropriate basis for training

and testing gaze estimators.

Figure 5 shows sample eye images from each dataset

after the normalisation (see Section 4.2). Each group of

images was randomly selected from a single person for

roughly the same gaze directions. Compared to the UT

Multiview and Eyediap datasets (see Figures 5c and 5d),

our MPIIGaze dataset contains larger appearance variations

even inside the eye region (see Figure 5a). The variation

becomes more significant in the case of a person wearing

eyeglasses (see Figure 5b), and they depict the complexity

of the daily-life setting in terms of appearance changes.



4. Method

Figure 1 provides an overview of our proposed method

for in-the-wild appearance-based gaze estimation using mul-

timodal convolutional neural networks (CNN). We first em-

ploy state-of-the-art face detection and facial landmark de-

tection methods to locate landmarks in the input image ob-

tained from the calibrated monocular RGB camera. We then

fit a generic 3D facial shape model to estimate 3D poses of

the detected faces and apply the space normalisation tech-

nique proposed in [39] to crop and warp the head pose and

eye images to the normalised training space. The CNN is

used to learn the mapping from the head poses and eye im-

ages to gaze directions in the camera coordinate system.

4.1. Face Alignment and 3D Head Pose Estimation

Our method first detects the user’s face in the image us-

ing Li et al.’s SURF cascade method [22]. We assume a

single face in the images and take the largest bounding box

if the detector returns multiple face proposals. We discard

all images in which the detector fails to find any face, which

happened in about 5% of all cases. Afterwards, we use Bal-

trušaitis et al.’s constrained local mode framework to detect

facial landmarks [2].

We use the same definition of the face model and head

coordinate system as [39]. The face model consists of 3D

positions of six facial landmarks (eye and mouth corners, cf.

Figure 1). The head coordinate system is defined according

to the triangle connecting three midpoints of the eyes and

mouth. We fit the model by estimating the initial solution

using the EPnP algorithm [21], and further refining the pose

via non-linear optimisation. 3D head rotation r is defined as

the rotation from the head coordinate system to the camera

coordinate system, and the eye position t is defined as the

midpoint of eye corners for each eye.

While previous works assumed accurate head poses, we

use a generic mean facial shape model for the 3D pose es-

timation to evaluate the whole gaze estimation pipeline in

a practical setting. 3D positions of the six landmarks are

recorded from all of the participants using an external stereo

camera prior to the data collection, and the generic shape is

built as the mean shape across all participants.

4.2. Data Normalisation

Similar to [39], we normalise the image and head pose

space into a polar-coordinate angle space. Fundamentally

speaking, object pose has six degrees of freedom, and in

the simplest case the gaze estimator has to handle eye ap-

pearance changes in this 6D space. However, since arbi-

trary scaling and rotation of the camera can be compen-

sated for by its corresponding perspective image warping,

the appearance variation that needs to be handled inside

the appearance-based estimation function has only two de-

grees of freedom. The task of pose-independent appearance-

based gaze estimation is to learn the mapping between gaze

directions and eye appearances, which cannot be compen-

sated for by virtually rotating and scaling the camera.

Briefly, the normalisation is done by scaling and rotating

the camera so that: 1) the camera looks at the midpoint of

the eye corners from a fixed distance d, and 2) x axes of

the head coordinate system and camera coordinate system

become parallel. Eye images were cropped at a fixed reso-

lution W ×H with a fixed focal length f in the normalised

camera space, and histogram-equalised to form the input

eye image. This results in a set of fixed-resolution eye im-

ages e and 2D head angle vectors h, and the ground-truth

gaze positions are also converted to the normalised camera

space to give 2D gaze angle (yaw and pitch) vectors g. In

order to reduce the effect of different lighting conditions,

eye images e are histogram-equalised after the normalisa-

tion process. We used the same setting for camera distance

d, focal length f and the resolution W×H as in [39]. In this

manner, the normalised eye images are compatible between

different datasets and we can evaluate the cross-dataset per-

formance of appearance-based methods.

4.3. Gaze Estimation With Multimodal CNNs

The task for the CNN is to learn the mapping from the

input features (2D head angle h and eye image e) to gaze

angles g in the normalised space. As pointed out in [39],

the difference between the left and right eyes is irrelevant in

the person-independent training scenario. By flipping eye

images horizontally and mirroring h and g around the y

axis, we handle both eyes by a single regression function.

Our model uses the LeNet network architecture that

consists of one convolutional layer followed by a max-

pooling layer, a second convolution layer followed by a

max-pooling layer, and a final fully connected layer [20, 17].

We train a linear regression layer on top of the fully con-

nected layer to predict gaze angle vectors g. We use a mul-

timodal CNN model to take advantage of both eye image

and head pose information [32]. We encode head pose in-

formation into our CNN model by concatenating h with the

output of the fully connected layer (see Figure 6). Input to

the network are the grey-scale eye images e with a fixed

size of 60× 36 pixels. For the two convolutional layers, the

feature size is 5 × 5 pixels, while the number of features

is 20 for the first layer and 50 for the second layer. The

number of hidden units in the fully connected layer is 500,

where each unit connects to all the feature maps of the pre-

vious convolutional layer, and is calculated by summing up

all activation values. The output of the network is a 2D gaze

angle vector ĝ that consists of two gaze angles, yaw ĝφ and

pitch ĝθ. As a loss function we use the sum of the individual

L2 losses that measure the distance between the predicted ĝ

and actual gaze angle vectors g.
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Figure 6: Architecture of the proposed multimodal CNN.

Head angle vectors h are added to the output of the fully

connected layer.

5. Experiments

In this section, we discuss the person-independent gaze

estimation task and validate the effectiveness of the pro-

posed CNN-based gaze estimation approach. We con-

duct both cross-dataset and within-dataset conditions to

compare our method with state-of-the-art methods on the

MPIIGaze dataset. To account for the sample number bias

among participants in our dataset, in the following experi-

ments we use a random subset for both training and testing.

Specifically, we randomly pick 1,500 left eye samples and

1,500 right eye samples from each person1.

In addition to our CNN-based method, we evaluate the

following baseline methods using the same facial landmark

detection, head pose estimation, and input features.

Random Forests (RF) Random forests were recently

demonstrated to outperform existing methods for person-

independent appearance-based gaze estimation [39]. We

use the implementation provided by the authors, which

first clusters training samples according to head angles and

query test samples to their nearest clusters. We used the

same parameters as in [39], and also resized input eye im-

ages to 16× 9 pixels.

k-Nearest Neighbours (kNN) As shown in [39], a simple

kNN regression estimator can perform well in scenarios that

offer a large amount of dense training samples. We use the

same kNN implementation and also incorporate a training

sample clustering in head angle space.

Adaptive Linear Regression (ALR) Because it was orig-

inally designed for a person-specific and sparse set of train-

ing samples [27], ALR does not scale to large datasets. We

therefore use the same approximation as in [10], i.e. we se-

lect five training persons for each test person by evaluating

the interpolation weights. We further select random subsets

of samples from the test sample’s neighbours in head pose

space. We use the same image resolution as for RF.

1Since one participant has only 1,448 images, we randomly oversam-

pled the data to get 3,000.
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Figure 7: Cross-dataset evaluation with training data from

the UT Multiview dataset. Bars correspond to mean error

across all participants in the MPIIGaze (left) and screen-

target sequences of Eyediap (right) datasets. Error bars in-

dicate standard deviations.

Support Vector Regression (SVR) Schneider et al. [34]

used SVR with a polynomial kernel under a fixed head pose.

We use a linear SVR [7] given the large amount of training

data. We also use a concatenated vector of HOG and LBP

features (6 × 4 blocks, 2 × 2 cells for HOG) as suggested

in [34]. However, we do not use manifold alignment, since

it does not support pose-independent training.

Shape-Based Approach (EyeTab) Finally, in addition to

these appearance-based methods, we evaluate one state-of-

the-art shape-based method [49] on the MPIIGaze dataset.

We use the implementation provided by the authors. In

their method gaze estimation is performed by fitting a lim-

bus model (a fixed-diameter disc) to detected iris edges.

5.1. CrossDataset Evaluation

We first present a comparative experimental validation

for the cross-dataset evaluation condition. We selected the

UT Multiview dataset as the training dataset because it cov-

ers the largest area in head and gaze angle space (see Fig-

ure 4). In addition to our MPIIGaze dataset, we also show

results using the Eyediap dataset as test data.

For the Eyediap dataset we used the 3D head poses pro-

vided with the dataset. These were estimated by fitting per-

sonal 3D shape models to depth images [8]. Since their

floating target sequences contain many extreme gaze direc-

tions that are not covered by the UT Multiview dataset, we

only used the screen target sequences.

Figure 7 summarises mean angular errors of all meth-

ods on both MPIIGaze and Eyediap. Bars correspond to

mean error across all participants in each dataset, and er-

ror bars indicate standard deviations across persons. The

mean prediction error of a naive predictor that always out-

puts the average gaze direction of all training samples is

42.4 degrees on Eyediap and 34.2 degrees on MPIIGaze.

The shape-based EyeTab method performs poorly on the

MPIIGaze dataset (47.1 degrees mean error and 7% mis-



detection rate), and this supports the advantage of the

appearance-based approaches in challenging conditions. In

this setting, our CNN-based approach shows the best ac-

curacy on both datasets (13.9 degrees on MPIIGaze, 10.5

degrees on Eyediap), with a significant performance gain

(10% on MPIIGaze, 12% on Eyediap, paired Wilcoxon test

[47], p < 0.05) over the state-of-the-art RF method. How-

ever, performance on MPIIGaze is generally worse than on

the Eyediap dataset, which indicates the fundamental diffi-

culty of the in-the-wild setting.

While our CNN-based approach expanded the feasibility

of the generalisation task, these results at the same time re-

veal the critical limitation of the UT Multiview dataset and

their learning-by-synthesis approach, whose variation of

training data is limited in terms of eye appearances. This in-

dicates the importance of the training data, and that we need

to address this goal from the both standpoints of data and

methodology to bridge the gap from the domain-restricted

training scenario.

5.2. WithinDataset Evaluation

Although the previous cross-dataset evaluation showed

the advantage of our CNN-based gaze estimation approach,

there is still a huge performance gap compared to the

performance reported in [39]. To discuss the limits of

person-independent performance on the MPIIGaze dataset,

we performed leave-one-person-out evaluation on the

MPIIGaze dataset.

With the same baseline methods as in Section 5.1, Fig-

ure 8 shows mean angular errors of the within-dataset eval-

uation. Since the model-based EyeTab method has been

shown to perform relatively poorly in our setting, we alterna-

tively show a learning-based result using the detected pupil

(iris centre) positions. More specifically, we used the pupil

positions detected using [49] in the normalised eye image

space as a feature for kNN regression, and performed the

same leave-one-person-out test.

In this case there is domain-specific prior knowledge

about gaze distribution, and the mean prediction error be-

comes 13.9 degrees. The pupil position-based approach

works better than the original EyeTab method but its per-

formance is still worse than appearance-based gaze estima-

tion methods. All appearance-based methods showed bet-

ter performances than in Section 5.1, and this indicates the

importance of dataset- or domain-specific training data for

appearance-based gaze estimation methods. Although its

performance gain over the other baseline methods becomes

smaller in this setting, our CNN-based method still per-

formed the best among them with 6.3 degrees mean error.

In order to illustrate the difference on handling appear-

ance variations between cross-dataset and within-dataset

scenarios, Figure 9 shows estimation errors with respect to

different illumination conditions. Similarly to Figure 3, we
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Figure 8: Within-dataset leave-one-person-out evaluation

on MPIIGaze. Mean estimation errors of the proposed

method and other appearance-based methods. Error bars

indicate standard deviations.
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Figure 9: Estimation error distribution w.r.t. mean grey-

scale intensity within the face region (left) and horizontal

mean grey-scale intensity difference between the left and

right half of the face region (right). The blue dots and curve

from cross-dataset evaluation and the red dots and curve

from within-MPIIGaze evaluation.

evaluate the error distribution with respect to mean grey-

scale intensity of the face region and horizontal mean in-

tensity difference between the left and right face regions.

Compared to the model pre-trained on the UT Multiview

dataset (blue dots and curve), the model trained on the

MPIIGaze dataset (red dots and curve) shows better perfor-

mance across different lighting conditions. This clearly il-

lustrates the effect of different lighting conditions and the

importance of the appearance variation in the training data.

5.3. Performance Validation of the Multimodal
CNN

While previous results show the potential of appearance-

based gaze estimation methods in a challenging daily-life

condition, there still exists a large performance gap com-

pared to person-specific training results reported in prior

work. To further discuss the performance limits of the CNN-

based approach, we also show more detailed comparisons

between RF and CNN models.

We first show a comparison between different architec-

tures of the CNN on the UT Multiview dataset with the

same three-fold cross-validation setting as reported in [39]
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Figure 10: Comparison of the different CNN models and

RF on (from left to right): UT Multiview dataset, subset of

the UT Multiview dataset which has the same head and gaze

angle ranges as the MPIIGaze dataset, using person-specific

training on the MPIIGaze dataset, and using person-specific

training on the UT Multiview subset. Error bars indicate

standard deviations.

(see Figure 10 left). As can be seen, our proposed multi-

modal CNN model outperformed the RF method with 5.9

degrees mean error. Although [39] reported that their pose-

clustered structure improved their RF performance, the per-

formance of the CNN became worse if the same clustering

structure was introduced. This indicates the higher learning

flexibility of the CNN, which contributes to the large perfor-

mance gain in the cross-dataset case (Section 5.1). The per-

formance can be degraded further if there is no head pose in-

put, and this shows the fundamental importance of the head

pose information in this pose-independent gaze estimation

task.

The performance within the UT Multiview dataset is

almost in the same range as the performance within the

MPIIGaze dataset (see Figure 8). However, these two cases

are expected to have different difficulty levels. To investi-

gate the difference within these results in more detail, we

further show a three fold evaluation using a subset (3,000

samples per person) of the UT Multiview dataset selected so

as to have the same pose and gaze angle distributions as the

MPIIGaze dataset. The result is shown in the next part of

Figure 10, and the performance gap compared to Figure 8

indicates the error that arises from the in-the-wild setting,

including appearance variations and eye alignment errors.

Although this is not always a practical assumption, esti-

mators trained on person-specific training data show the up-

per limit of the performance we can achieve. The rest of Fig-

ure 10 shows mean errors of person-specific models on both

the MPIIGaze and UT Multiview datasets. For MPIIGaze,

the last quarter of the data from each person was used as

test data, and the rest of the data was used as training data.

For UT Multiview, 500 test samples were randomly selected

for each person from the above subset, and the other 2,500

samples were used as training data. These results further

show the potential performance of the appearance-based es-

timator, and clearly depict the performance gap to be inves-

tigated.

6. Conclusion

Despite a large body of previous work on the topic,

appearance-based gaze estimation methods have so far been

evaluated exclusively under controlled laboratory condi-

tions. In this work, we presented the first extensive study

on appearance-based gaze estimation in the unconstrained

daily-life setting. We built a novel in-the-wild gaze dataset

through a long-term data collection using laptops, which

shows significantly larger variations in eye appearance than

existing datasets. Throughout the comprehensive bench-

marking of image-based monocular gaze estimation meth-

ods, our study clearly revealed the potential and remain-

ing technical challenges of appearance-based gaze estima-

tion. Our CNN-based estimation model significantly out-

performs state-of-the-art methods in the most challenging

person- and pose-independent training scenario. This work

and our dataset provide a critical insight on addressing

grand challenges in daily-life gaze interaction.
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