Pedestrian behavior modeling and analysis is important for crowd scene understanding and has various applications in video surveillance. Stationary crowd groups are a key factor influencing pedestrian walking patterns but was largely ignored in literature. In this paper, a novel model is proposed for pedestrian behavior modeling by including stationary crowd groups as a key component. Through inference on the interactions between stationary crowd groups and pedestrians, our model can be used to investigate pedestrian behaviors. The effectiveness of the proposed model is demonstrated through multiple applications, including walking path prediction, destination prediction, personality classification, and abnormal event detection. To evaluate our model, a large pedestrian walking route dataset is built. The walking routes of 12,684 pedestrians from a one-hour crowd surveillance video are manually annotated. It will be released to the public and benefit future research on pedestrian behavior analysis and crowd scene understanding.

1. Introduction

Pedestrian behavior modeling and analysis is important in video surveillance and has drawn increasing attentions in recent years. It can be used for various applications including pedestrian walking path prediction [4, 45], traffic flow segmentation [37, 41, 43], crowd counting and segmentation [40], and abnormal event detection [25, 27].

Pedestrian behavior modeling is challenging, especially for scenes with crowds [8, 21]. Previous studies [5, 12, 42, 45] have shown that the walking behavior of an individual can be influenced by a variety of factors including scene layout (e.g., entrances, exits, walls, and obstacles), pedestrian beliefs (the choice of source and destination), and interactions with other moving pedestrians. However, an important factor, i.e., stationary crowd groups, is missing in literature of modeling pedestrian behaviors.

We argue that stationary crowd groups have considerable influence on pedestrians and are crucial in pedestrian behavior modeling. As shown in Figure 1 (d), the walking path of a pedestrian (black curve) is affected by a stationary crowd group. However, without modeling the stationary crowd group, it is difficult to explain why the pedestrian detours when approaching the destination, as shown in Figure 1 (f).

Studies also show that stationary crowd groups have greater influences on pedestrian behaviors than moving crowds [28, 38, 39]. A pedestrian usually changes the walking speed rather than direction to avoid collision with other moving crowds. However, when moving crowds become stationary, the walking pedestrian is forced to change his or her direction and the walking path is influenced significantly.

As shown in Figure 1 (e), stationary crowd groups can...
serve as multiple roles for different pedestrians. For pedestrians that are leaving or joining a stationary crowd group, it can be regarded as the source or the destination (red and blue curves). For other pedestrians that are moving near the stationary crowd group, it can be regarded as an obstacle (black curves). Although both stationary crowd groups and fixed scene obstacles can block traffic, a pedestrian can choose to walk through the stationary crowd group or to detour from it, while scene obstacles are solid and cannot be penetrated. Moreover, as shown in Figure 1 (a)-(d), the spatial distribution of stationary crowd groups might change over time, which leads to the dynamic variations of traffic patterns. Therefore, static models cannot be used for stationary crowd group modeling.

In our work, the factor of stationary crowd groups is introduced for the first time to model pedestrian behaviors. Both walking through and walking bypass pedestrians can be well modeled. The proposed model can be dynamically updated with time to adapt the change of stationary crowd groups.

Based on our model, we can investigate the influence of stationary crowd groups on pedestrian behaviors. By learning model parameters, we observe that stationary crowd groups have greater influence on pedestrian walking paths than moving crowds, which shows the importance of monitoring stationary groups in a traffic control system. Moreover, by modeling the interactions among stationary groups and moving pedestrians, a personality attribute is proposed to classify pedestrians into different categories. This attribute is a key factor that makes each individual behave differently. One interesting observation is that people are more likely to behave in a conservative way when the scene is not that crowded. In contrast, a crowded scene leads to aggressive walking patterns because of the lack of space.

The contribution of this work is summarized as below. (1) A novel model is proposed for pedestrian behavior modeling by including stationary crowd groups as a key component. Through inference based on the interactions between stationary crowd groups and pedestrians, our model can be used to investigate pedestrian behaviors. (2) A large pedestrian walking path dataset is built. The walking routes of more than 12,000 pedestrians from a one-hour crowd video are annotated. (3) The effectiveness of the proposed model is demonstrated by multiple applications on the proposed dataset, including pedestrian walking path prediction (Section 5.1), pedestrian destination prediction (Section 5.2), pedestrian personality estimation and classification (Section 5.3), and abnormal event detection (Section 5.5).

2. Related Work

A lot of works have been done on modeling crowd motion patterns and segmenting traffic flows. Lagrangian coherent structures [2] and Lie algebra representation [22, 23] were used for flow field computation and segmentation. Topic models have been widely used [18, 37] for crowd flow modeling and estimation. Spatio-temporal dependency on motion patterns could be included in topic models [7, 13, 14]. Motion patterns could also be discovered through clustering trajectories [15, 16, 24, 26, 36, 44]. Shao et al. [33, 34] characterized the generic properties of crowd systems by modeling the coherent motion crowd groups.

Agent based models [5] are in a different category, in the sense that they model the decision making process of individuals. A typical example is the social force model [12], which was originally proposed for crowd simulation [11], and then was used in tracking [29], interaction analysis [31], and abnormal event detection [25].

Our proposed model is also agent-based. Existing agent based models use pre-defined rules to control each individual’s walking behavior, which can be used for simulation and prediction. However, they have three main shortcomings compared with our model. First, stationary crowd groups are ignored in all these models. A lot of research works have been done on analyzing moving social groups [6, 9, 19, 20]. The stationary crowd group is lack of attention, although it has great influence on pedestrian behaviors. Second, most of these agent based models are static models which cannot be dynamically updated with time. However, the influence factors are changing and pedestrian interactions also need to be updated with time. Third, most existing methods cannot model personality, which is a key factor that makes each individual behave differently [10, 30].

Recently, Alahi et al. [1] built a large scale crowd dataset for forecasting pedestrian destinations. However, that dataset only provides trajectories of moving pedestrians without video frames, and cannot be used to study the influence of stationary crowds on pedestrian behaviors. Therefore, we built a new crowd dataset with both manually annotated trajectories and video frames.

3. Pedestrian Behavior Modeling

Human walking path selection is similar to water flow. A pedestrian usually selects the most convenient and efficient path for reaching the destination. Based on this assumption, a general scene energy map \mathcal{M} is proposed to model the traveling difficulty of every location of the scene.

Regions with higher energy values denote that pedestrians are energetic at these locations and can travel through these locations more easily. More pedestrians tend to choose their walking paths through, and therefore the probability of observing pedestrians at these locations should be higher. Lower energy values indicate locations with lower occurrence probability of pedestrians. For example, areas near an obstacle or inside a stationary crowd group are difficult to walk through. The probability of observing pedestrians at these locations is lower.
In our model, scene layout, moving pedestrians, and stationary groups are included. Different factors may have different effects on pedestrian decision making. Their influence weights are learned from training data and reflect the importance of these factors.

Personalized energy maps M_P are generated based on the general energy map M and a personality parameter P. M_P can be viewed as different pedestrians’ interpretations of the general map M. Given a source and a destination, the fast marching algorithm [17, 32] is used to generate an optimal walking path in the energy map.

3.1. General energy map modeling

A general energy map M can be modeled with three channels calculated based on Scene Layout, Moving Pedestrians, and Stationary Groups. These channels are represented by f_{SL}, f_{MP}, and f_{SG}. $M(x)$ can be pixel-wisely modeled by combining the channels,

$$M(x; \Theta) = f_{SL}(x; \theta_1)f_{MP}(x; \theta_2)f_{SG}(x; \theta_3, \theta_4),$$

where $\Theta = [\theta_1, \theta_2, \theta_3, \theta_4]^T$ are weighting parameters for different terms. M is also a probability map and can be used as the probability of pedestrian appearing at each location. It can be extended by including new channels.

3.2. Scene layout factor

Pedestrian’s walking behavior is constrained by scene layout. Pedestrians cannot walk freely in a scene due to the constraints of walls and other static obstacles, and therefore they cannot be observed at some locations. Moreover, people tend to keep a distance from these obstacles and are not likely to walk very close to them, and thus the probability of observing a pedestrian decreases when getting close to the obstacle regions.

The Scene Layout influence map is therefore modeled as

$$f_{SL}(x; \theta_1) = \exp\left(-\frac{\theta_1}{d_1(x, SL)}\right),$$

where SL is a set of locations occupied by scene obstacles which are unreachable, $d_1(x, SL) = \min_{y \in SL} ||x - y||^2_2$ measures the distance from the current location x to its nearest scene obstacle location y, and θ_1 is a parameter indicating the influence bandwidth (which also can be viewed as the importance) of the scene layout term.

If $x \in SL$, there is an obstacle at location x, and $d_1(x, SL) = 0$. In this case, $f_{SL}(x; \Theta)$ is equal to 0, which means that pedestrians cannot appear at location x. When $x \notin SL$, $d_1(x, SL) > 0$, $f_{SL}(x; \Theta)$ gets close to 0 when the current location x approaches to scene obstacles. An example of a scene layout map is shown in Figure 2.

3.3. Influence of moving pedestrians

The interaction with other moving pedestrians is another factor to be considered. A pedestrian tends to keep certain distance from others. As a result, there is a probability drop around the regions occupied by pedestrians.

The Moving Pedestrian influence map is modeled as

$$f_{MP}(x; \theta_2) = \exp\left(-\sum_{i=1}^{m} \frac{\theta_2}{d_2(x, MP_i)}\right),$$

where $MP_i (i \in [1, m])$ is the ith moving pedestrian, x_{MP_i} is the spatial location of MP_i at current time t, x_{MP_i} is used to estimate the spatial location of MP_i at time $t+1$. $d_2(x, MP_i) = (||x - x_{MP_i}|| + ||x - x_{MP_i}||)^2 - (||x_{MP_i} - x_{MP_i}||)^2$ measures the distance from the current location x to the moving pedestrian MP_i, and θ_2 is the influence bandwidth of the moving pedestrian term. We use the same distance metric as the social force model [11]. An example of a moving pedestrian influence map is shown in Figure 3.

3.4. Influence of stationary crowd groups

Stationary crowd groups are modeled in two aspects. First, for pedestrians that bypass a stationary crowd group, this stationary crowd group acts similarly as a scene obstacle. The group has a repulsive force around the group region to keep moving pedestrians away. Second, for pedestrians
that walk through a stationary crowd group, there should be a penalty inside the group region. This is the key difference with the scene layout factor, where obstacles cannot be penetrated. The penalty is related to crowd density. It is more difficult to walk through denser stationary crowds.

The Stationary Group influence map is modeled as

\[
 f_{SG}(x; \theta_3, \theta_4) = \exp \left(- \sum_{i=1}^{n} \frac{\theta_3}{d_3(x, SG_i) + \theta_4 d_4(SG_i)} \right),
\]

where \(SG_i \) is the \(i \)th stationary crowd group region automatically detected by using the approach proposed in [39], \(d_3(x, SG_i) = \min_{y \in SG_i} ||x - y||_2 \) measures the distance from \(x \) to the stationary crowd group region \(SG_i \), \(\theta_3 \) is the influence bandwidth of the stationary crowd group term, and \(d_4(SG_i) \in (0, +\infty) \) is used to measure the sparsity of stationary crowd group region \(SG_i \). \(d_4 \) is calculated as the average distance among group members. Larger \(d_4 \) represents lower crowd density. The weight \(\theta_4 \) controls the influence of group sparsity on estimation result.

If \(x \in SG_i \), the location \(x \) is inside \(SG_i \), and \(d_3(x, SG_i) = 0 \). \(f_{SG}(x; \Theta) \) at locations \(x \in SG_i \) inside the group is constant and is positively correlated with group sparsity \(d_4(SG_i) \). \(f_{SG}(x; \Theta) \) is in the range of \((0, 1)\), which means that the probability of observing a pedestrian walking through the group region decreases because of the influence of the stationary group, but it is still larger than 0.

If \(x \notin SG_i \), \(x \) is outside \(SG_i \), and \(d_3(x, SG_i) > 0 \). The influence value increases from group boundary to faraway locations. An example of a stationary crowd group influence map is shown in Figure 4.

3.5. Personalized energy map modeling

People might behave differently under the same situation. It is modeled by a personality parameter \(P \). Different personalized energy maps \(M_P \) are generated based on the general energy map \(M \) with different \(P \) values,

\[
 M_P(x; \Theta) = \exp(P \times \ln M(x; \Theta)).
\]

If \(P \) is large for a pedestrian, the influence bandwidth of all the terms \((\theta_1, \theta_2, \theta_3) \) would equivalently increase for this individual. The energy values are small at locations near obstacles and stationary crowd groups. It denotes that this pedestrian cares more about these influence factors and is likely to walk a longer way to avoid close contact with these obstacles. In contrast, smaller \(P \) means that the pedestrian is walking aggressively and cares less about obstacles. An example of a personalized map is shown in Figure 5.

3.6. Path generation

To generate pedestrian walking paths, Fast Marching [17, 32] is used. Given the source \(s \) and the destination \(d \), an optimal path \(\hat{T} \) is calculated based on the energy map \(M \) or \(M_P \):

\[
 \hat{T} = f_{FM}(M; s, d),
\]

where \(\hat{T} \) is the most efficient and probable route from \(s \) to \(d \) according to the current energy map \(M \) or \(M_P \). Several examples are shown in Figure 6. When using a personalized map \(M_P \), the optimal path is just for the specific individual. When using a general map \(M \), the optimal path can be regarded as an average path for ordinary pedestrians.

3.7. Model learning

For a scene, model parameters \(\Theta \) need to be estimated from training data. The values in an energy map \(M \) represent the probabilities of pedestrian appearing at locations.
Therefore, model parameters can be optimized by maximizing likelihood on the training data. A general energy map \(\mathcal{M} \) is built based on Equation (1). By dividing a marginalization term, \(Z(\Theta) \), the energy map \(\mathcal{M}(x; \Theta) \) can be transformed to a probability distribution,

\[
p(x; \Theta) = \frac{1}{Z(\Theta)} \mathcal{M}(x; \Theta),
\]

where \(Z(\Theta) = \int \mathcal{M}(x; \Theta) dx \).

Given \(X = \{x_1, \ldots, x_k, \ldots, x_K\} \) as \(K \) independent observations of \(x \), the likelihood of these observations is

\[
p(X; \Theta) = \prod_{k=1}^{K} \frac{1}{Z(\Theta)} \mathcal{M}(x_k; \Theta).
\]

Parameter \(\Theta \) can then be optimized as

\[
\hat{\Theta} = \arg \max \log p(X; \Theta).
\]

Gradient descent is used for updating parameters.

\[
\Theta_{new} = \Theta_{old} + \eta \frac{\partial \log p(X; \Theta_{old})}{\partial \Theta_{old}}.
\]

4. Pedestrian walking route dataset

4.1. Dataset details

Pedestrian walking route data with accurate annotation can be used for model learning and evaluation. However, automatically tracking, especially in crowded scenes, is not accurate. Several existing datasets [1, 3, 35] have limitations and cannot be used in our study. Most of these datasets are not long enough, not crowded enough, or do not contain enough pedestrians. The dataset proposed by [1] is large, but contains only trajectories without video frames, and thus cannot be used to detect and analyze stationary crowds.

A new large scale pedestrian walking route dataset \(^2\) is built in this work. Accurate pedestrian walking routes from a one-hour crowd video were manually annotated as ground truth. The video was from the dataset released in [44]. The details of the dataset are summarized in Table 1. Twelve example pedestrian walking routes are shown in Figure 7.

\(^2\)Available at http://www.ee.cuhk.edu.hk/~syi/

Table 1. The details of the proposed dataset.

<table>
<thead>
<tr>
<th>Resolution (pixel)</th>
<th>1,920 × 1,080</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total frame number</td>
<td>100,000</td>
</tr>
<tr>
<td>Frame rate (fps)</td>
<td>25</td>
</tr>
<tr>
<td>Annotated frame number</td>
<td>5,000</td>
</tr>
<tr>
<td>Annotated frame rate (fps)</td>
<td>1.25</td>
</tr>
<tr>
<td>Annotated pedestrian number</td>
<td>12,684</td>
</tr>
<tr>
<td>Average pedestrian number per frame</td>
<td>123</td>
</tr>
<tr>
<td>Max pedestrian number per frame</td>
<td>332</td>
</tr>
</tbody>
</table>

The proposed dataset has several advantages compared with existing ones. First, our dataset is much longer than any existing one with ground truth on tracking. Long-term traffic flow change can be observed from our dataset and it contains rich information to train a complex model of pedestrian behaviors. Second, it is a crowd surveillance dataset which is difficult and challenging for vision tasks. An average of 123 pedestrians can be observed in each frame. The most crowded frame contains 332 pedestrians. Complex crowd behaviors can be observed in this dataset. Third, this dataset is well annotated. All the 12,684 pedestrians in this video are manually annotated. For each individual, the complete trajectory from the time point he/she enters the scene to the time he/she leaves is labeled. The large amount of data with accurate annotation is crucial for comprehensive evaluation and convincing statistical analysis. Besides pedestrian behavior modeling, our dataset can be used in various research areas, such as pedestrian detection, individual tracking, crowd segmentation, density estimation, and pedestrian counting.

4.2. Statistical analysis of the annotated data

A lot of statistical information can be obtained from this dataset, and such information is valuable for the design of the supervised model. The influence of stationary crowds on pedestrian walking efficiency is analyzed in Figure 8. We record the dynamic changes of (a) the percentage of stationary pedestrians and (b)-(c) two efficiency measurements. Larger values in (b)-(c) indicate lower efficiency. The strong correlations between (a) and (b)-(c) indicate that stationary crowd is a key factor that decreases traffic efficiency. In contrast, the correlations between total crowd density and (b)-(c) are much weaker. If every pedestrian is...
5. Applications

Based on the proposed model, inference and learning algorithms, various applications can be implemented and interesting characteristics about human walking behaviors can be revealed.

4.3. Learning result

The trajectories of moving pedestrians are used as training samples to learn model parameters. The optimized parameters are shown in Table 2. Comparing \(\theta_3 \) with \(\theta_1 \) and \(\theta_2 \), we observe that the stationary crowd groups have greater influence on pedestrian walking behaviors than scene layout and moving pedestrians. The learned \(\theta_3 \) is greater than zero, which indicates that the stationary crowd group density does influence pedestrian behaviors.

A pedestrian is not sensitive to scene obstacles, because scene obstacles can never move and he/she does not need to consider possible collisions with these obstacles. A pedestrian might prefer to adjust walking speed rather than change pre-decided walking direction to avoid close contact with other moving pedestrians. The walking path might be slightly changed but the influence is not obvious. When stationary crowds emerge in front of a pedestrian, he/she has to change his/her walking route to bypass the stationary crowds. This is the reason why stationary crowd group influence weight \(\theta_3 \) is much larger than scene layout weight \(\theta_1 \) and moving pedestrian weight \(\theta_2 \).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Meaning</th>
<th>Learned value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\theta_1)</td>
<td>Scene layout weight</td>
<td>0.016</td>
</tr>
<tr>
<td>(\theta_2)</td>
<td>Moving pedestrian weight</td>
<td>0.023</td>
</tr>
<tr>
<td>(\theta_3)</td>
<td>Stationary crowd group weight</td>
<td>0.390</td>
</tr>
<tr>
<td>(\theta_4)</td>
<td>Group density weight</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Table 2. Learned parameter values for the proposed dataset.

moving, traffic flow is smooth and efficient even when the scene is very crowded. However, when stationary crowd groups appear, the traffic efficiency might be dramatically reduced.

5.1. Prediction on pedestrian walking paths

Given a source \(s \) and a destination \(d \), we predict an optimal walking route as \(\hat{T} = P_{FM}(M, s, d) \) by minimizing Equation (6). In this application, we assume \(P = 1 \) as no prior on personality of pedestrians is given.

An over-cost value \(\eta \) is proposed to evaluate whether predictions match observations. For the optimized route \(\hat{T} \) and the observed route \(T_O \), the walking costs are calculated based on the energy map \(M \). Over-cost \(\eta \) is defined as

\[
\eta = \frac{C(T_O, M) - C(\hat{T}, M)}{C(\hat{T}, M)},
\]

where \(C(T_O, M) \) is the walking cost of the observed route \(T_O \) based on the current map \(M \), and \(C(\hat{T}, M) \) is the cost of the optimized route \(\hat{T} \). \(\eta \) should be nonnegative because \(C(T_O, M) \) is no smaller than \(C(\hat{T}, M) \), and smaller \(\eta \) indicates better match. Examples of prediction results are shown in Figure 9.

Two baselines are used to investigate the effectiveness of the proposed model considering stationary crowd groups. For the first baseline, we set \(\theta_3 = 0 \), which denotes that the stationary crowd group factor is removed. For the second one, we set \(\theta_4 = 0 \), which denotes that the stationary crowd groups are simply regarded as solid obstacles. The \(\eta \) distributions of our method and the baselines are shown in Figure 10. The average over-cost of our method is 5.86%, while the over-costs of the baselines are much high, i.e. 15.44% and 16.22%, respectively. Because abnormal pedestrians may have relatively high \(\eta \), we also calculate the average over-
cost of 80% pedestrians with smaller \(\eta \). For these pedestrians, the average over-cost of our method is 2.70\%, while over-costs of the baselines are 4.79\% and 9.46\%. From the results, we can conclude that including the influence of stationary crowd groups is necessary when modeling pedestrian behaviors, and the stationary crowd groups should be modeled differently from scene obstacles.

5.2. Prediction of pedestrian destinations

The source \(x_s \), the destination \(x_d \), and the walking path \(T \) are the three basic elements of pedestrian behaviors. In Section 5.1, we predict \(T \) based on \(x_s \) and \(x_d \). Given \(x_s \) and \(x_d \), we can also predict the destination of this pedestrian.

Ten source/destination regions \(S_i, (i \in [1, 10]) \) are manually labeled as shown in Figure 11. The first half of observed trajectory \(T_{0.5} \) is used as input in this experiment. Given \(x_s \) and \(T_{0.5} \), the task is to estimate the destination index \(i \in [1, 10] \). For each destination region \(S_i \), \(\mathcal{L}(i) \) is calculated as \(\mathcal{L}(i) = \min_{x'_d \in S_i} \mathcal{D}(T_{0.5}, T_{0.5}(x'_d)) \), where \(T_{0.5}(x'_d) \) is the first half of \(T(x'_d) \), \(T(x'_d) = f_{FM}(M, x_s, x'_d) \) is the optimized route ended with \(x'_d \), and \(\mathcal{D}(\cdot, \cdot) \) represents the distance between the two half trajectories. Smaller \(\mathcal{L}(i) \) indicates that the pedestrian is more likely to go to the destination \(S_i \). Then the index of estimated destination is obtained as \(\hat{i} = \arg\min_{i \in [1, 10]} \mathcal{L}(i) \).

The top N accuracy (ground truth is within the top N predictions) is adopted for evaluation. The MDA model [45], together with the two baselines introduced in Section 5.1 are used for comparison. Estimation results are shown in Table 3. Accuracy of destination prediction.

5.3. Personality attribute estimation

The personality \(P \) of each individual can be estimated by

\[
\hat{P} = \arg\min_{P} \mathcal{D}(T_O, \hat{T}(P)),
\]

where \(T_O \) is the observed trajectory of current pedestrian, \(\hat{T}(P) = f_{FM}(M_P(P), x_s, x_d) \) is the optimal walking path calculated using personalized energy map \(M_P \) in Equation (6), and \(\mathcal{D}(\cdot, \cdot) \) represents the distance between the two trajectories. The estimated personality parameter \(\hat{P} \) minimizes the difference between observation \(T_O \) and optimal path \(\hat{T}(P) \).

An example is shown in Figure 13.

The distribution of \(P \) is shown in Figure 14. All the pedestrians can be classified into three categories based on their walking behaviors: aggressive, conservative, and abnormal. The peak A in Figure 14 represents aggressive pedestrians who prefer to walk directly to their destinations. Conservative pedestrians are represented by the peak...
Figure 13. (b)-(d) The predicted walking paths and their corresponding personalized energy maps M_P. A smaller P may lead to a more straight walking route while a larger P may lead to a longer walking path that keeps away from stationary crowds. This pedestrian is walking in a conservative manner because the observation shown in (a) is more similar to the walking path in (d) with large P.

B. They prefer to walk in a longer way to avoid close contact with others. The long tail of the distribution of P represents pedestrians that take a long route to their destination. Conservativeness is no longer proper to describe these pedestrians and we define these behaviors as abnormal.

5.4. Further investigation on personality

Personality attribute P can be used for pedestrian classification as different P may lead to different walking behaviors. All the pedestrians are annotated into three categories as ground truth, i.e., aggressive, conservative, and abnormal. Bayesian classifiers (that minimize classification errors) are used to classify these three categories. The leave-one-out evaluation results are shown in Table 4. Among all the annotated pedestrians, 87.43% are correctly classified using P as the feature value.

We also explore the relationship between the personality value P and the scene population density. The quantitative correlation between the two values is -0.44, and the dynamic changes of the two quantities are shown in Figure 15. The negative correlation shows that the personality value P is negatively related to the scene population density. This finding is reasonable. When the scene is too crowded, the walking behaviors of pedestrians are constrained and there is no enough space for conservative walking patterns. In order to reach destinations, close contact with each other is unavoidable.

5.5. Abnormal behavior detection

Abnormal behaviors can be defined as unexpected observations which are significantly different from our predictions. Walking path prediction (Section 5.1) and destination prediction (Section 5.2) can both be used for abnormal detection. Examples have been shown in Figure 9(c) and 12(b). Moreover, personality estimation based abnormal detection has been introduced in Section 5.4.

6. Conclusion

In this paper, a novel pedestrian behavior model is proposed and the stationary crowd group influence is included as a key component. It is applied to various applications, including walking path prediction, destination prediction, personality estimation, and abnormal event detection. A new pedestrian walking route dataset is proposed and will benefit future studies on pedestrian behavior analysis.

Acknowledgment

This work is partially supported by the General Research Fund sponsored by the Research Grants Council of Hong Kong (Project Nos. CUHK 419412, CUHK 417011, and CUHK 14207814), Hong Kong Innovation and Technology Support Programme (Project reference ITS/221/13FP), Shenzhen Basic Research Program (JCYJ20130402113127496), NSFC (Project No. 61301269) and Sichuan High Tech R&D Program (No. 2014GZX0009).
References