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Abstract

This paper proposes a simple method for estimating
dense and accurate optical flow field. It revitalizes an early
idea of piecewise parametric flow model. A key innovation
is that, we fit a flow field piecewise to a variety of para-
metric models, where the domain of each piece (i.e., each
piece’s shape, position and size) is determined adaptively,
while at the same time maintaining a global inter-piece flow
continuity constraint. We achieve this by a multi-model
fitting scheme via energy minimization. Our energy takes
into account both the piecewise constant model assumption
and the flow field continuity constraint, enabling the pro-
posed method to effectively handle both homogeneous mo-
tions and complex motions. The experiments on three public
optical flow benchmarks (KITTI, MPI Sintel, and Middle-
bury) show the superiority of our method compared with
the state of the art: it achieves top-tier performances on all
the three benchmarks.

1. Introduction

As a classic topic in computer vision, optical flow com-
putation has attracted considerable attentions from the com-
munity. Remarkable progresses have been made in the past
decades, with high performance optical flow algorithms
available nowadays [11, 48, 37, 46, 25]. Despite these suc-
cesses, to obtain dense and accurate flow field remains chal-
lenging, especially for general dynamic scenes containing
multiple complex, non-rigid objects,and/or large motions.

This paper revisits the idea of piecewise parametric opti-
cal flow estimation popularized by Black etc. researchers in
the 1990s [7, 6, 23]. Unlike most modern optical flow tech-
niques which capitalize on dense per-pixel flow vector esti-
mation, these piecewise parametric flow methods assume a
low-order parametric motion models within each segmented
image piece. Using parametric models to represent a flow
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Figure 1: The proposed method estimates optical flow using
piecewise parametric (homography) models. In this exam-
ple it yields accurate motion estimate on the actor’s shoulder
and back compared to LDOF [12] and MDP-OF [46] .

field, while is compact, can be rather restrictive. When the
motion field is very complex, or when image segments do
not conform well to motion segments, the parametrically-
fitted flow field can be inaccurate or erroneous. Partly
due to this reason, piecewise parametric models are seldom
adopted by modern optical flow methods [37].

In this paper, we advocate that, equipped with a carefully
devised energy function and modern minimization tech-
niques, the piecewise parametric model can be revitalized to
achieve highly-accurate optical flow estimation with state-
of-the-art performance.

Our motivation is described as follows. As in previous
work [7, 23], we assume that a flow field can be jointly rep-
resented by multiple parametric motion models in a piece-
wise fashion. To ease description, the 8-dof homography
transformation model is used in this paper. To achieve ac-
curate model fitting or approximation, we allow the size



and shape of each piece to change adaptively. For exam-
ple, some pieces must be large to account for large regions
with homogeneous motion vectors to gain fitting robustness,
while others need to be small enough to capture fine motion
details within a small region containing complex motions.
The approach of this work is to determine each piece ap-
propriately, and at the same time to fit a parametric model
to each piece (see Fig. 1 for illustration). In light of this,
the proposed method is similar to the joint motion estima-
tion and motion segmentation scheme, as investigated in
e.g. [15, 5, 38, 39, 40].

However, there is a subtle but critical difference. In con-
trast to the above methods which aimed to segment a motion
field into a few independently moving regions [15, 5, 38],
our aim is to fit the entire flow field with a large number of
(possibly hundreds of) piecewise parametric models. The
proposed method can effectively handle complex motions
which are challenging for the above methods such as [5, 40].

The contributions of this work are threefold. i) We rep-
resent and estimate the flow field with piecewise homogra-
phy models, and solve the problem via joint discrete and
continuous optimization similar to the multi-model fitting
work of Isack and Boykov [22]. ii) We propose a novel
energy formulation where the regularization takes into ac-
count of both a piecewise constant model constraint and
a flow field continuity constraint. It allows the method
to yield large pieces for homogeneous motion, and small
pieces for complex motion. iii) We show that the piecewise
parametric model can be modified to estimate flow field ac-
curately. At the time of writing, our method achieves the
top accuracy on the KITTI benchmark [20], outperforms
all published methods on the MPI Sintel (clean) bench-
mark [13], and yields top-tier results on the Middlebury
benchmark [1].

1.1. Related work

There is a large volume of work on optical flow estima-
tion. Below we only review related methods for piecewise
segmentation based and/or parametric flow estimation.

Computing parametric flow field on pre-segmented im-
ages is a classic idea [7, 23, 45, 27]. Black and Jepson [7]
segment the image with color cue and fit variable-order mo-
tion model to each segment independently. Ju et al. [23] di-
vide the image evenly into rectangular patches, and fit affine
models to them. Interaction between neighbouring patches
is involved and defined to be the difference of model param-
eters. Xu et al. [45] fit affine models on regions segmented
with color cue and initial flow; the fitting is regularized with
Total Variation of the flow field. Lei and Yang [27] repre-
sent the image with region-tree built from color segmenta-
tion; constant flow vector is computed for each region.

Another category of related methods first estimates can-
didate parametric models then assign these models to each

pixel as a segmentation process, e.g. [44, 4, 14, 41]. Wills
et al. [44] use multiple homographies fitted from feature
matches for segmentation, and Bhat et al. [4] use both ho-
mographies and fundamental matrices. Recently, Chen et
al. [14] use translation and similarity transformations ex-
tracted from nearest neighbour field for segmentation. In
scene flow estimation, Vogel et al. [41] assign each pixel a
segment, and each segment a 3D plane; the plane candidates
are fitted based on an input scene flow estimate.

Methods have been proposed for joint motion segmen-
tation and estimation [29, 15, 35, 50, 5, 47, 40]. For ex-
ample, Mémin et al. [29] proposed such an approach in a
variational framework, however the energy is defined on in-
cremental motion field during the coarse-to-fine processing.
Cremers and Soatto [15] developed a variational approach
to jointly estimate segmentation boundaries and affine mod-
els via continuous optimization. Roussos et al. [35] repre-
sent and estimate dense motion field via multiple fundamen-
tal matrices plus an inverse-depth field.

Layered model estimation is another useful technique
for motion segmentation and estimation [42, 38, 39]. This
approach estimates a few overlapping motion layers, typi-
cally represented by parametric models, and assigns pixels
to these layers. The pioneer work of Wang and Adelson [42]
uses affine layers to represent the motion field, and recent
advances by Sun et al. [38, 39] use affine motion to regu-
larize the flow in each layer. The motivation of these ap-
proaches and their formulations are different from ours.

The proposed method is related to the methods based on
over-parameterization [31, 21]. Nir et al. [31] represent op-
tical flow with parametric (e.g. affine and rigid) model de-
fined on every pixel. A recent work by Hornáček et al. [21]
defines per-pixel homography for flow estimation. In con-
trast to pointwise parametric model, our method fits piece-
wise constant parametric models on adaptive segments.

The optimization scheme we use is similar to the multi-
model fitting work [22], and other relevant works in differ-
ent domains, e.g. [36, 32]. Compared to [22] where scat-
tered data is fitted to each model independently, we deal
with dense, regular image grids where the models inter-
act with each other to address the spatial continuity of flow
field. Our idea of adaptively changing the domains of image
pieces is partly related to the works of image quilting [19]
and photo autocollage [34].

2. Piecewise Parametric Flow Estimation
Given two images frames I1 and I2 as the reference

frame and target frame respectively, our goal is to esti-
mate a dense 2D displacement vector u at each pixel x on
I1, based on the the brightness constancy assumption, i.e.
I1(x) = I2(y) where y = x + u. The displacement vector
can be represented by a parametric transformation model T,
i.e., y = T◦x. In this paper, we choose to use the 8-dof ho-



mography as the parametric model, although other types of
parametric models are also possible. One obvious benefit of
choosing the homography model is that, homographies can
be induced by 3D planes undergoing rigid motion. In fact,
even for certain non-rigid motions or deformations, homog-
raphy can be used as a good transformation model.

2.1. Energy function

Let L = {1, ..,K} be a set of discrete labels represent-
ing the set of K homography models, i.e. H = {Hk}, k =
1, . . . ,K. Let Ω be the 2D image domain of I1, and L :
Ω → L be a labeling function. Assigning label k = L(x)
to pixel x means that motion of x is induced by homogra-
phy Hk ∈ H.

Our energy function is defined on both the unknown
piecewise parametric models H, and the unknown pixel la-
belling L, as

E(H, L) = ED(H, L)+λCEC(H, L)+

λPEP (L) + λMEM (L), (1)

where ED is a data term, EC is a flow continuity regular-
ization term, EP is a Potts model term, and EM is a la-
bel cost term [28, 16] reflecting the Minimum Descriptor
Length (MDL) principle. The λs are weighting parameters.
Note that, one homography model can be be assigned to
multiple disjoint pieces, as this is beneficial to handel occa-
sion.

2.2. Data term

The data term ED enforces the brightness constancy
constraint, subjecting to the piecewise homography models
as

ED(H, L) =
∑
x∈Ω

|I1(x)− I2(HL(x)x)|, (2)

where | · | denotes the L1 norm. For brevity, we slightly
abuse notations hereafter: H needs to be understood as an
operator rather than matrix; both x and Hx represent inho-
mogeneous image coordinates.

To improve the robustness with respect to noise and il-
lumination changes, we use a robustified data term as in
[11, 8]. The robust version takes into account of both bright-
ness constancy constraint and gradient constancy constraint,
in addition to the use of a robust estimator ρD:

ED(H, L) =
∑
x∈Ω

ρD
(
(1− α)|I1(x)− I2(HL(x)x)|

+α|∇I1(x)−∇I2(HL(x)x)|
)
, (3)

where we choose ρD to be a truncating function as ρD(·) =
min(·, σD) and σD is a scalar parameter.

Results without flow continuity term EC

Results without Potts model term EP

Results with both EC and EP

Figure 2: Effects of EC and EP . Top row: without EC ,
the estimated flow contains many gross errors on the fore-
ground human body with complex motion. (Occluded re-
gions are masked black) Middle row: without EP , the
background regions with homogeneous motion are not well
grouped, leading to 0.05∼0.1 endpoint error increase for
them. Bottom row: with both the two terms, the method
handles well both complex and homogeneous motions.

2.3. Flow continuity(inter-piece compatibility)term

We introduce a flow continuity term EC , which enforces
the continuity constraint of the flow field, rather than the
widely-used 1st-order or 2nd-order smoothness constraint
(e.g. TV [48] or TGV [10] regularizer). Let E be the set of
4-connected pixel pairs on the image, EC is defined to be

EC(H, L)=
∑

(x,x′)∈E

w(x,x′)·ρC
(
|HL(x)x̄−HL(x′)x̄|

)
, (4)

where x̄ = (x + x′)/2 is the midpoint of (x,x′), ρC(·) =
min(·, σC) with σC a scalar parameter, and w(x,x′) =
exp(−β‖I1(x)− I1(x′)‖) is a color-based weighting term.
Note that if L(x) = L(x′), the cost at pixel-pair (x,x′) is
nil. The properties of this term are analyzed as follows.

• EC does not penalize the variations between neigh-
bouring pixels within a single piece (where all interior
pixels have the same label), even if the variations are
large. It only penalizes motion discontinuities at inter-
piece boundaries (hence we also call it the inter-piece
compatibility term).

• The inter-piece motion discrepancies can be 0 or very
small (i.e. the two adjacent pieces are compatible) even
if their homography models differ a lot. Thus EC al-
lows model-switch, which is important for handling
complex motion.



• It is easy to see that EC is a sub-modular function in
terms of discrete labeling variables L, which is a nice
property for discrete energy minimization [26].

The effect of this term is illustrated in Fig. 2. It can
be seen that without EC the estimated flow contains many
sharp discontinuous and gross errors.

2.4. Potts model term

In addition to the pairwise flow continuity term EC , we
use a pairwise Potts model term EP to encourage spatially
coherent labeling. This term is defined only on the dis-
crete labeling variables as EP (L) =

∑
(x,x′)∈E δ

(
L(x) 6=

L(x′)
)
, where δ(·) is the 0-1 indicator function which takes

1 if the input argument is true, and 0 otherwise.
The terms EC and EP have different effects, and are

complementary to each other. EP enforces intra-piece
model constancy; it penalizes any model change, no matter
how similar the two models are. In contrast, as mentioned
before, EC enforces inter-piece motion compatibility; it al-
lows compatible model switch, no matter how different the
two models are (cf. Sec. 2.3).

Figure 2 illustrates that, without EP the regions with ho-
mogeneous motion are not well grouped. This may lead to
inferior flow estimate for these regions. Moreover, this can
also be harmful to other regions: a model can be accidently
assigned to many small pieces during labeling, bringing in
difficulties for model estimation (cf. Sec. 3.1).

2.5. MDL term

To reduce the redundancy of the fitted homographies, we
employ an MDL term EM to penalize the total number of
the used homography models, i.e. EM (L) =

∑K
k=1 τ(k),

where τ(k) =

{
1, if

∑
x∈Ω δ(L(x) = k) > 0

0, othewise
.

This term is helpful especially when a prior knowledge
exists that the flow field can be well approximated by a rela-
tively small number of parametric models. For example, in
some man-made scenes where there are large planar struc-
tures, this term helps encourage less homographies and in-
crease fitting quality. One may set its weight λM to 0 or
very small if no prior is given.

3. Optimization
This section presents our optimization techniques. We

first present the alternation based optimization assum-
ing initial parameters given, then show our initialization
method.

3.1. Alternation

The energy defined in Eq. 1 involves both discrete vari-
ables L and continuous variables H. We approach this

Algorithm 1: Piecewise Homography Flow

1 InitializeH, L.
2 while not converge do
3 FixH, solve for L in Eq. 5 via graph-cut [17].
4 Fix L, solve forH via Algorithm 2.

Algorithm 2: Piecewise Homography Fitting

1 Sort the input homographies Hk, k=1,...,K according
to their labeling area in L in descending order.

2 for iteration = 1, . . . ,m do
3 for k = 1 : K do
4 Optimize Hk in Eq. 6 by simplex downhill [30].

discrete-continues problem similarly to the multi-model fit-
ting method of [22]. A block coordinate descent (see Al-
gorithm 1) is used that alternates between optimizing over
L and H, thus splitting the original problem into two sub-
problems described as follows.

I. Labeling: Solve for L with fixed H. With fixed ho-
mographies, the energy minimization reduces to a labeling
problem with the energy

E(L) = ED(L)︸ ︷︷ ︸
Unary

potential

+λCEC(L) + λPEP (L)︸ ︷︷ ︸
(Submodular) Pairwise

potential

+λMEM (L)︸ ︷︷ ︸
MDL

potential

. (5)

Without the MDL term, the energy corresponds to a stan-
dard Markov Random Field (MRF) problem with unary
and pairwise potentials. The α-expansion based graph-cut
method [9] can be used for fast approximate energy min-
imization. We use the method of [17] to handle the label
costs in the MDL term.

A large set of homography models (e.g., 1,000 in our ex-
periments) are generated during initialization (See Sec. 3.2).
For the sake of computational efficiency, if a homography is
not labeled to any pixel after one round of the labeling pro-
cess of L, it will be removed from the candidate model set.
Another strategy to speed up computation is restricting the
α-expansion within a region of limited radius on the image
plane (e.g., <100 pixels).

II. Fitting: Solve for H with fixed L. The homography
parameters H appear in the data term ED and flow conti-
nuity term EC . With fixed labeling, minimizing the energy
function is an unconstrained continuous optimization prob-
lem. If H appears only in ED, we can optimize the param-
eters of each homography independently. Unfortunately, it
appears also in EC which involves pairwise iterations be-
tween adjacent pieces. To tackle this issue we propose to



use an inner block coordinate decent procedure: the ho-
mography is optimized one by one, each time with other
homographies fixed. The homography models with larger
labelling areas are first optimized as they are generally less
affected by EC . See Algorithm 2.

When optimizing a homography Hk, the energy reads

E(Hk) = ED(Hk) + λCEC(Hk)

=
∑
x∈Ωk

ρD
(
(1−α)|I1(x)−I2(Hkx)|+α|∇I1(x)−∇I2(Hkx)|

)
+λC

∑
(x,x′)∈Ek

w(x,x′)·ρC
(
|Hkx̄−HL(x′)x̄|

)
(6)

where Ωk = {x ∈ Ω | L(x) = k}, Ek = {(x,x′) ∈ E | L(x) =

k, L(x′) 6= k}, and other variants and functions are as in
Eq. 3 and Eq. 4. We optimize Eq. 6 via the derivative-free
Nelder-Mead Simplex Downhill method [30]. Similar to
Zhang et al. [49], the vertexes of a simplex are initialized
with the homographies of adjacent pieces. We found this
strategy to be very effective in reducing the energy.

3.2. Initialization

To generate candidate homography proposals and an ini-
tial labelling, we use PatchMatch [3] to compute an initial
correspondence field. Then we use DLT to fit homographies
for small (e.g. 5 × 5) local regions, and grow the regions
to consistent neighbouring pixels for initial labelling. See
Supplementary Material for more details.

4. Post-processing
4.1. Occlusion handling

We detect occlusion based on the forward-backward con-
sistency check. A pixel x will be considered as occluded if
‖x − H′

l′Hlx‖ > θ, where H′
l′ is the homography of the

point Hlx on the target image, and θ is a scalar threshold.
We then remove the data term ED in Eq. 1, and label esti-
mated homographies to the occluded pixels via graph-cut.

4.2. Refinement

To further improve the results for complex motion, small
local deformation may be necessary to compensate the dis-
crepancy between true flow field and the piecewise approxi-
mation. Therefore we use the publicly available code of the
“Classic+NL-fast” method [37] for flow refinement1. Note
that we directly refine the flow on the original image scale,
and no coarse-to-fine pyramid structure is used.

5. Evaluation
In this section, we test the proposed method on three

public benchmarks: the KITTI flow benchmark [20], the
1The refinement using this method yields worse results in occluded re-

gions; we keep the original flow for pixels that are very likely occluded
(which failed the forward-backward check with a large threshold θ = 20).

Table 1: End-point Error results on part of the training se-
quences in KITTI benchmark (3-pixel error threshold).

Out-Noc Out-All Avg-Noc Avg-All
Without MDL 5.94 % 11.44 % 1.58 3.69

Without refinement 5.76 % 10.84 % 1.41 3.00
Full 5.56 % 10.81 % 1.36 2.98

MPI Sintel benchmark [13], and the Middlebury flow
benchmark [1]. Our method is implemented in C++ & Mat-
lab, and tested on a standard PC with Intel i7 3.4GHz CPU.
In the following experiments, we set α = 0.9, β = 5,
σD = 10, iteration number of Algorithm 1 to be 5, maxi-
mal iteration of Algorithm 2 to be 15. Other parameters are
trained on the benchmarks and will be explained in the cor-
responding sections. During initialization we allow a max-
imum number of 1, 000 pieces. The images on KITTI and
Sintel are half-sized before running the method.

5.1. Results on KITTI

The KITTI dataset is a challenging real-world dataset
containing non-lambertian surfaces, different lighting con-
ditions and large displacement motions.

We selected 20 image pairs with ground-truth flow fields
from the training set. After training we set λC =1, λP =4,
λM = 400, σC = 10, and θ= 1.5. The results on these im-
ages are shown in Tab. 1, where “Out-Noc” and “Avg-Noc”
refer respectively to the outlier ratio and average end-point
error in non-occluded regions and “Out-All” and “Avg-All”
to all regions with ground-truth. The effect of the MDL
term is obvious on this benchmark. Table 1 shows that the
MDL term improves the results obtained without MDL term
(i.e. λM = 0) by about 10%∼ 20%. Figure 3 presents the
estimated pieces with different MDL weights. We found
that 40∼80 homography models are generally adequate for
flow estimation on this dataset. Table 1 also shows that the
refinement step improves the results by around 3%∼5%.

We ran our method on the test set where the ground-truth
is hidden. Figure 4 shows two examples of our homography
motion segmentation and flow estimation results. Note that
both the large surfaces of road, green belt, building facades,
cars, etc., and the small objects such as road lamp and sign
are well segmented. Table 2 compares our results with state-
of-the-art two-frame optical flow methods. At the time of
writing, our method is ranked the first among all published
methods, under the by default 3-pixel threshold metric. In
fact, our method shows improved performance on almost all
the reported metrics used in KITTI.

5.2. Results on Middlebury

The Middlebury optical flow benchmark only contains
relatively small displacements. It has been extensively
studied in recent years and sub-pixel accuracy has been



λM = 0 (135 models) λM = 300 (56 models) λM = 600 (36 models)

Figure 3: Effects of different MDL weights. Larger MDL weight leads to less homography models and larger pieces. We
found that usually around 40∼80 homography models are adequate for flow estimation on KITTI benchmark.

Overlay of two input frames Estimated pieces Estimated flow (overlayed onto the image)

Figure 4: Example results of our method on KITTI benchmark. Note that in the example of the first row, motions of small
objects such the road lamp and sign are successfully estimated (flow color scheme of the benchmark is used).

Table 2: Comparison with state-of-the-art two-frame optical flow methods on the test set of KITTI benchmark.

> 2 pixels > 3 pixels > 4 pixels > 5 pixels End-Point
Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Out-Noc Out-All Avg-Noc Avg-All

Our method 8.04 % 13.76 % 5.76 % 10.57 % 4.64 % 8.84 % 3.93 % 7.72 % 1.3 px 2.9 px
NLTGV-SC [33] 7.64 % 14.55 % 5.93 % 11.96 % 5.08 % 10.48 % 4.50 % 9.42 % 1.6 px 3.8 px

TGV2ADCSIFT [10] 8.04 % 17.87 % 6.20 % 15.15 % 5.24 % 13.43 % 4.60 % 12.17 % 1.5 px 4.5 px
BTF-ILLUM [18] 8.84 % 14.14 % 6.52 % 11.03 % 5.38 % 9.29 % 4.64 % 8.11 % 1.5 px 2.8 px

DeepFlow [43] 9.31 % 20.44 % 7.22 % 17.79 % 6.08 % 16.02 % 5.31 % 14.69 % 1.5 px 5.8 px
Classic+NL [37] 12.94 % 23.50 % 10.49 % 20.64 % 9.21 % 18.80 % 8.36 % 17.42 % 2.8 px 7.2 px

EPPM [2] 17.49 % 28.07 % 12.75 % 23.55 % 10.22 % 20.85 % 8.58 % 18.87 % 2.5 px 9.2 px
LDOF [12] 24.43 % 33.89 % 21.93 % 31.39 % 20.22 % 29.58 % 18.83 % 28.07 % 5.6 px 12.4 px

Reference frame Estimated pieces Flow w/o refinement Flow with refinement Ground-truth flow

Figure 5: Qualitative results on “Dimetrodon” and “Grove3” sequences of the Middlebury benchmark.



Table 3: Comparison of endpoint error on the training set of Middlebury benchmark.

Dimetrodon Grove2 Grove3 Hydrangea RubberWhale Urban2 Urban3 Venus
Ours 0.118 0.095 0.445 0.146 0.072 0.196 0.671 0.224

Ours w/o refinement 0.125 0.148 0.537 0.150 0.089 0.275 0.940 0.190
Classic+NL [37] 0.115 0.091 0.438 0.154 0.077 0.207 0.377 0.229

Hornáček et al. [21] 0.169 0.184 0.517 0.222 0.114 0.300 0.905 0.342

Table 4: Comparison of endpoint error with state-of-the-art methods on the test set of Middlebury benchmark. The numbers
in brackets show the rank of each method on each sequence. Results of Unger et al. [40] are reproduced from their paper.

Army Mequon Schefflera Wooden Grove Urban Yosemite Teddy
Ours 0.08 (7) 0.21 (27) 0.23(9) 0.16 (30) 0.56 (7) 0.30 (5) 0.15 (54) 0.43 (8)

Classic+NL [37] 0.08 (7) 0.22 (33) 0.29 (25) 0.15 (19) 0.64 (18) 0.52 (48) 0.16 (65) 0.49 (19)
MDP-Flow2 [46] 0.08 (7) 0.15 (1) 0.20 (4) 0.15 (18) 0.63 (16) 0.26 (3) 0.11 (11) 0.38 (3)

NN-field [14] 0.08 (7) 0.17 (7) 0.19 (2) 0.09 (1) 0.41 (1) 0.52 (48) 0.13 (32) 0.35 (2)
Layer++ [38] 0.08 (7) 0.19 (15) 0.20 (4) 0.13 (6) 0.48 (3) 0.47 (36) 0.15 (54) 0.46 (13)

Unger et al. [40] 0.09 0.27 0.28 0.18 0.88 1.79 0.11 0.74

achieved. However the motion is complex, e.g. there are
many non-rigid deformations, making it difficult for para-
metric model based methods.

We train the parameters on the training set, and set
λC = 0.5, λP = 2, λM = 100, σC = 100 and θ = 1. The
MDL weight is tuned to be much smaller than that on the
KITTI benchmark, as there are many complex motions and
small objects, necessitating more homography models. Ta-
ble 3 shows our results with and without refinement, com-
pared to the Classic+NL method [37], and per-pixel homog-
raphy estimation method [21]. In general, our final results
are comparable to [37] on the training set. Compared to
[21], without refinement our method outperforms [21] in 6
out of the 8 sequences, and outperforms it on all the se-
quences after refinement. Figure 5 shows some qualitative
results of our method. Visually inspected, it gives smooth
and accurate flow fields. It is able to group large regions
with homogeneous (homography) motion (e.g. the ground
and rocks in “Grove3”), meanwhile segment out the small
regions with complex motions (e.g. the leaves). Figure 6
shows a challenging case (the “DogDance” sequence) with
complex nonrigid motion. Our flow and segmentation are
significantly better than [40], further demonstrating the abil-
ity of the proposed method in complex motion handling.

Table 4 compares the performance of our method versus
others on the test set. As can be seen, our results are compa-
rable to state-of-the-art methods. Note that our results are
superior to or on par with results of [37] on all these se-
quences except for “Wooden”, and outperform [40] on all
the sequences except for “Yosemite”.

5.3. Results on MPI Sintel

The Sintel benchmark contains long image sequences
with large motions, severe illumination changes and specu-

Reference frame Target frame

Flow of [40] Our flow (unrefined)

Labeling of [40] Our labeling

Figure 6: Comparison with [40] on the Middlebury “Dog-
Dance” sequence. Our method is less suffered from the
complex non-rigid motion; the flow and labelling results are
clear better than [40] (images reproduced from their paper).

lar reflections. Moreover, it contains large numbers of non-
planar surfaces and complex non-rigid deformations, mak-
ing it more challenging for the proposed piecewise paramet-
ric method.

We selected 23 image pairs (1 pair per sequence) from
the clean pass of training set to train the parameter. Af-
ter training we set λC = 1, λP = 1, λM = 50, σC = 100



Table 5: Comparison of end-point error with state-of-the-art
methods on the test set of Sintel [13]. “all” / “noc” / “occ”
indicate all / non-occluded / occluded regions respectively.

Clean pass Final pass
all noc occ all noc occ

Our method 4.388 1.714 26.202 7.423 3.795 36.960
TF+OFM [24] 4.917 1.874 29.735 6.727 3.388 33.929
DeepFlow [43] 5.377 1.771 34.751 7.212 3.336 38.781

MDP-Flow2 [46] 5.837 1.869 38.158 8.445 4.150 43.430
EPPM [2] 6.494 2.675 37.632 8.377 4.286 41.695

Classic+NL [37] 7.961 3.770 42.079 9.153 4.814 44.509

Overlay of two frames Ground-truth flow

Estimated pieces Estimated flow

Figure 7: Sample results on the Sintel clean sequences.

and θ = 1.5. The MDL is tuned to be very small due to
the presence complex motions, e.g. the non-rigid motion of
human and animal bodies. Figure 1 has shown a typical ex-
ample and the result of our method, and an another example
is presented in Fig. 7.

We then ran the method on the test set, and Tab. 5
presents the results of our method, compared with a few
state-of-the-art methods. At the time of writing, our method
ranks 2nd, and outperforms all published methods on the
clean pass. Note that it performs especially well on the
occluded regions, thanks to the use of parametric models
in the post-processing stage. The proposed method per-
forms inferiorly on the final pass, ranking 7th among all
evaluated methods. We find that the synthetic atmospheric
effects on the final sequences cause difficulties for both
the PathMatch-based initialization, and our main algorithm.
However, on the clean sequences for which the brightness
constancy constraints satisfy, our method consistently pro-
duces accurate estimates.

5.4. Running time

The proposed method takes a few hundreds of seconds to
estimate a forward flow field of size 640×480 in our exper-
iment settings. The optimization time spent in Algorithm 1
is about 200 ∼ 500 seconds depending on the number of
models. The initialization stage takes about 5 seconds and
the refinement stage takes about 60 seconds.

6. Closing Remarks
We have presented a simple method for optical flow es-

timation using piecewise parametric model. Thanks to the
new energy design and the joint discrete-continuous opti-
mization, our method produces high-quality results that are
superior to or comparable with state-of-the-art methods. We
believe that piecewise parametric flow estimation deserves
a position in highly accurate optical flow estimation.
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