
Deep Correlation for Matching Images and Text

Fei Yan Krystian Mikolajczyk

Centre for Vision, Speech and Signal Processing, University of Surrey

Guildford, Surrey, United Kingdom. GU2 7XH

{f.yan, k.mikolajczyk}@surrey.ac.uk

Abstract

This paper addresses the problem of matching images

and captions in a joint latent space learnt with deep canon-

ical correlation analysis (DCCA). The image and caption

data are represented by the outputs of the vision and text

based deep neural networks. The high dimensionality of

the features presents a great challenge in terms of memory

and speed complexity when used in DCCA framework. We

address these problems by a GPU implementation and pro-

pose methods to deal with overfitting. This makes it possi-

ble to evaluate DCCA approach on popular caption-image

matching benchmarks. We compare our approach to other

recently proposed techniques and present state of the art re-

sults on three datasets.

1. Introduction

Automatically describing (resp. synthesising) visual

data using (resp. from) natural language [5, 6, 11, 15, 16,

23, 25, 26, 29, 34, 35, 36, 42, 52] is one of the ultimate

goals of computer vision (CV), natural language processing

(NLP) and machine learning (ML). However, besides being

extremely ambitious, this goal is also practically problem-

atic due to the lack of means for quantifying progress with

objective evaluation.

With the image-text parallel corpora that have become

available recently [2, 14, 18, 31, 41, 53], the evaluation

issue has been alleviated by changing the goal of descrip-

tion and synthesis to a cross-modal retrieval one. In such

a scenario, given an image, the goal is to retrieve the gold

textual description, and vice versa. Following this setting,

various techniques have been proposed recently to learn a

latent joint space for image and text. The majority of these

techniques optimise either the canonical correlation objec-

tive [13, 18] or a structured objective [48] over typically

shallowly learnt features, i.e., the features and the objec-

tive are decoupled. In contrast, the very recent work of [21]

integrates into the deep learning [24, 28] framework an ob-

jective that maximises the alignment between fragments of

the image and those of the text.

In this paper, we propose an alternative end-to-end learn-

ing scheme based on the deep canonical correlation analysis

(DCCA) [1]. Our contributions can be summarised as fol-

lows:

First, we make non-trivial extensions to [1]. [1] eval-

uates DCCA on medium-sized problems with low feature

dimensionalities, allowing training in a full batch mode us-

ing the L-BFGS method. Our feature dimensionalities are

two orders of magnitude higher, which can better represent

the data but limits the training to small batches and imposes

overfitting problems. We propose specific steps to address

these issues. The higher dimensionalities also make the sin-

gular value decomposition (SVD) required by DCCA much

more computationally intensive. To address this problem

we propose and discuss details of a GPU implementation

with CULA libraries. The efficiency of our implementation

is several orders of magnitude higher than CPU implemen-

tations.

Secondly, we advance the state of the art on the widely

used benchmarks for image-text matching. The perfor-

mance of the proposed learning scheme outperforms, or is

on par with prior art[13, 21]. Our results show that canoni-

cal correlation is a very competitive objective, not only for

shallowly learnt features, but also in the context of deep

learning.

The remainder of this paper is organised as follows. In

Section 2 we briefly review related work in the literature. In

Section 3 the proposed end-to-end learning scheme is pre-

sented, where we discuss the overall architecture, the trace

norm objective, as well as how to address complexity and

overfitting issues. We then provide experimental evaluation

on three benchmarks in Section 4. Finally, Section 5 con-

cludes the paper.

2. Related Work

In this section, we review the existing work on sentence

generation for visual data, and its proxy task of matching

images and text, followed by a brief introduction to deep

CCA.



2.1. Describing visual data with natural language

Generating natural language description for image and

video has become a popular research topic in recent years.

Most techniques [11, 16, 25, 26, 29, 35, 52] adopt a content

selection and surface realisation approach. Starting from

the output of visual processing engines e.g. object classi-

fiers, object detectors and attribute classifiers, image con-

tent that is being described is selected in the form of tuples

such as subject-action-object triplets, object-preposition-

object triplets, and object-action-preposition-scene triplets

quadruplet. A surface realiser is then employed to pro-

duce captions as constrained by the lexicon and grammar.

While [29] focuses on the investigation of surface realisa-

tion techniques, the work in [11, 16, 25, 26, 35, 52] differs

primarily in the way the tuples of image content are gener-

ated.

Recently, maximum entropy based [10] and tree

based [27] language models have been proposed for caption

generation. More remarkably, end-to-end learning systems

using long short term memory (LSTM) [17] and other re-

current neural networks (RNNs) have enjoyed great success

and are becoming popular [4, 7, 20, 22, 32, 49, 50].

In parallel to image captioning, automatic video descrip-

tion is also receiving increasing attention [6, 15, 23, 42, 43,

47]. These techniques operate within the same paradigm of

content selection and surface realisation. Compared to im-

age description, typically video description systems addi-

tionally employ spatio-temporal methods for action recog-

nition.

2.2. Matching images and text

The main issue with description generation is the lack

of automatic and objective evaluation metric. Automatic

metrics such as BLEU [38] and ROUGE [30] are useful

for measuring the fluency of the generated text [40], but

not reliable for how accurately a caption describes an im-

age or a video [18]. METEOR is more correlated with hu-

man judgements than BLEU and ROUGE but there is still

a large gap [9]. On the other hand, human judgements are

quite subjective and are expensive and time-consuming to

collect.

The evaluation issue is alleviated by the ranking based

formulation of the problem [13, 18, 21, 48, 51]. Assuming

pairs of image and human-written description (caption) are

available, a joint latent space is learnt, and the performance

is evaluated essentially by how high the gold description is

ranked among other candidates for a given image (i.e. the

image annotation setting), and vice versa (i.e. the image

retrieval setting). Existing techniques differ mainly in the

way the latent space is learnt.

Canonical correlation analysis (CCA) and its kernel ver-

sion (KCCA) maximise the correlation in the latent space.

While [18] directly employs KCCA for matching images

and captions, [13] builds two layers of CCA. The first layer

transfers information from a large extra dataset with 1 mil-

lion image-caption pairs, and the final latent space is learnt

in the second layer of CCA.

In contrast to the correlation objective in CCA and

KCCA, [48] maximises the margin between matched

image-text pairs and non-matched ones, in the structured

SVM (S-SVM) setting [45]. As a result, the learnt latent

space is asymmetric: two spaces are learnt separately for

matching images to text and matching text to images. More-

over, the S-SVM is computationally much more expensive

to solve than CCA/KCCA, both speed-wise and memory-

wise.

In [21], image and sentence fragments are extracted us-

ing object detectors and dependency tree relations, respec-

tively. The objective optimised encodes the intuition that

fragments in the image and those in the text should be

aligned. [21] produces state of the art performance on popu-

lar benchmarks for image-text matching. Another two simi-

lar pieces of work deeply embedding visual and textual fea-

tures are [12, 44], whose objective functions can be broadly

seen as special cases of that in [21].

2.3. Deep canonical correlation analysis

In contrast to hand-crafted objectives, deep CCA

(DCCA) [1] optimises the CCA objective in the deep learn-

ing framework. It uses the insight that the total correlation

sought in CCA can be maximised by optimising a matrix

trace norm, and the gradient of the trace norm with respect

to features of the two modalities can be computed. This

allows propagating the gradient down in a deep neural net-

work, achieving end-to-end learning.

In [1] DCCA is evaluated on medium-sized problems

and in terms of total correlation obtained in the learnt la-

tent space, which as noted in the paper is not the final goal

of real-world applications. Before DCCA can be applied

to problems whose features are two orders of magnitude

higher and achieve improved matching performance, var-

ious issues such as time complexity, memory complexity,

and overfitting must to be addressed.

3. Deep Correlation for Matching Images and

Text

In this section, we show how we address the issues in

DCCA in order to produce state of the art performance on

the task of matching images and text. We first present the

overall architecture of the proposed network, followed by

an introduction to the trace norm objective. We then discuss

how the complexity and overfitting issues are addressed.

3.1. Architecture of the network

The architecture of the proposed network is illustrated in

Figure 1. The image branch (top row in Figure 1) of the net-
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Figure 1. Architecture of the proposed network.

work is essentially the deep convolutional neural network

(CNN) proposed in [24]. This network and its variants have

achieved immense success in a wide range of vision prob-

lems [8, 39]. The text branch (bottom row in Figure 1) of

the network consists of n stacked triplets of fully connected

(FC) layer, rectified linear unit (ReLU) layer, and dropout

layer.

As will be detailed later, the total correlation obtained

in CCA is equal to a matrix trace norm. In the trace norm

objective (TNO) layer, the gradient of the trace norm with

respect to X and Y are computed and propagated backward,

where X ∈ R
dx×m is the output of the FC8 layer and Y ∈

R
dy×m is that of the Dropoutn′ layer, dx and dy are the

dimensionalities, and m is the batch size.

We employ simple term frequency-inverse document fre-

quency (TF-IDF) representation to build text features that

are fed into the FC1′ layer. First, all captions are tokenised

and lemmatised using the linguistic analyser of [37]. We

keep the top dy most frequent lemmatised words and build

a dy dimensional TF-IDF histogram t for each caption, with

the ith dimension:

ti = ai log
B

bi + 1
(1)

where ai is the term frequency of the ith lemmatised word

i.e. the number of its occurrences in the caption, bi is the

document frequency of the lemmatised word i.e. the num-

ber of training captions where it appears, and B is the total

number of training captions. The FC layers in the text part

of the network FC1′, ..., FCn′ each have dy neurons. As a

result, the input features Y to the TNO layer has a dimen-

sionality of dy .

3.2. Trace norm objective

Given two sets of m random vectors X ∈ R
dx×m and

Y ∈ R
dy×m, let their covariances be Σxx and Σyy respec-

tively, and let the cross covariance be Σxy . Canonical corre-

lation analysis (CCA) seeks pairs of linear projections that

maximise the correlation of the two views:

(w∗

x,w
∗

y) = argmax
wx,wy

corr(wT
xX,wT

y Y )

= argmax
wx,wy

w
T
xΣxywy

√

wT
xΣxxwxw

T
y Σyywy

(2)

Since the objective is invariant to scaling of wx and wy , the

projections are constrained to have unit variance:

(w∗

x,w
∗

y) = argmax
w

T
x Σxxwx=w

T
y Σyywy=1

w
T
xΣxywy (3)

Assembling the top projection vectors into the columns of

projection matrices Wx and Wy , the CCA objective can be

written as:

max
Wx,Wy

tr(WT
x ΣxyWy) (4)

s.t. : WT
x ΣxxWx = WT

y ΣyyWy = I

Let X̄ and Ȳ be the centred data matrices respectively:

X̄ = X −
1

m
X1, Ȳ = Y −

1

m
Y 1 (5)

In practice, the covariance matrices are estimated as:

Σxx = 1

m−1
X̄X̄T + λxI, Σyy = 1

m−1
Ȳ Ȳ T + λyI

Σxy = 1

m−1
X̄Ȳ T (6)

where λxI and λyI are regularisers to ensure the positive

definiteness of Σxx and Σyy .

Define T = Σ
−1/2
xx ΣxyΣ

−1/2
yy , and let Uk and Vk be the

matrices of the first k left- and right- singular vectors of T

respectively. It is shown in [33] that the optimal objective

value is the sum of the top k singular values of T , and the

optimum is attained at

(W ∗

x ,W
∗

y ) = (Σ−1/2
xx Uk,Σ

−1/2
yy Vk) (7)

When k = dx = dy , the total correlation objective in Eq. (4)

is equal to the trace norm of T :

corr(X,Y ) = ||T ||tr = tr((TTT )1/2) (8)

Moreover, let the singular value decomposition (SVD) of T
be T = UDV T , it is shown in [1] that the gradient of the

total correlation with respect to X is given by:

∂corr(X,Y )

∂X
=

1

m− 1
(2∇xxX̄ +∇xyȲ ) (9)

where

∇xx = − 1

2
Σ

−1/2
xx UDUTΣ

−1/2
xx (10)

∇xy = Σ
−1/2
xx UV TΣ

−1/2
yy (11)



Similarly, the gradient with respect to Y is

∂corr(X,Y )

∂Y
=

1

m− 1
(2∇yyȲ +∇yxX̄) (12)

where

∇yy = − 1

2
Σ

−1/2
yy V DV TΣ

−1/2
yy (13)

∇yx = Σ
−1/2
yy V UTΣ

−1/2
xx (14)

The gradients are computed in the TNO layer of Figure 1,

and propagated down along the two branches of the net-

work.

3.3. GPU implementation

Assuming for now dx = dy = d, the most computa-

tionally expensive operation for computing the gradients in

Eq. (9) and Eq. (12) is the SVD of the d × d matrix T .

[1] considers cases where d is in the order of 101 and im-

plements the TNO layer on a CPU. For the application of

image-text matching, however, it is observed that the num-

ber of features required to encode the rich information in

image and text is in the order of 103 [8, 13, 18, 39].

To make DCCA practically applicable to our application,

we implement the TNO layer on a GPU with the CUBLAS1

and CULA2 libraries. Both libraries are based on CUDA3.

While CUBLAS is a GPU-accelerated version of the com-

plete standard BLAS4 library, which provides basic linear

algebra subroutines, CULA can be broadly seen as the GPU

version of the LAPACK5 library, and provides more sophis-

ticated linear algebra routines such as solving systems of si-

multaneous linear equations, eigenvalue problems, and sin-

gular value problems.

In our GPU based implementation of the TNO layer,

the SVD of matrix T is solved using the CULA library.

For comparison we also implement the layer using several

CPU based linear algebra libraries. Figure 2 compares the

time needed to solve an SVD with various libraries, where

OpenCV6, LAPACK7, Eigen8 are CPU based. It is clear

from Figure 2 that when d is in the order of 103, CULA is

typically two to three orders of magnitude faster. For ex-

ample, when d = 4096, CULA takes only 16.3 seconds,

while LAPACK, OpenCV and Eigen take 4922.6, 6714.5

and 22971.1 seconds, respectively.

Other linear operations such as matrix multiplication and

the Cholesky decomposition required for matrix inversion

also get a significant speedup with CULA and CUBLAS.

1https://developer.nvidia.com/cublas
2http://www.culatools.com/
3http://www.nvidia.com/object/cuda home new.html
4http://www.netlib.org/blas/
5http://www.netlib.org/lapack/
6http://opencv.org
7http://www.netlib.org/lapack
8http://eigen.tuxfamily.org
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Figure 2. Log-log plot of speed of SVD solvers. The GPU based

CULA solver is two to three orders of magnitude faster than CPU

based ones when matrix is 4096 × 4096.

Overall each iteration for a batch of size m = 100 takes

approximately 26.5 seconds to complete. Since typically

thousands of iterations are needed for the network to con-

verge, it is clear that the migration from CPU to GPU is

a crucial step for DCCA to be practically employed in our

problem.

Both CPU and GPU versions of the TNO layer are im-

plemented under the deep learning framework Caffe [19].

Time reported in this section is measures on a single core

of an AMD Opteron 6262 HE CPU and an Nvidia Tesla

M2090 GPU using single precision.

3.4. Addressing overfitting

The GPU implementation brings huge efficiency im-

provements but at the same time imposes a limit on the

batch size. The CCA correlation loss is a batch objective,

that is, it can not be computed by assembling losses of in-

dividual points, and is sensitive to the batch size. It is ob-

served in [1] that training in full batch mode produces much

better results than in small batches. However, a GPU with

6GB of memory limits the batch size m to 100 when d is

set to 4096. This is only a fraction of the training data for

datasets we consider, and as a result adds to the already ex-

isting issue of overfitting in deep neural networks.

To address the overfitting issue, dropout layers

ReLU1′, ...,ReLUn′ are inserted in the network, and the

training data is augmented with mirrored versions of the im-

ages. In addition, the training data is also augmented with

10 copies of itself and is shuffled. Although the copies are

identical to the original data, due to the batch nature of the

CCA objective, they still provide new batches for the net-

work to learn from.

It is also crucially important to have a good initialisa-

tion for the millions of parameters in the network of Fig-

ure 1. For the image part of the network, we initialise by



• A girl in a white dress runs down a country road.

• a girl walks on a dirt street.

• A little girl in a white dress and no shoes walks down a dirt road in America.

• A woman in a white dress is walking along a long straight road.

• A young girl with a white dress walks down a dirt road with trees and fields on both

sides of the road.

• A woman wearing a white shirt, tan pants, and boots is standing beside a vendor cart

that contains various beverages.

• Lady at the beach standing next to her ice cream cart, numerous people is lounging in

the background.

• A treat vendor is standing in the sun while others sit in the shade under umbrellas.

• A black woman wearing a blue hat and white t-shirt is standing at a snow cone stand.

• Woman with a vending cart in the middle of a beach.

• the ruins of a city with many green areas that was built on several terraces; behind it

a very significant, rugged mountain; slight waft of mist; there is a wooded mountain

range in the background;

Table 1. Example image-caption pairs. Top: Flickr8K; middle: Flickr30K; bottom: IAPR TC-12. IAPR TC-12 captions tend to be more

detailed than those of Flickr datasets. The example images have been resized to 256 by 256.

pre-training the AlexNet model [19, 24] and transferring the

learnt weights. For the text part of the network, we initialise

the weights of the fully connected layers (FC1′, ..., FCn′)

to identity matrices, and the biases to zeros. This ensures

that the search for optimal parameters always starts from

the “safe” point of the TF-IDF features defined in Eq. (1).

4. Experiments

In this section we evaluate the DCCA learning scheme

on three image-text parallel datasets, namely Flickr8K,

Flickr30K, and IAPR TC-12. On each dataset we com-

pare the performance of our scheme with the state of the

art reported, following the experimental protocols and eval-

uation metrics used. On all datasets, the batch size is set

to m = 100 and the dimensionalities of the input of both

modalities to the TNO layer are set to d = 4096.

4.1. Flickr8K

The Flickr8K dataset [18] consists of 8000 images from

the Flickr.com website, which focus on people or animal

performing actions. Using a crowdsourcing service, five

captions were generated by different annotators for each

image. The annotators were asked to describe the actors,

objects, scenes and activities that were shown in the im-

age, i.e., information that could be obtained from the image

alone. An example image-caption pair is shown in the top

row of Table 1.

The dataset is split into predefined training, validation,

and test sets with 6000, 1000, and 1000 pairs respectively.

In [18] the five captions are pooled into one for the training

set, and for the validation and test sets only caption two is

used. We dub this setting protocol I. In contrast the protocol

in [21] (protocol II) keeps all five captions for the test set.

For the task of image annotation i.e. image-to-text retrieval,

only the highest ranked caption among the five ground truth

captions is considered.

In addition to these two existing protocols, we also in-

troduce protocol III, where we pool the five captions into

one for train, validation and test sets. The text representa-

tion for the validation and test sets in protocol III is richer

and matches the training set better, it is therefore easier than

protocols I and II.

For each test image the 1000 captions in the test set are

ranked according to their cosine similarity to the image in

the learnt latent space. This ranked list allows to define au-

tomatic and objective metrics that measure how well images

and captions are matched. Moreover, such a framework can

be trivially extended to perform the symmetric task of im-

age retrieval using captions. We follow the common prac-

tice on this dataset and report in Table 2 the average recall

of the gold item at position 1, 5, 10 of the ranked list (R@1,

R@5, R@10), and the median rank (MR) of the gold item,

for both image annotation and image retrieval tasks. Note

that in contrast to the recalls, a lower median rank indicates

a better performance.

Table 2 shows that under both protocols I and II the

proposed scheme outperforms competing methods on most

metrics. The only exception is that under protocol I, the



Image annotation Image retrieval

R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Protocol I

KCCA [18] 8.3 21.6 30.3 34 7.6 20.7 30.1 38

transfer CCA [13] 48.8

Deep Fragment [21] 9.3 24.9 37.4 21 8.8 27.9 41.3 17

DCCA 13.6 32.9 46.4 13 12.1 31.6 44.8 14

Protocol II

DeViSE [12] 4.8 16.5 27.3 28 5.9 20.1 29.6 29

SDT-RNN [44] 6.0 22.7 34.0 23 6.6 21.6 31.7 25

Deep Fragment [21] 12.6 32.9 44.0 14 9.7 29.6 42.5 15

DCCA 17.9 40.3 51.9 9 12.7 31.2 44.1 13

Protocol III DCCA 28.2 56.1 69.8 4 26.3 54.0 67.5 5

Table 2. Performance on Flickr8K.

Image annotation Image retrieval

R@1 R@5 R@10 MR R@1 R@5 R@10 MR

Protocol I
transfer CCA [13] 32.8 / 32.4

DCCA 32.5

Protocol II

DeViSE [12] 4.5 18.1 29.2 26 6.7 21.9 32.7 25

SDT-RNN [44] 9.6 29.8 41.1 16 8.9 29.8 41.1 16

Deep Fragment [21] 16.4 40.2 54.7 8 10.3 31.4 44.5 13

DCCA 16.7 39.3 52.9 8 12.6 31.0 43.0 15

Protocol III DCCA 27.9 56.9 68.2 4 26.8 52.9 66.9 4

Table 3. Performance on Flickr30K.

transfer CCA of [13] has an edge (48.8 vs. 46.4) on R@10

for image annotation, the only metric reported in the paper.

Note however that [13] uses an additional large dataset with

1 million image-caption pairs for training. In Table 2, the

performance of DeViSE [12] and SDT-RNN [44] is taken

from [21], where the original code is modified to work on

the Flickr8K dataset.

4.2. Flickr30K

Flickr30K [53] is an extension of Flicker8K with 31784

images each paired with five captions, and the captions were

annotated in a similar style as in Flicker8K. An example

image-caption pair can be found in the middle row of Ta-

ble 1.

As for the case of Flicker8K, two evaluation protocols

exist in the literature. Protocol I [13] uses 25000 pairs for

training, 3000 for validation and 3000 for test. It pools

the five captions into one only for the training set, and

uses only one caption for validation and test sets. Protocol

II [12, 21, 44] adopts a 28000/1000/1000 split for the sets.

It keeps five captions separately for the test set, and evalu-

ate image annotation in a similar fashion as for Flickr8K

dataset. We also introduce protocol III, where we use a

28000/1000/1000 split and pool five captions into one for

all three sets. As in Flickr8K, average recalls R@1, R@5,

R@10 and median rank MR are used as evaluation metrics

for both tasks of image annotation and image retrieval.

The results in Table 3 indicate that under protocol I the

transfer CCA in [13] achieves an R@10 score of 32.8 and

32.4 when using Flickr1M and SBU1M as additional train-

ing data respectively, where Flickr1M and SBU1M each

contain 1 million image-caption pairs. Our method has an

R@10 score of 32.5, which is on par with [13] but does not

use additional data for training. Note that in [13] only the

R@10 score for the image annotation task is reported.

On the other hand, when no extra data is used for train-

ing, the performance of the proposed learning scheme is

comparable to that of [21], which is the state of the art

on this dataset under protocol II. Essentially, the two ap-

proaches adopt different philosophies for matching images

and text. [21] breaks an image into objects and a sentence

into dependency tree relations, and maximises the explicit

alignment between the image fragments and text fragments.

In contrast, our TF-IDF based text features and CNN based

visual features capture global properties of the two modal-

ities respectively. The alignment of the fragments in image

and text is implicitly taken care of by the CCA correlation

objective.

4.3. IAPR TC12

The IAPR TC-12 benchmark [14] consists of 20000 still

natural images taken from locations around the world and



Image annotation Image retrieval

P@1 P@5 MAP P@1 P@5 MAP

structured SVM [48] 0.086 0.070 0.050 0.035 0.029 0.035

DCCA 0.302 0.114 0.426 0.295 0.120 0.415

Table 4. Performance on IAPR TC-12.

comprising an assorted cross-section of still natural images.

Each image is associated with a text caption in up to three

different languages (English, German and Spanish). In this

paper we consider only the pairing of the images and the

English captions. An example pair is shown in the bottom

row of Table 1. Compared to Flickr8K and Flickr30K, there

is only one caption for each image, but the captions tend to

be more detailed. The average length of the captions is 28.2

words, as opposed to 12.9 and 14.4 words in Flickr8K and

Flickr30K respectively.

To our knowledge [48] is the only work that uses the

IAPR TC-12 dataset for image-text matching. Following

the evaluation protocol and metrics in [48], we split the

dataset into a training set of 18000 pairs and a test set of

2000 pairs, and report in Table 4 precision at position 1, 5

of the ranked list (P@1, P@5) and the mean average pre-

cision (MAP). Note that P@k and average precision (AP)

are closely related to R@k and median rank metrics used

for Flickr8K and Flickr30K datasets. More specifically,

P@k = R@k/k, and AP = 1/Rank.

The performance of [48] and the proposed learning

scheme is shown in Table 4. Table 4 demonstrates the ad-

vantage of our method, improving the scores by up to an or-

der of magnitude. In the table the performance of structured

SVM [48] is read from Figure 4 of the paper, as numerical

values are not provided.

[48] employs the latent Dirichlet allocation (LDA) [3] to

build image and text representations. The structured SVM

in [48] constructs a joint space of outer product, and is com-

putationally expensive both in term of time and memory.

For instance, when the dimensionality d of both modalities

is 1000, approximately 100GB of memory are required, and

training can take several days for certain values of the reg-

ularisation parameter C9. As a result, the dimensionality

i.e. the number of topics learnt in LDA is limited, and is

set to 100 in their experiments. The low dimensional rep-

resentations may not be expressive enough, leading to the

suboptimal performance of [48].

In contrast, our scheme benefits from the efficient GPU

implementation, and allows to use higher dimensional rep-

resentations. As a result, the rich information in image and

text is captured.

9Code is available at http://researchweb.iiit.ac.in/ yashaswi.verma/

4.4. Discussions

Overall, on all of the three widely used benchmarks

for image-text matching, the proposed learning scheme

has exhibited state of the art performance. This confirms

that canonical correlation is a powerful objective not only

for shallowly learnt features, but also in the context of

deep learning. On the other hand, however, it is not yet

known how to employ canonical correlation for text gen-

eration rather than image-text matching. The very recent

work [4, 7, 20, 22, 32, 49, 50] that uses LSTM and other

variants of RNN for text generation is advantageous in this

respect. Recently there has also been progress on objective

metric for image description evaluation [46].

In Table 5 and Table 6 qualitative results for three ran-

dom test examples in the Flickr8K dataset are shown, with

the five top ranked and the gold captions/image for each

query image/caption.

5. Conclusions

In this paper we proposed an image-caption match-

ing approach based on deep canonical correlation analysis

(DCCA). We have made DCCA applicable to high dimen-

sional image and text representations and large datasets by

resolving non-trivial complexity and overfitting issues. We

have demonstrated the achieved speedup of several orders

of magnitude and compared our approach with competing

techniques on standard benchmarks for image-text match-

ing. The performance of the proposed learning scheme out-

performs, or is on par with prior art.
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