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Abstract

Retrieving 3D models from 2D human sketches has re-
ceived considerable attention in the areas of graphics, im-
age retrieval, and computer vision. Almost always in state
of the art approaches a large amount of “best views” are
computed for 3D models, with the hope that the query sketch
matches one of these 2D projections of 3D models using
predefined features.

We argue that this two stage approach (view selection
– matching) is pragmatic but also problematic because the
“best views” are subjective and ambiguous, which makes
the matching inputs obscure. This imprecise nature of
matching further makes it challenging to choose features
manually. Instead of relying on the elusive concept of “best
views” and the hand-crafted features, we propose to define
our views using a minimalism approach and learn features
for both sketches and views. Specifically, we drastically
reduce the number of views to only two predefined direc-
tions for the whole dataset. Then, we learn two Siamese
Convolutional Neural Networks (CNNs), one for the views
and one for the sketches. The loss function is defined on
the within-domain as well as the cross-domain similarities.
Our experiments on three benchmark datasets demonstrate
that our method is significantly better than state of the art
approaches, and outperforms them in all conventional met-
rics.

1. Introduction
Retrieving 3D models from 2D sketches has impor-

tant applications in computer graphics, information re-
trieval, and computer vision [9, 13, 18]. Compared to the
early attempts where keywords or 3D shapes are used as
queries [23], the sketch-based idea is very attractive because
sketches by hand provide an easy way to input, yet they are
rich enough to specify shapes.

Directly matching 2D sketches to 3D models suffers
from significant differences between the 2D and 3D repre-
sentations. Thus, in many state of the art methods 3D mod-

Figure 1. Examples of sketch based 3D shape retrieval.

els are projected to multiple 2D views, and a sketch matches
a 3D model if it matches one of its views. Fig. 1 shows a
few examples of 2D sketches and their corresponding 3D
models. One can immediately see the variations in both the
sketch styles and 3D models.

In almost all state of the art approaches, sketch based
3D shape retrieval amounts to finding the “best views” for
3D models and hand-crafting the right features for match-
ing sketches and views. First, an automatic procedure is
used to select the most representative views of a 3D model.
Ideally, one of the viewpoints is similar to that of the query
sketches. Then, 3D models are projected to 2D planes using
a variety of line rendering algorithms. Subsequently, many
2D matching methods can be used for computing the sim-
ilarity scores, where features are always manually defined
(e.g., Gabor, dense SIFT, and GALIF [9]).

This stage-wise methodology appears pragmatic, but it
also brings a number of puzzling issues. To begin with,
there is no guarantee that the best views have similar view-
points with the sketches. The inherent issue is that identify-
ing the best views is an unsolved problem on its own, par-
tially because the general definition of best views is elusive.
In fact, many best view methods require manually selected
viewpoints for training, which makes the view selection by
finding “best views” a chicken-egg problem.

Further, this viewpoint uncertainty makes it dubious to
match samples from two different domains without learn-
ing their metrics. Take Fig. 1 for example, even when the



viewpoints are similar the variations in sketches as well as
the different characteristics between sketches and views are
beyond the assumptions of many 2D matching methods.

Considering all the above issues arise when we strug-
gle to seek the viewpoints for matching, can we bypass the
stage of view selection? In this paper we demonstrate that
by learning cross domain similarities, we no longer require
the seemingly indispensable view similarity assumption.

Instead of relying on the elusive concept of “best views”
and hand-crafted features, we propose to define our views
and learn features for views and sketches. Assuming that
the majority of the models are upright, we drastically reduce
the number of views to two per object for the whole dataset.
We also make no selections of these two directions as long
as they are significantly different. Therefore, we consider
this as the minimalism approach as opposed to multiple best
views.

This upright assumption appears to be strong, but it turns
out to be sensible for 3D datasets. Many 3D models are nat-
urally generated upright (e.g., [23]). We choose two view-
points because it is very unlikely to get degenerated views
for two significantly different viewpoints. An immediate
advantage is that our matching is more efficient without the
need of comparing to more views than necessary.

This seemingly radical approach triumphs only when the
features are learned properly. In principle, this can be re-
garded as learning representations between sketches and
views by specifying similarities, which gives us a seman-
tic level matching. To achieve this, we need comprehensive
shape representations rather than the combination of shal-
low features that only capture low level visual information.

We learn the shape representations using Convolutional
Neural Network (CNN). Our model is based on the Siamese
network [5]. Since the two input sources have distinctive
intrinsic properties, we use two different CNN models, one
for handling the sketches and the other for the views. This
two model strategy can give us more power to capture dif-
ferent properties in different domains.

Most importantly, we define a loss function to “align”
the results of the two CNN models. This loss function cou-
ples the two input sources into the same target space, which
allows us to compare the features directly using a simple
distance function.

Our experiments on three large datasets show that our
method significantly outperforms state of the art approaches
in a number of metrics, including precision-recall and the
nearest neighbor. We further demonstrate the retrievals in
each domain are effective. Since our network is based on
filtering, the computation is fast.

Our contributions include

• We propose to learn feature representations for sketch
based shape retrieval, which bypasses the dilemma of
best view selection;

• We adopt two Siamese Convolutional Neural Net-
works to successfully learn similarities in both the
within-domain and the cross domain;

• We outperform all the state of the art methods on three
large datasets significantly.

2. Related work
Sketch based shape retrieval has received many interests

for years [10]. In this section we review three key com-
ponents in sketch based shape retrieval: public available
datasets, features, and similarity learning.

Datasets The effort of building 3D datasets can be traced
back to decades ago. The Princeton Shape Benchmark
(PSB) is probably one of the best known sources for 3D
models [23]. There are some recent advancements for gen-
eral and special objects, such as the SHREC’14 Benchmark
[20] and the Bonn Architecture Benchmark [27].

2D sketches have been adopted as input in many systems
[6]. However, the large scale collections are available only
recently. Eitz et al. [9] collected sketches based on the PSB
dataset. Li et al. [18] organized the sketches collected by
[8] in their SBSR challenge.

Features Global shape descriptors, such as statistics of
shapes [21] and distance functions [15], have been used for
3D shape retrieval [25]. Recently, local features is proposed
for partial matching [11] or used in the bag-of-words model
for 3D shape retrieval [3].

Boundary information together with internal structures
are used for matching sketches against 2D projections.
Therefore, a good representation of line drawing images is
a key component for sketch based shape retrieval. Sketch
representation such as shape context [1] was proposed for
image based shape retrieval. Furuya et al. proposed BF-
DSIFT feature, which is an extended SIFT feature with
Bag-of-word method, to represent sketch images [12]. One
recent method is the Gabor local line based feature (GALIF)
by Mathias et al., which builds on a bank of Gabor filters
followed by a Bag-of-word method [9].

In addition to 2D shape features, some methods also ex-
plored geometry features as well as graph-based features to
facilitate the 3D shape retrieval [19]. Semantic labeling is
also used to bridge the gaps between different domains [14].
In this paper, we focus on view based method and only use
2D shape features.

CNN and Siamese network Recently deep learning has
achieved great success on many computer vision tasks.
Specifically, CNN has set records on standard object recog-
nition benchmarks [16]. With a deep structure, the CNN can
effectively learn complicated mappings from raw images to



the target, which requires less domain knowledge compared
to handcrafted features and shallow learning frameworks.

A Siamese network [5] is a particular neural network ar-
chitecture consisting of two identical sub-convolutional net-
works, which is used in a weakly supervised metric learn-
ing setting. The goal of the network is to make the out-
put vectors similar if input pairs are labeled as similar, and
dissimilar for the input pairs that are labeled as dissimilar.
Recently, the Siamese network has been applied to text clas-
sification [28] and speech feature classification [4].

3. Learning feature representations for sketch
based 3D shape retrieval

We first briefly introduce basic concepts in CNNs and
Siamese network. Then, we present our network architec-
ture for cross domain matching, based on the Siamese net-
work. Given a set of view and sketch pairs, we propose to
use two different Siamese networks, one for each domain.
Finally, we revisit the view selection problem, and describe
our minimalism approach of viewpoint definition and the
line drawing rendering procedure.

3.1. CNN and Siamese network

CNN is a multilayer learning framework, which consists
of an input layer, a few convolutional layers and fully con-
nected layers, as well as an output layer on which the loss
function is defined. The goal of CNN is to learn a hierarchy
of feature representations. Signals in each layer are con-
volved with a number of filters and further downsampled
by pooling operations, which aggregate values in a small
region by functions including max, min, and average. The
learning of CNN is based on Stochastic Gradient Descent
(SGD). Please refer to [17] for details.

Siamese Convolutional Neural Network has been used
successfully for dimension reduction in weakly supervised
metric learning. Instead of taking single sample as input, the
network typically takes a pair of samples, and the loss func-
tions are usually defined over pairs. A typical loss function
of a pair has the following form:

L(s1, s2, y) = (1− y)αD2
w + yβeγDw , (1)

where s1 and s2 are two samples, y is the binary similarity
label,Dw = ‖f(s1;w1)− f(s2;w2)‖1 is the distance. Fol-
lowing [5], we set α = 1

Cp
, β = Cn, and γ = −2.77

Cn
, where

Cp = 0.2 and Cn = 10 are two constants.
This can be regarded as a metric learning approach. Un-

like methods that assign binary similarity labels to pairs, the
network aims at bring the output feature vectors closer for
input pairs that are labeled as similar, or push the feature
vectors away if the input pairs are labeled as dissimilar.

The Siamese network is frequently illustrated as two
identical networks for two different samples. In each SGD

iteration, pairs of samples are processed using two iden-
tical networks, and the error computed by Eq. 1 is then
back-propagated and the gradients are computed individu-
ally base on the two sample sets. The Siamese network is
updated by the average of these two gradients.

3.2. Cross-domain matching using Siamese network

In this section, we propose a method to match samples
from two domains without the heavy assumption of view
similarity. We first provide our motivation using an illus-
trated sample. Then, we propose our extension of the basic
Siamese network. Specifically, we use two different net-
works to handle sources from different domains.

3.2.1 An illustrated example

The matching problem in sketch based shape retrieval can
be seen as a metric learning paradigm. In each domain,
the samples are mapped to some feature vectors. The cross
domain matching is successful if the features from each do-
main are “aligned” correctly.

(a) (b)

Figure 2. An illustrated example, a) the shapes in the original do-
main may be mixed, and b) after cross-domain metric learning,
similar shapes in both domains are grouped together.

This idea is illustrated in Fig. 2. Blue denotes samples
in the sketch domain, and the orange denotes the ones in the
view domain. Different shapes denote different classes. Be-
fore learning, the feature points from two different domains
are initially mixed together (Fig. 2a). If we learn the correct
mapping using pair similarities in each domain as well as
their cross-domain relations jointly, the two point sets may
be correctly aligned in the feature space (Fig. 2b). After this
cross domain metric learning, matching can be performed in
both the same domain (sketch-sketch and view-view) and
cross domain (sketch-view).

Note that, there are no explicit requirements about
viewpoint similarity in this perspective (i.e., whether the
matched pairs are from the same viewpoints is less impor-
tant). Instead, the focus is the metric between the two do-
mains and the mapping within the same domain.

3.2.2 Two networks, one loss

The basic Siamese network is commonly used for samples
from the same domain. In the cross domain setting, we pro-



Figure 3. Dimension reduction using Siamese network.

pose to extend the basic version to two Siamese networks,
one for the view domain and the other for the sketch do-
main. Then, we define the within-domain loss and the cross
domain loss. This hypothesis is supported in the Sec. 4.

Assuming we have two inputs from each domain, i.e., s1
and s2 are two sketches and v1 and v2 are two views. For
simplicity, we assume s1 and v1 are from the same class and
s2 and v2 are from the same class as well. Therefore, one
label y is enough to specify their relationships.

As a result, our loss function is composed by three terms:
the similarity of sketches, the similarity of views, and the
cross domain similarity.

L(s1,s2, v1, v2, y)
= L(s1, s2, y) + L(v1, v2, y) + L(s1, v1, y), (2)

where L(·, ·, ·) is defined by Eq. 1. Please note that, while
the category information available in the dataset can be ex-
ploited to improve the performance, we do not use the cate-
gory labels in the above framework.

3.3. Network architecture

Fig. 3 shows the architecture of our network for the in-
puts being views and sketches, respectively.

We use the same network design for both networks, but
they are learned separately. Our input patch size is 100×100
for both sources. The structure of the single CNN has three
convolutional layers, each with a max pooling, one fully
connected layer to generate the features, and one output
layer to compute the loss (Eq. 2).

The first convolutional layer followed by a 4× 4 pooling
generates 32 response maps, each of size 22× 22. The sec-
ond layer and pooling outputs 64 maps of size 8 × 8. The
third layer layer has 256 response maps, each pooled to a
size of 3×3. The 2304 features generated by the final pool-

ing operation are linearly transformed to 64× 1 features in
the last layer. Rectified linear units are used in all layers.

3.4. View definitions and line drawing rendering

We present our procedure of generating viewpoints and
rendering 3D models. As opposed to multiple views, we
find it sufficient to use two views to characterize a 3D model
because the chance that both views are degenerated is little.
Following this observation, we impose the minimal assump-
tions on choosing views for the whole dataset:

1. Most of the 3D models in the dataset are up-right;

2. Two viewpoints are randomly generated for the whole
dataset, provided that the difference in their angles is
larger than 45 degrees.

Fig. 4 shows some of our views in the PSB dataset. The
first row shows that the upright assumption does not require
strict alignments of 3D models, because some models may
not have well defined orientation. Further, while the models
are upright, they can still has different rotations.

Figure 4. 3D models viewed from predefined viewpoints.

We want to stress that our approach does not eliminate
the possibility of selecting more (best) views as input, but
the comparisons among view selection methods are beyond
the scope of this paper.



Once the viewpoints are chosen, we render the 3D mod-
els and generate 2D line drawings. Rendering line draw-
ings that include strong abstraction and stylization effects is
a very useful topic in computer graphics, computer vision,
and psychology. Outer edges and internal edges both play
an important role in this rendering process. Therefore, we
use the following descriptors: 1) closed boundaries and 2)
Suggestive Contours [7] (Fig. 5).

(a) Shaded (b) SC (c) Final

Figure 5. Rendering 3D models.

4. Experiments
We present our experiments on three recent large datasets

in this section. In all experiments our method outperforms
the state of the arts in a number of well recognized metrics.
In additional to the cross-domain retrieval, we also present
our within-domain retrieval results, which have not been
reported in any other comparison methods. These experi-
ments demonstrate that our Siamese network successfully
learns the feature representations for both domains. The
data and the code is available at http://users.cecs.
anu.edu.au/˜yili/cnnsbsr/.

4.1. Datasets

PSB / SBSR dataset The Princeton Shape Benchmark
(PSB) [23] is widely used for 3D shape retrieval system
evaluation, which contains 1814 3D models and is equally
divided into training set and testing set.

In [9], the Shape Based Shape Retrieval (SBSR) dataset
is collected based on the PSB dataset. The 1814 hand
drawn sketches are collected using Amazon Mechanical
Turk. In the collection process, participants are asked to
draw sketches given only the name of the categories with-
out any visual clue from the 3D models.

SHREC’13 & ’14 dataset Although the PSB dataset is
widely used in shape retrieval evaluation, there is a con-
cern that the number of sketches for each class in the SBSR
dataset is not enough. Some classes have only very few
instances (27 of 90 training classes have no more than 5
instances), while some classes have dominating number of
instances, e.g., the “fighter jet” class and the “human” class
have as many as 50 instances.

To remove the possible bias when evaluating the re-
trieval algorithms, Li et al. [18] reorganized the PSB/SBSR
dataset, and proposed a SHREC’13 dataset where a subset

of PSB with 1258 models is used and the sketches in each
classes has 80 instances. These sketch instances are split in
two sets: 50 for training and 30 for testing. Please note, the
number of models in each class still varies. For example,
the largest class has 184 instances but there are 23 classes
containing no more than 5 models

Recently, SHREC’14 is proposed to address some above
concerns [20], which greatly enlarges the number of 3D
models to 8987, and the number of classes is doubled. The
large variation of this dataset makes it much more challeng-
ing, and the overall performance of all reported methods are
very low (e.g., the accuracy for the best algorithm is only
0.16 for the top 1 candidate). This is probably due to the
fact that the models are from various sources and are arbi-
trarily oriented. While our performance is still superior (see
Fig. 9b and Table. 3), we choose to present our results using
the SHREC’13 dataset.

Evaluation criteria In our experiment, we use the above
datasets and measure the performance using the following
criteria: 1) Precision-recall curve is calculated for each
query and linear interpolated, then the final curve is reported
by averaging all precision values for fixed recall rates; 2)
Average precision (mAP) is the area under the precision-
recall curve; 3) Nearest neighbor (NN) is used to measure
the top 1 retrieval accuracy; 4) E-Measure (E) is the har-
monic mean of the precision and recall for the top 32 re-
trieval results; 5) First/second tier (FT/ST) and Discounted
cumulated gain (DCG) as defined in the PSB statistics.

4.2. Experimental settings

Stopping criteria All three of the datasets had been split
into training and testing sets, but no validation set was
specified. Therefore, we terminated our algorithm after 50
epochs for PSB/SBSR and 20 for SHREC’13 dataset (or
until convergence). Multiple runs were performed and the
mean values were reported.

Generating pairs for Siamese network To make sure
we generate reasonable proportion of similar and dissimilar
pairs, we use the following approach to generate pair sets.
For each training sketch, we random select kp view pairs
in the same category (matched pairs) and kn view samples
from other categories (unmatched pairs). Usually, our dis-
similar pairs are ten times more than the similar pairs for
successful training. In our experiment, we use kp = 2,
kn = 20. We perform this random pairing for each train-
ing epoch. To increase the number of training samples, we
also used data augmentation for the sketch set. To be spe-
cific, we randomly perform affine transformations on each
sketch sample with small scales and angles to generate more
variations. We generate two augmentations for each sketch
sample in the dataset.



Figure 6. Retrieval examples of PSB/SBSR dataset. Cyan denotes the correct retrievals.

Computational cost The implementation of the proposed
Siamese CNN is based on the Theano [2] library. We mea-
sure the processing time on on a PC with 2.8GHz CPU and
GTX 780 GPU. With preprocessed view features, the re-
trieval time for each query is approximately 0.002 sec on
average on SHREC’13 dataset.

The training time is proportional to the total num-
ber of pairs and the number of epochs. Overall training
takes approximately 2.5 hours for PSB/SBSR, 6 hours for
SHREC’13, respectively. Considering the total number of
pairs is large, the training time is sensible.

We test various number of views in our experiments. We
find that there was no significant performance gain when
we vary the view from two to ten. However, it increased the
computational cost significantly when more views are used,
and more importantly, the GPU memory. This motivates us
to select only two views in the experiments.

4.3. Shape retrieval on PSB/SBSR dataset

4.3.1 Examples

In this section, we test our method using the PSB/SBSR
dataset. First, we show some retrieval examples in Fig. 6.
The first column shows 8 queries from different classes, and
each row shows the top 15 retrieval results. Cyan denotes
the correct retrievals, and gray denotes incorrect ones.

Our method performs exceptionally well in popular
classes such as human, face, and plane. We also find that
some fine grained categorizations are difficult to distin-
guish. For instance, the shelf and the box differ only in a
small part of the model. However, we also want to note
that some of the classes only differ in semantics (e.g., barn

and house only differ in function). Certainly, this semantic
ambiguity is beyond the scope of this paper.

Finally, we want to stress that the importance of view-
point is significantly decreased in our metric learning ap-
proach. Some classes may exhibit a high degree of freedom
such as the plane, but the retrieval results are also excellent
(as shown in Fig. 6).

4.3.2 Analysis

We further show some statistics on this dataset. First, we
provide the precision-recall values at fixed points in Table
1. Compared to Fig. 9 in [9], our results are approximately
10% higher. We then show six standard evaluation metrics
in Table 2. Since other methods did not report the results
on this dataset, we leave the comprehensive comparison to
the next section. Instead, in this analysis we focus on the
effectiveness of metric learning for shape retrieval.

PSB/SBSR is a very imbalanced dataset, where train-
ing and testing only partially overlap. Namely, there are
21 classes appear in both training and testing sets, while 71
classes are used solely for testing. This makes it an excel-
lent dataset for investigating similarity learning, because the
“unseen” classes verify the learning is not biased.

We show some examples for these unseen classes in Fig.
7 (more statistical curves are available on project website
due to the space limitation). It is interesting to see that our
proposed method works well even on failure cases (e.g., the
flower), where the retrieval returns similar shapes (“potting
plant”). This demonstrates that our method learns the simi-
larity effectively.



Table 1. Precision-recall on fixed points.
5% 20% 40% 60% 80% 100%

0.616 0.286 0.221 0.180 0.138 0.072

Table 2. Standard metrics on the PSB/SBSR dataset.
NN FT ST E DCG mAP

0.223 0.177 0.271 0.173 0.451 0.218

Figure 7. Retrieval examples of unseen samples in PSB/SBSR
dataset. The cyan denotes the correct retrievals.

4.4. Shape retrieval on SHREC’13 dataset

In this section, we use the SHREC’13 benchmark to
evaluate our method. We also show the retrieval results
within the same domain.

4.4.1 A visualization of the learned features

First, we present a visualization of our learned features in
Fig. 8. We perform PCA on the learned features and re-
duce the dimension to two for visualization. The green
dots denote the sketches, and the yellow ones denote views.
For simplicity, we only overlay the views over the point
cloud. Please visit http://users.cecs.anu.edu.
au/˜yili/cnnsbsr/ for an interactive demo.

While this is a coarse visualization, we can already see
some interesting properties of our method. First, we can see
that classes with similar shapes are grouped together auto-
matically. On the top right, different animals are mapped to
neighboring positions. On the left, various types of vehicles
are grouped autonomously. Other examples include house
and church, which are very similar. Note that this is an
weakly supervised method. This localization suggests that
the learned features are very useful for both within-domain
and cross domain retrievals.

4.4.2 Statistical results

We present the statistical results on SHREC’13 in this sec-
tion. First, we compare the precision-recall curve against
the state of the art methods reported in [18].

From the Fig. 9 we can see that our method significantly
outperforms other comparison methods. On SHREC’13

Figure 8. Visualization of feature space on SHREC’13. Sketch and
view feature points are shown by green & yellow, respectively.

benchmark, the performance gain of our method is already
10% when recall is small. More importantly, the whole
curve decreases much slower than other methods when the
recall increases, which is desirable because it shows the
method is more stable. Our method has a higher perfor-
mance gain (30%) when recall reaches 1.

We note that there is a noticeable overfitting in the train-
ing when a stopping criterion is reached. It suggests the
performance can be even better, if one can fine tune and
explore the network structure and training procedure.

We further show the standard metrics for comparison.
These metrics examine the retrieval from different perspec-
tives. For simplicity, we only select the best method from
each research group in [18]. As shown in Table 3, our
method performs better in every metric on both bench-
marks. This further demonstrates our method is superior.

We also compare to the case where both networks
are identical, i.e., both views and sketches use the same
Siamese network. Fig. 9a suggests that this configura-
tion is inferior than our proposed version, but still it is bet-
ter than all other methods. This supports our hypothesis
that the variations in two domains are different. This also
sends a message that using the same features (hand-crafted
or learned) for both domains may not be ideal.

4.4.3 Within-domain retrieval

Finally, we show the retrievals in the same domain. This
interesting experiment shall be straightforward to report be-
cause the data is readily available, but was not shown before
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Figure 9. Performance comparison on SHREC’13 & ’14. Please refer to [18] and [20] for the descriptions of the compared methods.

Table 3. Comparison on SHREC’13 & ’14 dataset. The best results
are shown in red, and the second best results are shown in blue.

SHREC’13
NN FT ST E DCG mAP

Ours 0.405 0.403 0.548 0.287 0.607 0.469
Identic 0.389 0.364 0.516 0.272 0.588 0.434

[13] 0.279 0.203 0.296 0.166 0.458 0.250
[18] 0.164 0.097 0.149 0.085 0.348 0.116
[24] 0.017 0.016 0.031 0.018 0.240 0.026
[22] 0.110 0.069 0.107 0.061 0.307 0.086

SHREC’14
NN FT ST E DCG mAP

Ours 0.239 0.212 0.316 0.140 0.496 0.228
[26] 0.160 0.115 0.170 0.079 0.376 0.131
[13] 0.109 0.057 0.089 0.041 0.328 0.054
[18] 0.095 0.050 0.081 0.037 0.319 0.050

in any literature. Since this is a “by-product” of our method,
we do not tune up any parameter or re-train the system.

Figs. 10 and 11 visualize some retrieval results in each
domain, respectively. Table 4 further reports the statistics.
The retrieval results demonstrate our method is powerful
in learning the features for both within-domain and cross-
domain. From these figures, one can see that the view
domain is much more consistent than the sketch domain.
Comparing Table 4 to Table 3, we conclude that the incon-
sistency in sketch is the most challenging issue in the sketch
based 3D shape retrieval.

5. Conclusion

In this paper we propose to learn feature presentations
for sketch based 3D shape retrieval. Instead of comput-

Figure 10. Sketch-sketch retrieval for SHREC’13. The incorrect
retrievals are marked as light gray.

Figure 11. View-view retrieval for SHREC’13. The cyan denotes
the correct retrievals.

Table 4. Standard metrics for the within-domain retrieval on
SHREC’13.

NN FT ST E DCG mAP
view 0.965 0.877 0.982 0.536 0.971 0.909

sketch 0.431 0.352 0.514 0.298 0.679 0.373

ing “best views” and match them against queries, we use
predefined viewpoints for the whole dataset and adopt two
Siamese CNNs, one for views and one for sketches. Our
experiments on three large datasets demonstrated that our
method is superior.
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