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Abstract

We introduce an unsupervised, geodesic distance based,
salient video object segmentation method. Unlike tradi-
tional methods, our method incorporates saliency as pri-
or for object via the computation of robust geodesic mea-
surement. We consider two discriminative visual features:
spatial edges and temporal motion boundaries as indica-
tors of foreground object locations. We first generate frame-
wise spatiotemporal saliency maps using geodesic distance
from these indicators. Building on the observation that fore-
ground areas are surrounded by the regions with high s-
patiotemporal edge values, geodesic distance provides an
initial estimation for foreground and background. Then,
high-quality saliency results are produced via the geodesic
distances to background regions in the subsequent frames.
Through the resulting saliency maps, we build global ap-
pearance models for foreground and background. By im-
posing motion continuity, we establish a dynamic location
model for each frame. Finally, the spatiotemporal salien-
cy maps, appearance models and dynamic location models
are combined into an energy minimization framework to at-
tain both spatially and temporally coherent object segmen-
tation. Extensive quantitative and qualitative experiments
on benchmark video dataset demonstrate the superiority of
the proposed method over the state-of-the-art algorithms.

1. Introduction

Unsupervised video object segmentation methods aim at
automatically extracting the object from the whole video.
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Such segmentation has shown to benefit many specific vi-
sual tasks and applications, such as video summarization,
compression and human-computer interaction to name a
few. Appearance information and motion cues are usu-
ally employed by video segmentation approaches. Some
works in [6, 17, 12] analyzed point trajectories in order to
take advantage of motion information available in multiple
frames. Brox et al. [6] offered a framework for trajectory-
based video segmentation through building affinity matrix
between pairs of trajectories. Lezama et al. [17] grouped
pixels with coherent motion computed via long-range mo-
tion vectors from the past and future frames. Another ap-
proach by Fragkiadaki et al. [12] detected discontinuities
of embedding density between spatial-neighboring trajec-
tories. As the work [15] pointed out, these trajectory-based
techniques suffer from the challenges associated with track-
ing (drift, occlusion and initialization) and clustering (mod-
el selection and computational complexity) and lack of prior
information for a successful object segmentation. Some ef-
forts [5, 26, 30] presented efficient optimization frameworks
for bottom-up final segmentation employing both appear-
ance and motion cues.

Recently, several methods [15, 19, 32] explored the no-
tion of what a foreground object should look like in video
data. These approaches generate considerable object pro-
posals [11, 8] in every frame and transform the task of video
object segmentation into an object region selection prob-
lem. In this selection process, both motion and appearance
information are combined to measure the objectness of a
proposal. More specifically, a clustering process was intro-
duced for finding objects by Lee et al. [15], a constrained
maximum weight cliques technique to model the selection
process was proposed by Ma and Latecki [19], and a lay-
ered directed acyclic graph based framework was presented
by Zhang et al. [32]. However, these proposal based tech-
niques have high computational complexity, and their de-
pendency on the large number of proposals leads to much
difficulty and complexity of the selection process.

Our goal is to segment the foreground objects from the



Figure 1. Overview of saliency-aware geodesic video object segmentation.

background in all frames of a given video sequence with-
out any user annotation and semantic prior. Our method is
based on the proposed visual saliency detection technique
that incorporates several visual cues such as motion bound-
ary, edge and color. Object and background estimations
generated by our method provide consistent and reliable pri-
ors for higher level object segmentation tasks. This topic is
less explored, mainly due to only a few methods specifically
designed for video saliency till now. These saliency meth-
ods [14, 20, 28, 26, 13, 21], however, usually build their
system as a simple combination of existing image saliency
models with motion cues. Furthermore, the performance of
these methods is not good enough to guide the segmenta-
tion. Our method correctly estimates the locations of ob-
ject and background and gains uniform saliency maps. On
the other hand, our video object segmentation algorithm is
based on the geodesic distance, which has been proved to
be effective for interactive image and video segmentation
with user brushes [3, 25, 2, 10]. However, in many vision
applications, such as processing a large number of video da-
ta, it is usually tedious and impractical for users to handle
the video frames manually. In this paper, we try to intro-
duce geodesic distance into our totally automatic segmenta-
tion framework, which is different with previous approach-
es [3, 25, 2, 10] that require careful user assistance.

2. Our approach
Fig. 1 shows an overview of our approach. First, input

frames are oversegmented into superpixels. For each super-
pixel, two types of edges are extracted: spatial static edges
within the same frame and motion boundary edges estimat-
ed from neighboring frames. Geodesic distance, which is
defined as the shortest paths between two superpixels on the
image, is then adopted in a intra-frame graph for computing
the object probability of each superpixel. Based on the ob-
servation that the object areas are surrounded by the regions

with high spatiotemporal edge value, the object probability
is computed as the shortest geodesic distance to the frame
boundaries. A self-adaptive threshold is used to obtain ini-
tial labeling of the frame into background and foreground
regions. Next an inter-frame graph is constructed for pro-
ducing spatiotemporal saliency maps by the computation of
geodesic distance to the estimated background regions of t-
wo adjacent frames. Finally, to achieve refined estimation
of foreground, global appearance model for foreground and
background is established by saliency results. Dynamic lo-
cation model for each frame is estimated from motion infor-
mation extracted from few subsequent frames. Spatiotem-
poral saliency maps, global appearance model and dynamic
location model are combined into an energy function for
final segmentation. Our source code will be publicly avail-
able online 1.

2.1. Object estimation using spatiotemporal edges

Edges provide good guide in predicting object bound-
aries, while simultaneously being very efficient. Motion
information also offers a simplified but very effective in-
dicator of object, the pixels which change abruptly from
neighbors often gain more attention. As shown in Fig. 1,
the location of static edges for single frame and the opti-
cal flow field estimated from two consecutive frames could
provide useful information for detecting object. We base
our approach on these two discriminative features for prim-
ing object locations.

Given an input video sequence F = {F 1, F 2, · · ·}, we
compute an edge probability map Ek

c (x
k
i ) corresponding to

k-th frame F k at pixel xk
i using [16]. The optical flow

between pairs of subsequent frames are obtained by the
large displacement motion estimation algorithm [7]. Let
V k be the optical flow field of frame F k, we then compute
the gradient magnitude Ek

o of the optical flow field V k as
1http://github.com/shenjianbing/videoseg15



Ek
o = ∥∇V k∥. We oversegment each frame into superpix-

els using SLIC [1]. Let Yk = {Y k
1 , Y k

2 , · · ·} be the super-
pixel set of frame F k. Given the pixel edge map Ek

c , the
edge probability of each superpixel Y k

n is computed as the
average value of the pixels with ten largest edge probabil-
ities within Y k

n . This generates a superpixel edge mapÊk
c .

Similarly, we compute a superpixel optical flow magnitude
map Êk

o using Ek
o . Then a spatiotemporal edge probability

map Ek is generated as:

Ek = Êk
c · Êk

o . (1)

The intuition behind the design of (1) is that, if the mo-
tion patterns of foreground object distinct from background,
the gradient of optical flow should have large magnitude
around the object boundary. Additionally, the static edge
maps give an instructor for the object boundaries according
to the spatial information. When spatial edge and temporal
discontinuity in motion are fused together through (1), the
output spatiotemporal edges maps are able to imply the
location of foreground object. This phenomenon could be
easily observed from Fig. 1, the object regions either have
high spatiotemporal edge values or are surrounded by these
high-edge-probability regions. Based on this argument,
we opt to use the geodesic distance to discriminate the
visually salient regions from backgrounds and measure
their likelihoods for foreground.

Intra-frame graph construction For frame F k, we
construct an undirected weighted graph Gk = {Vk, Ek}
with superpixels Yk as nodes Vk and the links between
pairs of nodes as edges Ek. The weight wk

mn of the edge
ekmn ∈ Ek between adjacent superpixels Y k

m and Y k
n is

defined as:

ekmn = ∥Ek(Y k
m)− Ek(Y k

n )∥, (2)

where Ek(Y k
m) and Ek(Y k

n ) correspond to the spatiotempo-
ral boundary probability of superpixels Y k

m and Y k
n , sepa-

rately. Based on the graph structure, we derive an |Vk| ×
|Vk| weight matrix W k, where |Vk| is the number of nodes
in Vk. The (m, n)th element of W k is: W k(m,n) = ekmn.
For each superpixel Y k

n , the probability P k
n for foreground

is computed by the shortest geodesic distance to the image
boundaries using

P k
n = min

T∈ Tk
dgeo(Y

k
n , T,Gk), (3)

where Tk indicate the superpixels along the four boundaries
of frame F k. The geodesic distance dgeo(v1, v2,Gk) be-
tween any two superpixels v1, v2 ∈ Vk in graph Gk is de-
fined as the accumulated edge weights along their shortest
path on graph Gk:

dgeo(v1, v2,Gk) = min
Cv1,v2

∑
p=0,1

|W k · Ċv1,v2(p)|, (4)

Figure 2. Illustration of inter-frame graph construction. (a) Frame
F k. (b) Optical flow flied V k of (a). When the estimation for opti-
cal is not accurate (which is the usual case) object detection suffers
P k in (c). (d) Frame F k is decomposed into background regions
Bk and object-like regions Uk by self-adaptive threshold σk. The
black regions indicate the background regions Bk, while the bright
regions indicate the object-like regions Uk. (e) The decomposition
of prior frame F k−1. (f) The object-like regions Uk−1 of frame
F k−1 are projected onto frame F k. (g) Spatiotemporal saliency
result Sk for frame F k with consideration of (d) and (e). (h) Spa-
tiotemporal saliency result Sk for frame F k with consideration of
(e) and (f).

where Cv1,v2(p) is a path connecting the nodes v1, v2 (for
p = 0 and p = 1 respectively). If a superpixel is outside
the desired object, its foreground probability is small be-
cause there possibly exists a pathway to image boundaries
that does not pass the regions with high spatiotemporal edge
value. Whereas, if a superpixel is inside the object, this
superpixel is surrounded by the regions with large proba-
bilities of edges, which increases the geodesic distance to
image boundaries. We normalize all the foreground object
probabilities P k

n to [0, 1] for each frame, the object proba-
bility map for frame F k is indicated by P k. As our graph
is very sparse, the shortest paths of all superpixels are effi-
ciently computed by Johnson algorithm.

2.2. Spatiotemporal saliency

The obtained foreground probability map P k can locate
the foreground object but not very precisely. In particular,
object probabilities of the background regions near the
object boundaries are needless increased, due to the over-
segmentation. Furthermore, erroneous results may come
from the inaccuracy of optical flow estimation. Fortunately,
foreground and background are visually different (by
definition of saliency) and object is temporally continuous
between adjacent frames. We present here a method which
leverages this information to obtain spatiotemporal saliency
results and is processed between pairs of adjacent frames.

Inter-frame graph construction For each pair of sub-
sequent frame F k and F k+1, an undirected weighted graph
G′k = {V ′k, E ′k} is constructed. The nodes V ′k consist
of all the superpixels Yk of frame F k and all the superpix-



els Yk+1 of frame F k+1. There are two types of edges:
intra-frame edges link all the spatially adjacent superpixels
and inter-frame edges connect all the temporally adjacent
superpixels. The superpixels are spatially connected if they
are in the same frame and are adjacent, temporally adjacent
superpixels refer to the superpixels which belong to differ-
ent frames but have overlaps along the time axis. We assign
the edge weight as the Euclidean distance between their av-
erage colors in the CIE-Lab color space.

For each frame, a self-adaptive threshold is used to de-
compose frame F k into background regions Bk and object-
like regions Uk through the object probability map P k. This
threshold σk for frame F k is computed by σk = µ(P k),
where µ(·) computes the mean probability of all pixels
within frame F k by probability map P k. Additionally, the
background information of previous frame offers valuable
prior, which could eliminate the artifacts due to the inaccu-
rate optical flow estimation. Therefore, we define the back-
ground regions Bk of k-th frame as:

Bk = {Y k
n |P k

n ≤ σk}
∪ {Y k

n |Y k
n is temporally connected to Bk−1},

Uk = Yk − Bk,

(5)

Based on the graph G′k, we obtain a saliency value Sk
n

(P k+1
n ) of superpixels Y k

n (Y k+1
n ) of frame F k (F k+1) as

follows:

Sk
n = min

B∈ Bk∪Bk+1
dgeo(Y

k
n , B,G′k). (6)

The main rationale behind the relation in (6) is that a
saliency value of a superpixel is measured by its shortest
path to background regions in color space, both consider-
ing spatial and temporal background information. Fig. 2
gives illustration of this process. After obtaining spatiotem-
poral saliency map Sk and Sk+1 for frame F k and F k+1 ,
we keep executing this process for next two adjacent frame
F k+1 and F k+2 until the end of the video sequence.

2.3. Spatiotemporal object segmentation

We formulate video object segmentation as a pixel label-
ing problem with two labels (foreground and background).
Each pixel xk

i ∈ Xk can take a label lki ∈ {0, 1}, where
0 corresponds to background and 1 corresponds to fore-
ground. A labelling L = {lki }k,i of pixels from all frames
represents a segmentation of the video. Similarly to other
segmentation works [15, 27], we define an energy function
for labeling L of all the pixels:

F(L) =
∑
k,i

Uk
i (l

k
i ) + λ1

∑
k,i

Ak
i (l

k
i ) + λ2

∑
k,i

Lk
i (l

k
i )

+ λ3

∑
(i,j)∈Ns

Vk
ij(l

k
i , l

k
j ) + λ4

∑
(i,j)∈Nt

Wk
ij(l

k
i , l

k+1
j ),

(7)

where spatial pixel neighborhood Ns consists of eight spa-
tially neighboring pixels within one frame, temporal pix-
el neighborhood Nt consists of the forward-backward nine
neighbors in adjacent frames, and i, j index the pixels.

This energy function consists of three unary terms, Uk,
Ak and Lk, and two pairwise terms Vk and Wk, which de-
pend on the labels of spatially and temporally neighboring
pixels. The scalar parameters λ weight the various terms. In
our experiments, we set λ1 = λ2 = 0.5, λ3 = λ4 = 4. The
purpose of Uk is to evaluate how likely a pixel is foreground
or background according to saptio-temporal saliency maps
computed by prior step. The unary appearance term Ak

encourages labeling pixels which have similar colors as
pixels with high saliency for foreground. The third unary
term Lk is defined for labeling pixels with location priors
estimated from dynamic location models. The pairwise
terms Vk and Wk encourage spatial and temporal smooth-
ness, respectively. All the terms are described in detail next.

Saliency term Uk. The unary saliency term Uk is
based on our saliency detection results, which penalizes
labelings which assign pixel with low saliency value to the
foreground. The term Uk has the following form:

Uk(lki ) =

{
− log(1− Sk(xk

i )) if lki = 0;

− log(Sk(xk
i )) if lki = 1.

(8)

Appearance term Ak. To model the foreground and
background appearance, two weighted color histograms are
computed in RGB color space, which should be denoted by
Hf and Hb. Each color channel is uniformly quantized in-
to 10 bins, and there is a total of 103 bins. Each pixel is
stacked into histograms according to its color values and
weighted by its saliency value, where the weight for pixel x
is Sk(x) and 1− Sk(x) for Hf and Hb, respectively. Then
we establish global appearance model for foreground and
background by normalizing Hf and Hb.

More specially, pixels belonging to two kinds superpix-
els are sampled for forming Hf and Hb: one that the super-
pixels with saliency value larger than the adaptive thresh-
old defined as the mean value of spatiotemporal saliency
map, and one that the superpixels spatially connected to the
former superpixels. We denote these pixels as Xs. This s-
trategy makes full use of the information of spatiotemporal
saliency results and is able to eliminate ill effects of some
background regions with similar color to the foreground,
thus offering more accurate fore-/background estimation.
Let c(xk

i ) denotes the histogram bin index of RGB color
value at pixel xk

i , the unary appearance term Ak is defined



Figure 3. The illustration of establishing appearance model. (a)
Input frame F k. (b) Spatiotemporal saliency map Sk. (c) Pixel
set Xs for the frame in (a), which consist of the pixels within the
green boundaries. The regions within the red boundaries are the
superpixels with the saliency value larger than the adaptive thresh-
old. (d)-(e) The global appearance model with color histogram Hf

(d) and Hb (e) for foreground and background respectively, which
are sampled from all the pixels belonging to Xs for each frame. (f)
The probability map for foreground computed via global appear-
ance model.

as:

Ak(lki )=


− log(

Hb(c(x
k
i ))

Hf (c(xk
i )) +Hb(c(xk

i ))
) if lki = 0;

− log(
Hf (c(x

k
i ))

Hf (c(xk
i )) +Hb(c(xk

i ))
) if lki = 1.

(9)
Location term Lk. Even above efforts for making the ap-
pearance model as accurate as possible pay off, the esti-
mation can still be distorted when the scene is complex or
the background regions share similar appearance with fore-
ground. To this, the object motion continuity among few
subsequent frames, provides a valuable prior to locate the
areas likely to contain the object. Thus, we design a method
to estimate location of foreground object with with respect
to motion information from a small number of neighbor-
ing frames. For k-th frame, we accumulate its forward-
backward t frames’ optical flow gradient magnitude that
yields trajectory of the object within few subsequent frames:

Ek
t =

k+t∑
i=k−t

Ei
o =

k+t∑
i=k−t

∥∇V i∥. (10)

Having a larger t for a certain frame, long-range motion
information will be taken into account ignoring some unre-
liable optical flow estimation from small number of frames.
However, this possibly makes Ek

t lose discriminative abil-
ity for object since too much motion information is unnec-
essary. When t is as small as 0, only considering curren-
t frame’s motion information possibly precisely prime the

Figure 4. Statistical comparison with 5 alternative saliency detec-
tion methods using SegTrack dataset [29] with pixel-level ground
truth: (a) average precision recall curve by segmenting saliency
maps using fixed thresholds, (b) average MAE. Notice that our
algorithm significantly outperforms other methods in terms of the
precision-recall. Additionally, our method achieved 75% improve-
ment over the best previous method in terms of MAE.

object location but sometimes will fail because of inaccu-
rate optical flow estimation. In our experiments, we set
t = 5. Then we use the within-frame graph construction
method described in section 2.1 to compute a dynamic lo-
cation model for each frame. Finally, we can get location
prior Lk

i for pixel xk
i , and the unary location term Lk is

defined as:

Lk(lki ) =

{
− log(1− Lk(xk

i )) if lki = 0;

− log(Lk(xk
i )) if lki = 1.

(11)

Pairwise terms Vk, Wk. Vk, Wk compose the consistency
term, constraining the segmentation labels to be both spa-
tially and temporally consistent. These two terms follow
the conventional form defined in [27], which favors assign-
ing the same label to neighboring pixels that have similar
color.

Having defined the complete energy function F(L), we
can use graph-cuts to compute the optimal binary labeling,
and thus get the final segmentation results.

3. Experimental results

Our approach automatically detects and segments the
foreground object in the video sequences. In this section,
we first test our method on video saliency detection. Even
though it is not the final goal of our proposed algorithm,
we still evaluate the effectiveness of our approach by com-
paring our spatiotemporal saliency results against the state-
of-art saliency methods [31, 13, 28, 14] on the SegTrack
dataset [29]. Then we compare our segmentation results
with 9 alternate methods on the SegTrack [29], SegTrack
v2 [18] and Youtube datasets.




