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Abstract

The estimation of multiple homographies between two
piecewise planar views of a rigid scene is often assumed
to be a solved problem. We show that contrary to popular
opinion various crucial aspects of the task have not been
adequately emphasised. We are motivated by a growing
body of literature in robust multi-structure estimation that
purports to solve the multi-homography estimation prob-
lem but in fact does not. We demonstrate that the estima-
tion of multiple homographies is an ill-solved problem by
deriving new constraints that a set of mutually compatible
homographies must satisfy, and by showing that homogra-
phies estimated with prevailing methods fail to satisfy the
requisite constraints on real-world data. We also explain
why incompatible homographies imply inconsistent epipo-
lar geometries. The arguments and experiments presented
in this paper signal the need for a new generation of robust
multi-structure estimation methods that have the capacity
to enforce constraints on projective entities such as homog-
raphy matrices.

1. Introduction

Images in two views of world points lying on a planar
surface are related by a homography matrix. Since pla-
nar surfaces are ubiquitous in urban environments, estimat-
ing multiple homography matrices from image measure-
ments between two views is an important step in many ap-
plications such as augmenting reality, stitching and warp-
ing images, calibrating cameras, finding a metric recon-
struction, and detecting non-rigid motion. Because of the
diverse utility of homography matrices, the task of es-
timating multiple homographies is often used to demon-
strate the merits of robust multi-structure estimation meth-
ods [6,7,12,13,19,29,30,34,35]. In fact, some robust multi-
structure estimation methods, such as multiRANSAC [39],
were specifically designed to address the multi-homography
estimation problem. However, an inadvertent oversight has
crept into multi-structure estimation methods, one that per-
sists in all state-of-the-art methods that we are familiar with,

namely the failure to recognise that a set of homographies
that each of these schemes produces is actually not a gen-
uine set of homographies between two views of the same
scene. A collection of homography matrices forms a valid
set only if the matrices satisfy consistency constraints im-
plied by the rigidity of the motion and the scene. If the
constraints are not deliberately enforced, they are not sat-
isfied in typical scenarios. Hence, one of the fundamen-
tal problems in estimating multiple homography matrices
is to find a way to enforce the consistency constraints—a
task reminiscent of that of enforcing the rank-two constraint
in the case of the fundamental matrix estimation [17, Sect.
11.1.1].

Explicit formulae for all constraints that must be satisfied
have eluded the vision community. It was only as recently
as 2011 that a decisive answer pertaining to even just the
number of constraints was given [10, [ 1]. Over the years
various researchers have managed to identify and enforce a
reduced set of constraints. For example, Shashua and Avi-
dan [31] found that homography matrices induced by four
or more planes in a 3D scene appearing in two views span
a four-dimensional linear subspace. Chen and Suter [5] de-
rived a set of strengthened constraints for the case of three
or more homographies in two views. Zelnik-Manor and
Irani [36] have shown that another rank-four constraint ap-
plies to a set of so-called relative homographies generated
by two planes in four or more views. These latter authors
also derived constraints for larger sets of homographies and
views.

Once isolated, the constraints are typically put to use
in a procedure whereby first individual homography ma-
trices are estimated from image data, and then the result-
ing estimates are upgraded to matrices satisfying the con-
straints. Following this pattern, Shashua and Avidan as
well as Zelnik-Manor and Irani used low-rank approxima-
tion under the Frobenius norm to enforce the rank-four con-
straint. Chen and Suter enforced their set of constraints also
via low-rank approximation, but then employed the Maha-
lanobis norm with covariances of the input homographies.
All of these estimation procedures produce matrices that
satisfy only incomplete constraints so their true consistency
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cannot be guaranteed.

A few researchers managed to enforce some consis-
tency without appealing to rank constraints. For example,
Lépez-Nicolds et al. [22] used the geometry underpinning
an epipole constraint, whereas Kirchhof [20] required a fun-
damental matrix in order to estimate homographies consis-
tently.

Without knowledge of explicit formulae for all of the
constraints, it is still possible to implicitly enforce full con-
sistency by recoursing to a parametrisation of the set of
all intervening homography matrices. Following this path,
Chojnacki et al. [8, 9] employed an appropriate parametri-
sation and a distinct cost function to develop an upgrade
procedure based on unconstrained optimisation. Szpak et
al. [32] used the same parametrisation and the Sampson
distance to develop an alternative technique with a sound
statistical basis. Details of this parametrisation will be pre-
sented in Section 2.

While a literature review shows that considerable
progress has been made on the problem of multi-
homography estimation in recent years, it is also apparent
that many researchers are not aware that bona fide sets of
homography matrices need to satisfy constraints. The ne-
science concerning constraints is particularly evident in the
discourse on robust multi-structure estimation. Our contri-
bution, therefore, is two-fold: (1) we demonstrate, from
a practical perspective, that failing to enforce consistency
constraints on multiple homographies leads to inconsistent
estimates of the epipolar geometry between two views, and
(2) we derive two new sets of explicit constraints that multi-
ple homographies between two views need to satisfy. Some
benefits of having explicit constraints are presented in Sec-
tion 3.

2. Enforcing consistency implicitly

As mentioned in the introduction, when estimating a set
of homographies associated with multiple planes from im-
age correspondences between two views, one must recog-
nise that the homographies involved are interdependent. To
get an idea of the relevant dependencies, consider two fixed
uncalibrated cameras giving rise to two camera matrices
P =KiR; [13, —tl] and Po, = KQRQ[I3, —tg}. Here, the
length-3 translation vector t; and the 3 x 3 rotation matrix
R, represent the Euclidean transformation between the k-th
(k = 1,2) camera and the world coordinate system, K, is a
3 x 3 upper triangular calibration matrix encoding the inter-
nal parameters of the k-th camera, and I5 denotes the 3 x 3
identity matrix. Suppose, moreover, that a set of  planes in
a 3D scene have been selected. Given ¢ = 1,..., 1, let the
i-th plane from the collection have a unit outward normal
n; and be situated at a distance d; from the origin of the
world coordinate system. Then, for eachi = 1,...,1, the
i-th plane gives rise to a planar homography between the

first and second views described by the 3 x 3 matrix
H;, = w;A +bv,, (D)
where

A =K,RoR 'K, wy=n/t; —d;,

- 2)
b = K2R2(t1 — tg), V; = Kl Rll’li.
In the case of calibrated cameras when one may assume that
Ky =Ky, =15, t; =0, Ry =13, Ry = R, system (2)
reduces to
A= Ra w; = _di7

bt 3)

Vi =1,
with t = —Rt,, and equality (1) becomes the familiar di-
rect nRt representation

H; = —d;,R + tn;

(cf. [1], [25, Sect. 5.3.1]). We stress that all of our subse-
quent analysis concerns the general uncalibrated case, with
A, b, w;’s and v;’s to be interpreted according to (2) rather
than (3).

A natural object associated with the matrices H; is
the 3 x 37 concatenation matrix H = [Hy,...,H;]. It
proves convenient to consider also the 9 x I matrix H =
[hy,...hy], where, with vec denoting column-wise vec-
torisation [23], h; = vec(H;) foreach i = 1,...,1. It
turns out that H = ST, where, with ® denoting Kro-
necker product [23], S = [I3 ® b,a] is a 9 x 4 matrix
and T = [} =07 ]is a4 x I matrix [32]. An immedi-
ate consequence of this factorisation is that H has rank at
most four. Whenever I > 5 the requirement that H should
have rank no greater than four places a genuine constraint
on H, and hence also on H. This is the rank-four constraint
of Shashua and Avidan mentioned earlier. Since the real
9 x I matrices of rank at most 4 form a manifold of dimen-
sion 4(9 + I — 4) = 41 + 20 [16, Proposition 12.2], the
rank-four constraint implies that the dimension of the set of
all H’s is no greater than 47 + 20 for I > 5. The ensuing
inequality 41 + 20 < 97 for I > 5 makes it clear that H
resides in a proper subset of all 3 x 31 matrices for [ > 5.

The dimensionality count for the H’s can be re-
fined and the subsequent conclusions sharpened. Letting
n = [a’,bT,v],....,v] wi,...,w;]" and N(n) =
1, (n),...,I;(n)], where I1;(n) = w; A +bv, foreach
i=1,...,1, Hcan be represented as

H=nN(n). @)

In this formulation, 7 appears as the vector of latent vari-
ables that link all the constituent matrices together and pro-
vide a natural parametrisation of the set of all H’s. Since
1 has a total of 41 + 12 entries, the totality of all matrices
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of the form M(n) has dimension no greater than 47 + 12.
Here, the relevant notion of dimension is that of dimen-
sion of a semi-algebraic set. A semi-algebraic set is a fi-
nite union of subsets of some ambient real n-dimensional
space R", each defined as a solution set of a finite sys-
tem of polynomial equations and inequalities. Any semi-
algebraic set is locally, on a dense subset, a submanifold
embedded in the ambient space. The dimension of a semi-
algebraic set is the largest dimension at points around which
the set is a submanifold. The set of all M(n)’s is semi-
algebraic—it is the image of R*/*12 by the polynomial
map 1 — M(n) (a polynomial map is one whose all com-
ponents are polynomials in the arguments), and, according
to the Tarski—Seidenberg theorem, for any polynomial map
f: R™ — R"™, the image of R™ by f is a semi-algebraic [4,
Proposition 2.2.7]. With the aid of a rather subtle argument,
the dimension of the set of all M(n)’s can be calculated ex-
actly, and it is found to be equal to 47 + 7 [10, 1 1]. Since
4] + 7 < 91 whenever I > 2, it follows that H resides in
a proper subset of all 3 x 3I matrices for I > 2. This is
an improvement over the previous similar statement which
was valid only for I > 5. It is now clear that the require-
ment that H take the form as per (4) whenever I > 2 can be
seen as an implicit constraint on H, with the consequence
that the H,’s are all interdependent.

The parametrisation (4) gives an effective handle on
the inter-dependencies in the matrices H;. Note that this
parametrisation is not minimal in that if H = M(n) holds
for a particular vector 7, then we also have H = M(n’) for
any vector 1’ of the form

1 = [vec(BA +bc'),ab,a vy —a 17 e, ...,

Oéilvl - ailﬂilcvﬂilwlv s 7ﬂ71w1}—r7
where o and 3 are non-zero numbers, and c is a length-3
vector. The arbitrariness in the choice of «, 3, and c re-
flects five degrees of parametrisation gauge freedom. In
particular, if H = M(n) holds for a particular vector 7,
then it is not true that the entries 17 have to be necessarily
interpreted as ones satisfying (2) for the underlying values
of Ki, Rg, tg, dj, and n; (k = 1,2,¢ = 1,...,1). It
is also worth stressing that the fact that the parametrisation
(4) is not minimal is not a limitation—on the contrary, the
parametrisation is perfectly suited to the purpose of param-
eter estimation, as it enforces all underlying constraints on
the H;’s.

A further benefit of the parametrisation (4) is that it auto-
matically yields the expression for the genuine rank-2 fun-
damental matrix linking the two views, namely

F = [b], A. )

Here, for a length-3 vector a = [a, as,a3] ", [a]x denotes

the 3 x 3 anti-symmetric matrix defined by

0 —as as
[alx = | a3 0 —-m
—a a1 0

The fundamental matrix given in (5) is fully compatible
with the homography matrices H; in that it satisfies the re-
lations H/ F + FTH; = 0fori = 1,...,I (cf. [17, Sect.
13.1.1]). Moreover, the expression (5) is invariant, up to a
scalar factor, to any change 1) — 1’ related to the parametri-
sation gauge freedom.

3. Benefits of explicit constraints

Despite the numerous aforementioned advantages, the
use of latent variables to implicitly enforce consistency con-
straints also has some notable drawbacks. The latent vari-
able method does not provide a means to directly measure
the extent to which a collection of homography matrices are
compatible. Furthermore, finding suitable initial values for
the latent variables is a non-trivial task. The initialisation
methods described by Chojnacki et al. [8, 9] and Szpak et
al. [32] are based on factorising a collection of homography
matrices. The factorisation methods are sensitive to noise
and are not robust to outliers. This implies that if one of
the homography matrices is a gross outlier, the initial val-
ues for the latent variables will be poor, and the subsequent
non-linear optimisation may find a poor minimum.

Knowledge of explicit formulae for homography con-
straints would be advantageous for several reasons: (1) it
would give rise to novel homography estimation meth-
ods that enforce full compatibility without recourse to la-
tent variables; (2) it would spur the development of new
global optimisation methods for multi-homography estima-
tion, analogous to what has recently been achieved for fun-
damental matrix estimation [37,38]; and (3) it would lead to
a new generation of robust multi-structure fitting methods
that, unlike existing methods, yield estimates with consis-
tent epipolar geometry.

In this paper we take a step toward achieving the goal
of determining all homography constraints. We derive two
new sets of consistency constraints and use them to mea-
sure, for the first time, the extent to which separately esti-
mated homographies are mutually incompatible. Our find-
ings suggest that none of the state-of-the-art multi-structure
estimation methods adequately address the problem of mul-
tiple homography estimation, because none of them enforce
consistency constraints. Consequently, robust multiple ho-
mography estimation continues to be an ill-solved problem.

To make the derivation of the constraints more accessi-
ble, we collect in the next section some necessary technical
prerequisites.

2134



4. Algebraic prerequisites

Let A and B be two 3 x 3 matrices. The linear ma-
trix pencil of the matrix pair (A, B) is the matrix function
A — A — AB. The characteristic polynomial of (A,B),
DA.B. is defined by pa () = det(A —AB). When A and
B are represented as A = [a;, as, ag] and B = [by, by, bs]
with a; and b; (z = 1,2,3) being length-3 vectors, the
characteristic polynomial pa g can be explicitly written as
paB(\) = S0 o(—1)'e; X, where
co = det A,
cL = det([b1, as, 3.3]) + det([al, bz7 ag}) + det([al, as, bg}),
cz = det([a1, bz, bs]) + det([b1, a2, bs]) + det([b1, ba, as]),
c3 = det B.

The characteristic polynomial arises in connection with the
generalised eigenvalue problem

Ax = \Bx. (6)

As with the standard eigenvalue problem, eigenvalues for
the problem (6) occur precisely where the matrix pencil A —
AB is singular. In other words, the eigenvalues of (A, B)
are the roots of paA B.

Suppose that the generalised eigenvalue problem (6) has
a double eigenvalue p, that is, there exist linearly indepen-
dent length-3 vectors v and vy such that Av; = uBv; for
i = 1,2. Then, as it turns out, A and B have to necessar-
ily satisfy a certain algebraic constraint. This constraint is
expressed as the vanishing of a homogeneous quartic poly-
nomial in the entries of A and B.

To reveal the constraint, we first observe that y is a dou-
ble root of pa B. Indeed, let v3 be an arbitrary length-3 vec-
tor not belonging to the linear span of v; and vs; for exam-
ple, we may assume that vs = v X ve. Then vy, vy, and v3
form a basis for R?, and hence the matrix S = [vy, v, v3]
is non-singular. Let A = S~'AS and B = S~'BS. With
e; (i = 1,2,3) being the standard unit vectors in R3, we
have v; = Se; for ¢ = 1,2,3. It is immediate that, for
i=1,2, Ae; = uBei and so (A - )\]~3)e¢ = (u— )\)Eei.
Hence the pencil A — )\B takes the form

~ R (n— )\)1:?11 (p— )\)§12 aiz — /\l:713
A—AB = |(p—=A)ba1 (1 —A)baa G235 — Abag
(b= A)bs1 (i — A)bsza a3z — Abs3
and we have

(1 — )\)én (n— )\)1:712 a3 — )@13
PaB(A) = (k= N)ba1 (= A)ba G253 — Abas
(= A)b3r (10— A)bza  G33 — Absz

biy bz g — Abis

=(u—M)? a1 bao g3 — Abag|,
b31 b3z a3z — b33

which shows that pz g has double root y. But pz g coin-
cides with pa B, given that

Pag(A) = det(ST' (A — AB3)S))
= det(S71) det(A — AB3) det(S)
= det(S) " det(A — \I3) det(S) = pa ().

Therefore, pa B has a fortiori double root L.

Now, let p(z) = ax® + bx? + cz + d be a general cubic
polynomial with real coefficients. The discriminant of p,
A(p), is given by

A(p) = 18abed — 4b3d + b*c* — 4ac® — 27a*d>.

A fundamental property of the discriminant is that if p has
a double root, then A(p) = 0[18, Sect. 10.3].

In light of the above, if the problem (6) has a double
eigenvalue, then the entries of A and B satisfy the con-
straint

A(pa,B) =0.

5. New consistency constraints

Let ¢ and j be two different elements of {1,...,7} and
consider the corresponding homography matrices

H, = w;,A + bV;r and H; = w;A + bv;r. @)

Taking into account that v,/ (v; X v;) = va (vi xvj) =0,
we see that H;(v; x v;) = w;A(v; x v;) and H;(v; x
v;) = w;A(v; x v;). Hence

Hi(vi X Vj) = wiwj_lHj(VT; X Vj)7 (8)

S0 wiw;1 is an eigenvalue of the generalised eigenvalue
problem

HiX = )\HjX. (9)

Note that if ¢ is any length-3 vector, then (7) holds with A
replaced by A +bc', bv, replaced by b(v; —w;c) T, and
bv, replaced by b(v; — wjc)". Accordingly, (8) holds
with (v; —w;c) x (v; —w;c) substituted for v; x v;. Now,
as c varies, the vectors

(vi —w;c) x (v; —w;c) = (c— w;lvi) X (w;v; —w;vj)

fill out a two-dimensional linear space, namely the space
of all length-3 vectors orthogonal to w;v; — w;v;. Thus
wiw;1 is in fact a double eigenvalue for the problem (9).
Using the material from Section 4, we conclude that

A(pHi,Hj) = O (10)

A closer inspection reveals that the expression on the left-
hand side is a homogeneous polynomial of degree 12.
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Figure 1: Evaluation of homography compatibility constraints on synthetic data. Numerous random piecewise planar scenes were generated, and independent
Gaussian noise was added to corresponding points between two views of the synthetic scene. Two sets of homography matrices were generated. The first
set consisted of homography matrices that were estimated using DLT and refined with bundle adjustment based on the latent variable parametrisation of
Szpak et al. [32] which guarantees consistency. The second set consisted of homographies that were estimated using DLT and refined with separate bundle
adjustment. Assessment of the multiplicity (panel (a)) and the singularity (panel (b)) constraints on the first set of homographies served to confirm the
validity of our formulae—the constraints were satisfied even when the noise level was varied. In contrast, evaluation of the constraints on the second set of
homographies revealed that consistency constraints were progressively violated as the noise level was increased. The experiments demonstrate that separate

homography estimation results in incompatible homographies.

Equations (10) corresponding to all pairs (7, j) with ¢ #
j form the first of our two new sets of consistency con-
straints. We shall refer to this set of constraints as the mul-
tiplicity constraints. This set comprises (1) = I(I —1)/2
elements. Since I(I —1)/2 > 5I — 7 whenever I > 10,
with 51 — 7 = 91 — (4 + 7) being the cardinality of a
full set of constraints, we see that the new constraints are
not entirely functionally independent at least when I > 10.
Unlike the rank-four constraint, the constraints (10) apply
for all values of I no smaller than 2.

Note that if A1, ..., A; are non-zero scalars, then

A(pMHmAjHj) = )‘?)‘?A(pHZHJ )

This identity reveals that the vanishing of A(px,u,.x,H,)
for any pair (¢,7) with ¢ # j is equivalent to the vanish-
ing of A(pHi,Hj ). Thus equations (10) corresponding to all
pairs (4, j) with ¢ = j are genuine constraints on the homo-
graphies represented by the matrices H;.

The two-dimensional eigenspace for the problem (9)
with corresponding double eigenvalue umv;l has a natural
geometric meaning. Indeed, one verifies directly that

w;

H 'H, = °

Is+—— A 'b(w;vs —wivy) ' |.
J w; <3+ wl(v;rA_lb‘ﬁ‘wj) (wjvi —w;vy) >

It follows from this formula that if a; and as are two lin-
early independent length-3 vectors orthogonal to w;v; —
w;Vv;, then a; and ay are eigenvectors of Hj_lHl- with cor-
responding eigenvalue wiwjl In other words, the two-
dimensional linear space spanned by a; and as, denoted

by lin{ay, as}, is the eigenspace of Hj_lH,- corresponding
to the (double) eigenvalue w; wj_l In addition, A~ 'b is an
eigenvector of Hj_lHZ- corresponding to the eigenvalue

Xij = (wi + v A7'b)(w; + v/ A 'b) L.

Consequently, Hj_lHi is a matrix of a planar homology
with a line of fixed points (called the axis), each repre-
sented by a one-dimensional linear subspace of lin{a;, as},
and a fixed point (called the vertex), not on the line, rep-
resented by the scalar multiples of A~'b. As A~'b =
K R;(t; —t2) = —Pjcy, where ¢y = [t ,1] T is the pro-
jection centre of the second camera (satisfying Poco = 0),
we see that A ~1b represents the epipole in the first image.
It is clear that the eigenspace for the problem (9) corre-
sponding to the double eigenvalue wiw;1 is identical with
lin{a;, as}. Consequently, this eigenspace can be geomet-
rically interpreted as the axis of the homology Hj_lHq;.

Interestingly, the analysis in the last paragraph leads to
yet other consistency constraints in the case where I > 3.
Assuming that I > 3, let (4, ) and (k,!) be two different
pairs of elements of {1,...,I} such thati # j and k # [.
Then Hj_lHie = \;je and Hl_ler = Apie, where e is
short for A~'b. Consequently, for any two natural numbers
n and m,

(H;"H)"(H; 'Hy)™e = (H; "Hy)™ (H; 'H;)"e = A7 \jje

and so
[(H;lHi)n, (Hlek)7rl}e —_ 07
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Figure 2: AdelaideRMF dataset consisting of image pairs and manually labelled keypoint correspondences which were obtained by SIFT matching. Yellow
markers denote outliers (random incorrect matches), while all other coloured markers denote groups of points that can be associated with planar surfaces in

three-dimensional space.

where, for any square matrices S and T, [S, T] = ST—TS.
It follows that [(HL; "H;)", (H; 'Hj)™] is singular,

det[(H; "H,)", (H, "H)™] = 0. (a1

With ¢, 7, k, [, n, and m assuming various respective values,
equations (11) give additional consistency constraints. To
obtain a finite, manageable set of constraints, it is practical
to assume that n and m run independently over the limited
set {1,2,3}. Like in the case of equations (10), equations
(11) are constraints on underlying homographies, not just
homography matrices. We shall call this set of constraints
the singularity constraints.

6. Experimental validation

We explored the pertinence of the new multiplicity and
singularity constraints on both synthetic and real data.
Our experiments demonstrate that prevailing robust multi-
homography estimation methods cannot produce compati-
ble homography matrices because they fail to enforce con-
sistency constraints.

6.1. Experiments on synthetic data

We confirmed the validity of our new constraints on syn-
thetic data by estimating multiple homographies separately

with and without noise for various planar scenes (see Fig-
ure 1). Our findings conformed to theoretical expectations:
with noiseless data the estimated homographies satisfied the
compatibility constraints, whereas with noisy data they did
not. We also evaluated our new constraints on homogra-
phies that are guaranteed to be compatible even on noisy
data, namely homographies estimated using the latent vari-
able parametrisation described in Section 2. Once again,
our new constraints were satisfied in accordance with the-

ory.
6.2. Experiments on real data

Extensive simulations on synthetic data reported in [5,
8,9,32,36] have already demonstrated that enforcing con-
sistency constraints leads to more accurate homography es-
timates. Therefore rather than repeat similar simulations,
we instead chose to investigate whether compatibility con-
straints are violated on typical real-world datasets. We
decided on the AdelaideRMF dataset' because it contains
multiple planar scenes and because it is starting to receive
widespread adoption by researchers who investigate robust
multi-structure fitting methods [21, 26, 30, 35]. The Ade-
laideRMF dataset consists of image pairs and manually la-
belled keypoint correspondences which were obtained by

Uhttp://cs.adelaide.edu.au/~hwong/doku.php?id=data
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Table 1: Evaluation of homography compatibility constraints.

Homography Constraints

Fundamental Matrix Fidelity

Data Multiplicity Constr. Singularity Constr. Worst Smps. Dist. Best Smps. Dist. Consist. Smps. Dist. Optim. Smps. Dist.
elderhall 8.84 x 10~6 n/a 2.7811 x 104 2.5113 x 104 2.98703 x 10! 1.9118 x 10!
ladysymon 2.9554 x 1077 n/a 7.716 98 x 10! 7.14105 x 10! 6.79467 x 10! 6.6813 x 10!
library 8.4870 x 10~9 n/a 7.914586 x 102 1.756249 x 102 6.65369 x 10! 5.6452 x 10!
nese 3.7071 x 108 n/a 7.63864 x 101 6.49791 x 10! 6.26723 x 10! 6.2645 x 10!
sene 6.7779 x 10~8 n/a 5.70514 x 10t 3.56574 x 101 3.39553 x 10! 3.3911 x 10!
napiera 3.1705 x 10~ 7 n/a 3.151676 x 102 2.87451 x 10! 2.34959 x 101 1.7609 x 10!
hartley 5.7434 x 10~8 n/a 1.08842 x 102 1.051076 x 102 1.047488 x 102 1.0452 x 102
oldclassicwings ~ 3.6707 x 10~8 n/a 1.597191 x 102 1.580794 x 102  1.546 744 x 102 1.4819 x 102
barrsmith 2.3877 x 108 n/a 1.0274 x 103 3.599146 x 102 9.58709 x 10! 9.407 x 10!
neem 4.2163 x 10~° 2.2430 x 10* 2.8117 x 10* 8.440351 x 102 6.390 307 x 102 5.8102 x 102
elderhallb 4.7339 x 10— 8.1410 x 108 1.3215 x 104 5.437 82 x 101 4.49781 x 10! 4.3403 x 10!
napierb 7.8316 x 10~6 1.6831 x 1011 3.6515 x 103 6.713961 x 102 6.506 059 x 102 6.3202 x 102
johnsona 1.8434 x 10~ 3.7940 x 10! 5.5611 x 10° 1.3717 x 103 1.2884 x 103 1.2891 x 103
johnsonb 1.0 x 1073 1.3745 x 10° 2.9557 x 106 4.1169 x 103 3.9156 x 103 3.9123 x 103
bonhall 9.1052 x 10~7 1.4353 x 108 8.6778 x 106 2.590761 x 102 1.010674 x 102 1.0096 x 102

Evaluation of homography compatibility constraints on the AdelaideRMF datasets, where each homography was estimated separately using DLT and refined
using separate bundle adjustment. Homographies were estimated from ground truth inlier sets. The results tabulated under the homography constraints
heading show that the estimated homographies are mutually incompatible. Under the heading of fundamental matrix fidelity we report, for each scene,
the best and worst fundamental matrix by recording the lowest and highest Sampson distance respectively. As a point of reference, we also report the
fundamental matrix that can be constructed from the latent variables used to guarantee all homography consistency constraints in the work of Szpak et
al. [32], as well as the globally optimal fundamental matrix using the method of Zheng et al. [37]. In line with expectations, the fundamental matrix
constructed from a set of mutually compatible homography matrices is substantially more accurate than the best possible fundamental matrix constructed
from incompatible homographies. For most scenes the fundamental matrix associated with compatible homography matrices can be identified with the

globally optimal fundamental matrix.

SIFT matching, as well as randomly generated incorrect
matches (outliers)—see Figure 2. Because the purpose of
robust multi-structure fitting methods is to find all inliers
corresponding to all structures, we hypothesised the exis-
tence of a method that achieves this goal and examined
whether estimating homographies separately whilst utilis-
ing all inlying structures would result in a compatible set of
homography matrices.

After establishing sets of inliers for various structures,
most robust multi-homography estimation methods use the
direct linear transform (DLT) to estimate initial homogra-
phies, and refine them with separate bundle adjustment. We
adopted the same protocol and estimated a set of homogra-
phy matrices for each AdelaideRMF scene. We then eval-
uated our new consistency constraints on the homography
matrices. The results shown in Table | under the heading
homography constraints indicate that the homographies ob-
tained were incompatible.

The consequence of homographies being incompatible
can be further appreciated by examining the extent to which
a fundamental matrix constructed from an incompatible set
of homographies can represent the epipolar geometry of the
scene. As is well known, given a homography H between
the first and second views induced by a plane in the scene,
the underlying fundamental matrix F' can be written as

F=H e, (12)

where e represents the epipole in the first image.> As stated
in Section 5, the epipole in the first image is a fixed point of
any homology with matrix of the form Hj_le- and can be
retrieved as the eigenvector corresponding to a non-repeated
eigenvalue of any of the H;lHi’s. If the homography ma-
trices H; are incompatible, the various homology matrices
Hj_1Hi will also be incompatible and will lead to different
estimates of the epipole in the first image. This in turn will
lead to different estimates of the fundamental matrix (see
Figure 3 for an example). Moreover, if a fundamental ma-
trix is constructed by selecting a particular homography ma-
trix H;, in (12), then even though the resulting fundamental
matrix may be compatible with H;, it will not be compat-
ible with the remaining homographies H;, ¢ # iy. Hence,
given multiple incompatible homographies, it is possible to
construct multiple incompatible fundamental matrices.

It is customary to evaluate the fidelity of a fundamen-
tal matrix by evaluating the Sampson distance on the set
of corresponding points. The Sampson distance yields a
measure of how accurately a fundamental matrix represents
the epipolar geometry of the scene. To demonstrate the va-
garies of constructing fundamental matrices from incompat-
ible homographies, we composed all possible fundamental

2The standard formula for F in terms of H is F = [e’] x H, where e’
stands for the epipole in the second image [! 7, Corollary 13.4]. From this,
the alternative representation (12) readily follows by noting that e’ = He,
[He]x = (det H)H™ T [e]xH~! [3, Fact 3.10.1, xxxvi)], and further
by dropping the irrelevant scalar factor det H.
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Figure 3: Comparison of epipolar lines associated with two fundamental
matrices computed from two separately estimated homographies on the
barrsmith dataset. The epipolar lines associated with the two fundamental
matrices do not overlap, and thereby demonstrate that the two homogra-
phies do not share the same epipolar geometry and hence are incompatible.

matrices and reported the best and worst fundamental ma-
trix in terms of the Sampson distance measure. The results
recorded in Table | under the heading fundamental ma-
trix fidelity unequivocally indicate that a fundamental ma-
trix constructed from consistent homography matrices using
equation (5) is superior to the best fundamental matrix con-
structed from inconsistent homographies. As a further point
of reference, we also report the Sampson distance associ-
ated with the globally optimal fundamental matrix which
we computed using the branch and contract algorithm de-
scribed in the work of Zheng et al. [37]. Remarkably, for
most scenes in the AdelaideRMF dataset, the fundamental
matrix associated with consistent homography matrices can
be identified with the globally optimal fundamental matrix.

7. Discussion

Various researchers over the years have espoused the im-
portance of enforcing consistency constraints in multiple
view geometry [2, 14, 15,24,27,28,33]. Nevertheless, the
predominant practice in robust projective multi-structure es-
timation is to ignore constraints. There are several reasons
why constraints are often not enforced. Part of the prob-
lem is a lack of awareness that constraints exist even in the
general non-Euclidean setting (i.e. with uncalibrated cam-
eras). Furthermore, in some contexts, such as multiple ho-
mography estimation, a full set of constraints is yet to be
discovered and simple reliable constrained estimation meth-
ods still need to be developed.

We have argued that knowledge of explicit homography
constraints is of practical relevance for two reasons: (1) if
explicit constraints were known, they could be enforced

using a non-linear constrained optimisation procedure, re-
sulting in a new multi-homography estimation method; and
(2) the compatibility of homography matrices can be as-
certained by evaluating the constraints. Despite these ben-
efits, the utility of the derived constraints has been chal-
lenged by some of our peers under the premise that the dif-
ference in residual error between homographies with con-
sistency constraints enforced, versus homographies where
consistency is not enforced, can serve as an indicator for
how compatible homographies are. The tacit assumption
is that smaller residuals imply more compatible homogra-
phies. This assumption is incorrect. In fact, the residual
error for homographies with consistency enforced will be
equal to or larger than that for homographies without con-
sistency enforced. This follows from the general principle
that an unconstrained optimum has a lower value of the un-
derlying cost function than a constrained one. Hence, the
residual error cannot be used to make statements about the
compatibility of sets of homographies. However, just be-
cause the residual error for consistent homographies may be
slightly higher does not mean that consistent homographies
are less accurate. On the contrary, experiments conducted
in [8,9,32] demonstrate that enforcing consistency results in
substantial improvements in accuracy. The apparent contra-
diction can be resolved with recourse to the machine learn-
ing concepts of training error—in our case, the geometric
error for the set of corresponding points on which the ho-
mography is estimated—and generalisation error—in our
case, the geometric error evaluated on other corresponding
points that belong to the same planar structure. Enforcing
homography constraints may increase the training error, but
will as a rule decrease the generalisation error.

8. Conclusion

Through experiments on real data we have demonstrated
that consistency constraints on homography matrices do
matter. We have also presented and validated two new sets
of explicit constraints which we believe provide theoretical
foundations that facilitate the derivation of a full set of con-
straints. We hope that the results and arguments presented
in this paper will trigger a new stream of research in ro-
bust projective multi-structure estimation. We anticipate a
new generation of estimation methods that enforce full con-
sistency constraints on sets of estimable projective entities
such as fundamental and homography matrices.
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