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Abstract

This paper proposes a learning-based approach to scene
parsing inspired by the deep Recursive Context Propaga-
tion Network (RCPN). RCPN is a deep feed-forward neural
network that utilizes the contextual information from the en-
tire image, through bottom-up followed by top-down context
propagation via random binary parse trees. This improves
the feature representation of every super-pixel in the im-
age for better classification into semantic categories. We
analyze RCPN and propose two novel contributions to fur-
ther improve the model. We first analyze the learning of
RCPN parameters and discover the presence of bypass er-
ror paths in the computation graph of RCPN that can hinder
contextual propagation. We propose to tackle this problem
by including the classification loss of the internal nodes of
the random parse trees in the original RCPN loss function.
Secondly, we use an MRF on the parse tree nodes to model
the hierarchical dependency present in the output. Both
modifications provide performance boosts over the origi-
nal RCPN and the new system achieves state-of-the-art per-
formance on Stanford Background, SIFT-Flow and Daimler
urban datasets.

1. Introduction
Semantic segmentation refers to the problem of label-

ing every pixel in an image with the correct semantic cat-
egory. Handling the immense variability in the appear-
ance of semantic categories requires the use of context to
achieve human-level accuracy, as shown, for example, by
[24, 14, 13]. Specifically, [14, 13] found that human per-
formance in labeling a super-pixel is worse than a computer
when both have access to that super-pixel only. Effectively
using context presents a significant challenge, especially
when a real-time solution is required.

An elegant deep recursive neural network approach for
semantic segmentation was proposed in [19], referred to as
RCPN. The main idea was to facilitate the propagation of
contextual information from each super-pixel to every other

super-pixel through random binary parse trees. First, a se-
mantic mapper mapped visual features of the super-pixels
into a semantic space. This was followed by a recursive
combination of semantic features of two adjacent image re-
gions, using a combiner, to yield the holistic feature vec-
tor of the entire image, termed the root feature. Next, the
global information contained in the root feature was dis-
seminated to every super-pixel in the image, using a de-
combiner, followed by classification of each super-pixel
via a categorizer. The parameters were learned by mini-
mizing the classification loss of the super-pixels by back-
propagation through structure [5]. RCPN was shown to out-
perform recent approaches in terms of per-pixel accuracy
(PPA) and mean-class accuracy (MCA). Most interestingly,
it was almost two orders of magnitude faster than compet-
ing algorithms.

RCPN’s speed and state-of-the-art performance motivate
us to carefully analyze it. In this paper we show that it still
has some weaknesses and we show how to remedy them. In
particular, the direct path from the semantic mapper to the
categorizer gives rise to bypass errors that can cause RCPN
to bypass the combiner and decombiner assembly. This can
cause back-propogation to reduce RCPN to a simple multi-
layer neural network for each super-pixel. We propose mod-
ifications to RCPN that overcome this problem

1. Pure-node RCPN - We improve the loss function by
adding the classification loss of those internal nodes of
the random parse trees that correspond to a single se-
mantic category, referred to as pure-nodes. This serves
three purposes. a) It provides more labels for training,
which results in better generalization. b) It encourages
stronger gradients deep in the network. c) Lastly, it
tackles the problem of bypass errors, resulting in bet-
ter use of contextual information.

2. Tree MRF RCPN - Pure-node RCPN also provides us
with reliable estimates of the internal node label distri-
butions. We utilize the label distribution of the internal
nodes to define a tree-style MRF on the parse tree to
model the hierarchical dependency between the nodes.
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The resulting architectures provide promising improve-
ments over the previous state-of-the-art on three semantic
segmentation datasets: Stanford background [6], SIFT flow
[11] and Daimler urban [16].

The next section describes some of the related works fol-
lowed by a brief overview of RCPN in Sec. 3. We describe
our proposed methods in Sec. 4 followed by experiments in
Sec. 5. Finally, we conclude in Sec. 6.

2. Related Work
The previous work on semantic segmentation roughly

follows two major themes: learning-based and non-
parametric models.

Learning-based models learn the appearance of semantic
categories, under various transformations, and the relations
among them using parametric models. CRF based image
models have been quite successful in jointly modeling the
appearance and structure of an image; [6, 15, 14, 13] use
CRFs to combine unary potentials obtained from the visual
features of super-pixels with the neighborhood constraints.
The differences among these approaches are mainly in
terms of the visual features, form of the N-ary potentials
and the the CRF modeling. A joint-CRF on multiple levels
of an image segmentation hierarchy is formulated in [10]. It
achieves better results than a flat-CRF owing to the utiliza-
tion of higher order contextual information coming in the
form of a segmentation hierarchy. Multi-scale convolution
neural networks are used in [2] to learn visual feature ex-
tractors from raw-image/label training pairs. It achieved im-
pressive results on various datasets using gPb, purity-cover
and CRF on top of the learned features. It was extended
in [17] by feeding in the per-pixel predicted labels using a
CNN classifier to the next stage of the same CNN classi-
fier. However, the propagation structure is not adaptive to
the image content and only propagating label information
did not improve much over the prior work.

A type of learning based model was proposed in [21] that
aims at learning a mapping from the visual features to a se-
mantic space followed by classification. The semantic map-
ping is learned by optimizing a structure prediction cost on
the ground-truth parse trees of training images with the hope
that such a training would embed the visual features in a se-
mantically meaningful space, where classification would be
easier. However, our experiments using the code provided
by the authors show that semantic space mapping is actually
no better than a simple 2-layer neural network on the visual
features directly.

Recently, a lot of successful non-parametric approaches
for natural scene parsing have been proposed [23, 11, 20,
4, 22, 25]. These approaches are instances of sophisticated
template matching to retrieve images that are visually sim-
ilar to the query, from a database of labeled images. The
matching step is followed by super-pixel label transfer from

the retrieved images to the query image. Finally, a struc-
tured prediction model such as CRF is used to jointly utilize
the unary potentials with plausible image models. These
approaches differ in terms of the retrieval of candidate im-
ages or super-pixels, transfer of label from the retrieved
candidates to the query image, and the form of the struc-
tured prediction model. These approaches are based on
nearest-neighbor retrieval that introduces a critical perfor-
mance/accuracy trade-off. Theoretically, these approaches
can utilize a huge amount of data with ever increasing accu-
racy. But a very large database would require large retrieval-
time, which limits the scalability of these methods.

3. Background Material

In this section, we provide a brief overview of the RCPN
based semantic segmentation framework, please refer to
[19] for details.

3.1. Overview

RCPN formulates the problem of semantic segmenta-
tion as labeling each super-pixel into desired semantic cate-
gories. The complete pipeline starting from the input image
to the final pixel-wise labels is shown in Fig. 1. It starts
with the super-segmentation of the image followed by the
extraction of visual features for each super-pixel; [19] used
the Multi-scale CNN [2] to extract per pixel features that
are then averaged over super-pixels. RCPN then constructs
random binary parse trees obtained using the adjacency in-
formation between super-pixels. The leaf-nodes correspond
to the initial super-pixels and successive random merger
of two adjacent super-pixels builds the internal nodes up
to the root node, which corresponds to the entire image.
The super-pixel features along with a parse tree are passed
through an assembly of four modules: (semantic mapper,
combiner, decombiner and categorizer, in order) that out-
puts labels for each super-pixel. Multiple random parse
trees can be used, both during training and testing. At test
time, each parse tree can gives rise to different labels for
the same super-pixel, therefore, voting is used to decide the
final label.

Notation: Throughout this article - vi denotes visual
features of ith super-pixel, xi denotes semantic feature of
ith super-pixel and x̃i denotes enhanced super-pixel fea-
tures.

Semantic mapper is a neural network that maps visual
features of each super-pixel to a dsem dimensional semantic
feature

xi = Fsem(vi;Wsem) (1)

here, Fsem is the network and Wsem are the layer weights.
Combiner: Combiner is a neural network that recur-

sively maps two child node features (xi and xj) to their



Figure 1: Complete flow diagram of RCPN for semantic segmentation.

parent feature (xi,j). Intuitively, the combiner network at-
tempts to aggregate the semantic content of the children fea-
tures such that the parent’s features become representative
of the children. The root features represent the entire image.

xi,j = Fcom([xi,xj ];Wcom). (2)

here, Fcom is the network and Wcom are the layer weights.
Decombiner is a neural network that recursively dissem-

inates the context information from a parent node to its chil-
dren through the parse tree. This network maps the semantic
features of the child node and its parent to the contextually
enhanced feature of the child node. This top-down contex-
tual propagation starts from the root feature and the decom-
biner is applied recursively up to the enhanced super-pixel
features. Therefore, it is expected that every super-pixel
feature contains the contextual information aggregated from
the entire image.

x̃i = Fdec([xi, x̃i,j ];Wdec). (3)

here, Fdec is the network and Wdec are the layer weights.
Categorizer is the final network, which maps the con-

text enhanced semantic features (x̃i) of each super-pixel to
one of the semantic category labels; it is a Softmax classifier

yj = Fcat(x̃i;Wcat). (4)

Together, all the parameters of RCPN are denoted as
Wrcpn = {Wsem,Wcom,Wdec,Wcat}. Let’s assume there
are S super-pixels in an image I and denote a set of R ran-
dom parse trees of I as T . Then, the loss function for I
is

L(I) = 1

RS

R∑
r=1

Si∑
s=1

L(yr,s, ts; Tr,Wrcpn) (5)

here, yr,s is the predicted class-probability vector and ts
is the ground-truth label for the sth super-pixel for random

parse tree Tr and L(ys, t) is the cross-entropy loss func-
tion. Network parameters, Wrcpn, are learned by minimiz-
ing L(I) for all the images in the training data.

4. Proposed Approach
In this section, we study the RCPN model, discover po-

tential problems with parameter learning and propose useful
modifications to the learning and the model. Our first mod-
ifications tackle a potential pitfall during training that stems
from the special architecture of RCPN and can reduce it to
a simple multi-layer NN. The second modification extends
the model by building an MRF on top of the parse trees to
utilize the hierarchical dependency between the nodes.

4.1. Pure-node RCPN

Here we propose a model that will handle bypass errors.
At the same time, this model solves a problem of gradi-
ent attenuation, and also multiplies the training data. For
the ease of understanding all our discussions will be lim-
ited to 1-layer modules. This result in each of the Wsem,
Wcom, Wdec and Wcat as matrices. Like most deep net-
works, RCPN also suffers from vanishing gradients for the
lower layers. This stems from the vanishing error signal,
because the gradient (gl) for the lth layer depends on the
error signal (el+1) from the layer above -

gl = el+1x
T
l (6)

here, xl is the input to the lth layer. For RCPN, vanishing
gradients are more of a problem because of very deep parse
trees due to recursion. For instance, a 100 super-pixel image
will lead to a minimum of (log2(100)× 2 + 2 > 14) layers
under the strong assumption of perfectly balanced binary
parse trees. In practice, we can only create roughly balanced
binary trees that often lead to ∼ 30 layers.



We show that the internal nodes of the parse tree can
be used to alleviate these problem. Each node in the parse
tree corresponds to a connected region in the image. The
leaf nodes correspond to the initial super-pixels and the in-
ternal nodes correspond to the merger of two or more con-
nected regions, referred to as merged-region. We use the
term pure nodes to refer to the internal nodes of the parse
tree associated with the merger of two or more regions of
the same semantic category. Therefore, the merged-regions
corresponding to the pure nodes can serve as additional la-
beled samples during training. We empirically found that
roughly 65% of all the internal nodes are pure-nodes for
all three datasets. We include the classification loss of the
pure-nodes in the loss function (Eqn. 5) for training and re-
fer to the new procedure as pure-node RCPN or PN-RCPN
for short. The classification loss, Lp(I), now becomes -

Lp(I) = L(I) + 1∑
Pr

R∑
r=1

Pr∑
p=1

L(yr,p, tr,p; Tr,Wrcpn)

(7)
here, Pr is the number of pure-nodes for the rth random
parse tree Tr and subscripts (r, p) map to the pth pure-node
for the rth random parse tree. Note that different parse trees
for the same image can have different pure nodes.

In order to understand the benefits of PN-RCPN and con-
trast it with RCPN, we make use of an illustrative example
depicted with the help of Fig. 2. The left-half of a ran-
dom parse tree for an image I with 5 super-pixels, anno-
tated with various variables involved during one forward-
backward propagation through RCPN are PN-RCPN are
shown in Fig. 2a and 2b, respectively. We denote, ecati

(a C × 1 vector) as the error at enhanced super-pixel nodes;
edeck (a 2dsem × 1 vector) as the error at the decombiner;
ecomk (a 2dsem × 1 vector) as the error at the combiner and
esemi (a dsem×1 vector) as the error at the semantic mapper.
Subscripts bp and total indicate bypass and the sum total
error at a node, respectively. We assume a non-zero catego-
rizer error signal for the first super-pixel only, ie ecati 6=1 = 0.
These assumptions facilitate easier back-propagation track-
ing through the parse tree, but the conclusions drawn will
hold for general cases as well.

The first obvious benefit of using pure-nodes is more la-
beled samples from the same training data that can improve
generalization. The second advantage of PN-RCPN can be
understood by contrasting the back-propagation signals for
a sample image for RCPN and PN-RCPN, with the help of
Fig. 2a (RCPN) and 2b (PN-RCPN). Note that in the case of
RCPN, the back-propagated training signal was generated
at the enhanced leaf-node features and progressively atten-
uates as it back-propagates through the parse tree, shown
with the help of variable thickness solid red arrows. On the
other hand, pure-node RCPN has an internal node (shown
as a green color node) that injects a strong error signal deep

into the parse tree, resulting in stronger gradients even in
the deeper layers. Moreover, PN-RCPN explicitly forces
the combiner to learn meaningful combination of two super-
pixels, because incorrect classification of the combined fea-
tures is penalized.

Now, we come to the third benefit of the PN-RCPN ar-
chitecture. In what follows, we describe a subtle yet po-
tentially serious problem related to RCPN learning, provide
empirical evidence that this problem exists, and argue that
PN-RCPN can offer a solution to this problem.

4.1.1 Understanding the Bypass Error

During the minimization of the loss functions (Eqn. 5 or 7),
typically, more effective parameters in bringing down the
objective function receive stronger gradients and reach their
stable state early. Due to the presence of multiple layers
of non-linearities and complex connections, the loss func-
tion is highly non-convex and the solution inevitably con-
verges to a local minimum. It was shown in [19] that the
combiner and decombiner assembly is the most important
constituent of the RCPN model. Therefore, we expect the
learning process to pay more attention to Wcom and Wdec.
Unfortunately, the RCPN architecture introduces short-cut
paths in the computation graph from the semantic mapper
to the categorizer during the forward propagation that gives
rise to bypass errors during back-propagation. Bypass er-
rors severely affect the learning by reducing the effect of
the combiner on the overall loss function, thereby favoring
a non-desirable local minimum.

In order to understand the effect of bypass error, we
again make use of the example in Fig. 2 to show that by-
pass paths allow the back-propagated error signals from the
categorizer (ecati ) to reach the semantic mapper through one
layer only. On the other hand, ecati goes through multiple
layers before reaching the combiner. Therefore, the gradi-
ent gcom for the combiner is weaker than the gradient for
the semantic mapper (gsem).

From the Fig. 2a we can see that there are two possi-
ble paths for ecat1 to reach the combiner. One of them re-
quires 2 layers (x̃1 → x̃6 → x6) and the other requires
3 layers (x̃1 → x̃6 → x9 → x6). Similarly, ecat1 can
reach x1 through a 1 layer bypass path (x̃1 → x1) or a
several layers path through the parse tree. Due to gradient
attenuation, the smaller the number of layers the stronger
the back-propagated signal, therefore, bypass errors lead to
gsem ≥ gcom. This can potentially render the combiner
network inoperative and guide the training towards a net-
work that effectively consists of a Nsem + Ndec + Ncat

layer network from the visual feature ( vi) to the super-
pixel label (yi). This results in little or no contextual in-
formation exchange between the super-pixels. In the worst
case Wdec = [W 0]; this removes the effect of parents on



(a) (b)

Figure 2: Back-propagated error tracking to visualize the ef-
fect of bypass error. The variables follow the notation intro-
duces in Sec. 3. Forward propagation and back-propagation
are shown by solid black and red arrows, respectively. The
attenuation of the error signal is shown by variable width
red arrows. The bypass errors are shown with dashed red
arrows. (a) RCPN: Error signal from x̃1 reaches to x1 in
just one step, through the bypass path. (b) PN-RCPN intro-
duces pure-nodes classification loss (for x̃6), thereby, forc-
ing the network to learn meaningful internal node represen-
tation via combiner, thereby, promoting effective contextual
propagation.

their children features during top-down contextual propaga-
tion through the decombiner, thereby completely removing
the affect of the combiner from RCPN. Practically, the ran-
dom initialization of the parameters ensures that they will
not converge to such a pathological solution. However, we
show that a better local minimum can be achieved by tack-
ling the bypass errors.

In order to see that gsem ≥ gcom, we compute the gra-
dient strengths of each module (gsem, gcom, gdec, gcat) dur-
ing training. The gradient strengths of different modules for
RCPN and PN-RCPN are normalized by the number of pa-
rameters and plotted in Fig. 3a and Fig. 3b, respectively. As
expected, gcat is the strongest, because it is closest to the
initial error signal. Surprisingly, for RCPN gsem is slightly
stronger than gdec and significantly stronger than gcom dur-
ing the initial phase of training. Normally, we would expect
gsem, which is the farthest away from the error signal, to
be the weakest due to vanishing gradients. This observation
suggests that the initial training phase favors a multi-layer
NN. However, we also observe that during the later stages
of training, gcom is comparable to other gradients. Unfor-

(a)

(b)

Figure 3: Comparison of gradient strengths of different
modules of (a) RCPN and (b) PN-RCPN during training.

tunately, it has been conclusively established, by many em-
pirical studies, that the initial phase of training is crucial for
determining the final values of the network parameters, and
thereby their performance [1]. From the figure we see that
the combiner catches up with the other modules during later
stages of training, but by then the parameters are already in
the attraction basin of a poor solution.

On the other hand, the gradients for PN-RCPN (Fig 3b)
follow the natural order of strength, which gives more im-
portance to the combiner and decombiner than the seman-
tic mapper during the initial training. Fig. 2b provides an
intuitive explanation by showing the categorizer error sig-
nal (ecat6 ) for x̃6 that reaches to the combiner through one
layer only (ecom6,bp ). To further investigate which of the three
aforementioned benefits play the biggest role in improving
the performance of PN-RPCN over RPCN, we trained PN-
RCPN on SIFT flow under the same setting as Table 2, but
we removed as many leaf node labels from the classification
loss as the number of pure-nodes. This makes the number



Figure 4: Factor graph representation of the MRF model.

of labeled samples equal in both RCPN and PN-RCPN, but
leaf-nodes are replaced with pure-nodes. As expected, it
still improves PPA and MCA score for PN-RCPN (80.5%
and 35.3%) vs. RCPN (79.6% and 33.6%). This last exper-
iment confirms that inclusion of pure-nodes does not only
provide more samples but also helps in overcoming the dis-
cussed shortcomings of RCPN.

4.2. Tree MRF Inference

The pure node extension of RCPN provides the label dis-
tributions over merged-regions associated with the internal
nodes in addition to individual super-pixel labels. In this
section, we describe a Markov Random Field (MRF) struc-
ture to model the output label dependencies of the super-
pixels while leveraging the internal node label distributions
for hierarchical consistency. The proposed MRF uses the
same trees structure as that of the parse trees used for RCPN
inference. A factor graph representation of this MRF is
shown in Figure 4. The variables Yi are L-dimensional bi-
nary label vectors associated with each region (merged or
single super-pixel) of the image, L is the number of possi-
ble labels. The kth dimension of Yi is set according to the
presence (1) or absence (0) of the kth class super-pixel in
the region that leads to a 2L − 1 dimensional state space.

Let y be an L-dimensional label assignment for an im-
age region corresponding to Yi, then unary potentials f1 are
given by the label distributions predicted by the RCPN and
defined as -

f1(Yi = y) =
−yT log(pi)

‖y‖1
(8)

where pi is the softmax output of the categorizer network
for super-pixel i. If the probabilities given by RCPN are
not degenerate, the unary potential prefers to assign a single
label, that of the node with the highest probability.

The pairwise potentials f2 are introduced to impose con-
sistency between a pair of child and parent regions. The
parent region must include all the labels assigned to its chil-

dren regions, which is a hard constraint:

f2(Yi = y1, Yj = y2) =

{
∞, if S(y1) \ S(y2) 6= ∅.
0, otherwise.

(9)
where node j is the parent node of i and S(y) is the set of
labels in y.

The unary potentials f1 utilize all levels of the tree si-
multaneously and prefer purer nodes, whereas pairwise po-
tentials, f2 enforce consistency across the tree hierarchy.
This design allows for spatial smoothness at lower levels
and mixed labeling at the higher levels. The tree structure
of the MRF affords exact decoding using max-product be-
lief propagation. The size of the state space is exponen-
tial in the number of labels. However, in practice there are
rarely more than a handfull of different object classes within
an image. Therefore, to reduce the size of the state space,
we first identify different labels predicted by the RCPN and
only retain the 9 most frequently occurring super-pixel la-
bels per image.

5. Experimental analysis
In this section we evaluate the performance of pro-

posed methods for semantic segmentation on three differ-
ent datasets: Stanford Background, SIFT Flow and Daim-
ler Urban. Stanford background dataset contains 715 color
images of outdoor scenes, it has 8 classes and the images
are approximately 240× 320 pixels. We used the 572 train
and 143 test image split provided by [21] for reporting the
results. SIFT Flow contains 2688, 256 × 256 color im-
ages with 33 semantic classes. We experimented with the
train/test (2488/200) split provided by the authors of [23].
Daimler Urban dataset has 500, 400 × 1024 images cap-
tured from a moving car in a city, it has 5 semantic classes.
We trained the model using 300 images and tested on the
rest of the 200 images, the same split-ratio has been used
by previous work on this dataset.

5.1. Visual feature extraction

We use a Multi-scale convolution neural network (Multi-
scale CNN) [2] to extract pixel-wise features using publicly
available library Caffe [7]. We follow [19] and use the same
CNN structure with similar preprocessing (subtracting 0.5
from each channel at each pixel location in the RGB color
space) at 3 different scales (1,1/2 and 1/4) to obtain the
visual features. The CNN architecture has three convolu-
tional stages with 8 × 8 × 16 conv → 2 × 2 maxpool →
7×7×64 conv → 2×2maxpool→ 7×7×256 conv con-
figuration, each max-pooling is non-overlapping. There-
fore, every image scale gives a 256 dimensional output map.
The outputs from each scale are concatenated to get the fi-
nal feature map. Note that the 256 × 3 = 768 dimensional
concatenated output feature map is still 1/4th of the height



and width of the input image due to the max-pooling op-
erations. In order to obtain the input size per-pixel feature
map we simply scale-up each feature map by a factor of 4
in height and width using Bilinear interpolation.

We use the publicly available implementation of [12] to
obtain 100 (same as RCPN) and 800 super-pixels per im-
age for SIFT Flow and Daimler Urban, respectively. Daim-
ler uses more super-pixels due to its larger size. For Stan-
ford background, we have used the super-pixels provided
by [21].

5.2. Model Selection

Unlike most of the previous works that rely on careful
hand-tuning and expert knowledge for setting the model pa-
rameters, we only need to set one parameter, namely dsem,
after we have fixed the modules to be 1-layer neural net-
works. This affords a generic approach to semantic seg-
mentation that can be easily trained on different datasets.
For the sake of strict comparison with the original RCPN
architecture, we also use 1-layer modules with dsem = 60
in all our experiments. Plain-NN refers to training a 2-layer
NN with 60 hidden nodes, on top of visual features for each
super-pixel. RCPN refers to the original RCPN model [19].
PN-RCPN refers to pure-node RCPN and TM-RCPN refers
to tree-MRF RCPN.

5.3. Evaluation metrics

We have used four standard evaluation metrics -

• Per pixel accuracy (PPA): Ratio of the correct pixels
to the total pixels in the test images, while ignoring the
background.
• Mean class accuracy (MCA): Mean of the category

wise pixel accuracy.
• Intersection over Union (IoU): Ratio of true posi-

tives to the sum of true positive, false positive and false
negative, averaged over all classes. This is a popular
measure for semantic segmentation of objects because
it penalizes both over- and under-segmentation.
• Time per image (TPI): Time required to label an im-

age on GPU and CPU.

The results from previous works are taken directly from
the published articles. Some of the previous works do not
report all four evaluation metrics; we leave the correspond-
ing entry blank in the comparison tables.

5.4. Stanford Background

We report our results with CNN features extracted from
the original scale only, because multi-scale CNN features
overfit, perhaps due to small training data, as observed in
[19]. We use 10 and 40 random trees for training and test-
ing, respectively. The results are shown in Table 1. From

Table 1: Stanford background result.

Method PPA MCA IoU TPI (s)
CPU/GPU

Gould, [6] 76.4 NA NA 30 – 600 / NA
Munoz, [15] 76.9 NA NA 12 / NA
Tighe, [23] 77.5 NA NA 4 / NA
Kumar, [8] 79.4 NA NA ≤ 600 / NA

Socher, [21] 78.1 NA NA NA / NA
Lempitzky, [10] 81.9 72.4 NA ≥ 60 / NA

Singh, [20] 74.1 62.2 NA 20 / NA
Farabet, [2] 81.4 76.0 NA 60.5 / NA
Eigen, [4] 75.3 66.5 NA 16.6 / NA

Pinheiro, [17] 80.2 69.9 NA 10 / NA
Plain-NN 80.1 69.7 56.4 1.1/0.4

RCPN [19] 81.8 73.9 61.3 1.1/0.4
PN-RCPN 82.1 79.0 64.0 1.1/0.4
TM-RCPN 82.3 79.1 64.5 1.6–6.1/0.9–5.9

the comparison, it is clear that our proposed approaches out-
perform previous methods. We observe that PN-RCPN sig-
nificantly improves the results in terms of MCA and IoU
over RCPN. We observe a marginal improvement offered
by TM-RCPN over PN-RCPN.

5.5. SIFT Flow

We report our results using multi-scale CNN features at
three scales (1,1/2 and 1/4), as in [19]. Some of the classes
in SIFT Flow dataset have a very small number of training
instances, therefore, we also trained with balanced sampling
to compensate for rare occurrence, referred to as bal. pre-
fix. We use 4 and 20 random trees for training and testing,
respectively. The results for SIFT flow dataset are shown
in Table 2. PN-RCPN led to significant improvement in
all three measures over RCPN and balanced training led to
significant boost in MCA. The use of TM-RCPN does not
affect the results much compared to PN-RCPN. We observe
a strong trade-off between PPA and MCA on this dataset.
Our overall best model in terms of both PPA and MCA (bal.
TM-RCPN) looks equivalent to the work in [25]; PPA: 76.4
vs. 79.8, MCA: 52.6 vs. 48.8.

5.6. Daimler Urban

We report our results using multi-scale CNN features
with balanced training in Table 3. The previous results
are based on the predicted labels provided by the authors
of [18]. The authors, in their paper [18], have reported
the results with background as one of the classes, but the
ground-truth labels for this dataset have portions of fore-
ground classes labeled as the background. Therefore, even
a correct labeling is penalized. All the results in Table 3, in-
cluding [9, 18], ignore the background class for a fair eval-



Table 2: SIFT Flow result.

Method PPA MCA IoU TPI (s)
CPU/GPU

Tighe, [23] 77.0 30.1 NA 8.4 / NA
Liu, [11] 76.7 NA NA 31 / NA

Singh, [20] 79.2 33.8 NA 20 / NA
Eigen, [4] 77.1 32.5 NA 16.6 / NA

Farabet, [2] 78.5 29.6 NA NA / NA
(Balanced), [2] 72.3 50.8 NA NA / NA

Tighe, [22] 78.6 39.2 NA ≥ 8.4 / NA
Pinheiro, [17] 77.7 29.8 NA NA / NA

Yang, [25] 79.8 48.7 NA ≤ 12/NA
Plain-NN 76.3 32.1 24.7 1.1/0.36

RCPN, [19] 79.6 33.6 26.9 1.1/0.4
bal. RCPN, [19] 75.5 48.0 28.6 1.1/0.4

PN-RCPN 80.9 39.1 30.8 1.1/0.4
bal. PN-RCPN 75.5 52.8 30.2 1.1/0.4

TM-RCPN 80.8 38.4 30.7 1.6–6.1/0.9–5.4
bal. TM-RCPN 76.4 52.6 31.4 1.6–6.1/0.9–5.8

uation. IoU Dyn is the IoU for dynamic objects ie cars,
pedestrians and bicyclists. We would like to underscore
that the previous approaches ([9, 18]) use stereo, depth, vi-
sual odometry and multi-frame temporal information that
relies on the fact that the images are coming from a moving
vehicle whereas, we only use an independent single visual
image and still obtain similar or better performance. We
observe significant improvements in terms of IoU with the
use of PN-RCPN over RCPN and Plain-NN which could be
due to the well structured image semantics of this dataset
that allows it to learn the structure very effectively and uti-
lize the context in a much better way than the other two
datasets. Some of the representative segmentation results
are shown in Fig. 5. We have also submitted a complete
video of semantic segmentation for all the test images for
Daimler urban in the supplementary material.

5.7. Segmentation Time

In this section we provide the timing details for the ex-
periments. Only the Multi-CNN feature extraction is ex-
ecuted on a GPU for our Plain-NN and RCPN variants.
Due to similar image sizes, SIFT flow and Stanford Back-
ground took almost the same computation per image ex-
cept while using TM-RCPN, because of the difference in
label state-space size. The time break-up for SIFT flow
(same for Stanford) in seconds is 0.3 (super-pixellation)
+ 0.08/0.8 (GPU/CPU visual feature) + 0.01 (PN-RCPN)
+ 0.5–5 (TM-MRF). For Daimler, the corresponding tim-
ings are 2.4 + 0.4/3.5 + 0.09 + 6 seconds. Therefore, the
bottleneck for our system is the super-pixellation time for
PN-RCPN and MRF inference for TM-RCPN. Fortunately,

Table 3: Daimler result. Numbers in italics indicate the use
of stereo, depth and multi-frame temporal information.

Method PPA MCA IoU IoU Dyn TPI (s)
CPU/GPU

Joint, [9, 18] 94.5 91.0 86.0 74.5 111 / NA
Stix., [18] 92.8 87.5 80.6 72.3 0.05 / NA

bal. Plain-NN 91.4 83.2 75.8 56.2 5.9 / 2.8
bal. RCPN 93.3 87.6 80.9 66.0 6.0 / 2.8

bal. PN-RCPN 94.5 90.2 84.5 73.8 6.0 / 2.8
bal. TM-RCPN 94.5 90.1 84.5 73.8 12 / 8.8

Figure 5: Some representative image segmentation results
on Daimler Urban dataset. Here, CNN refers to direct per-
pixel classification resulting from the multi-scale CNN. The
ground-truth images are only partially labeled and we have
shown the unlabeled pedestrians by yellow ellipses.

there are real-time super-pixellation algorithms, such as [3],
that can help us achieve state-of-the-art semantic segmenta-
tion within 100 milliseconds on an NVIDIA Titan Black
GPU.

6. Conclusion

We analyzed the recursive contextual propagation net-
work, referred to as RCPN [19] and discovered potential
problems with the learning of it’s parameters. Specifically,
we showed the existence of bypass errors and explained
how it can reduce the RCPN model to an effective multi-
layer neural network for each super-pixel. Based on our
findings, we proposed to include the classification loss of
pure-nodes to the original RCPN formulation and demon-
strated it’s benefits in terms of avoiding the bypass errors.
We also proposed a tree MRF on the parse tree nodes to uti-
lize the pure-node’s label estimation for inferring the super-
pixel labels. The proposed approaches lead to state-of-the-
art performance on three segmentation datasets: Stanford
background, SIFT flow and Daimler urban.
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