Abstract

We are interested in inferring object segmentation by leveraging only object class information, and by considering only minimal priors on the object segmentation task. This problem could be viewed as a kind of weakly supervised segmentation task, and naturally fits the Multiple Instance Learning (MIL) framework: every training image is known to have (or not) at least one pixel corresponding to the image class label, and the segmentation task can be rewritten as inferring the pixels belonging to the class of the object (given one image, and its object class). We propose a Convolutional Neural Network-based model, which is constrained during training to put more weight on pixels which are important for classifying the image. We show that at test time, the model has learned to discriminate the right pixels well enough, such that it performs very well on an existing segmentation benchmark, by adding only few smoothing priors. Our system is trained using a subset of the Imagenet dataset and the segmentation experiments are performed on the challenging Pascal VOC dataset (with no fine-tuning of the model on Pascal VOC). Our model beats the state of the art results in weakly supervised object segmentation task by a large margin. We also compare the performance of our model with state of the art fully-supervised segmentation approaches.

1. Introduction

Object segmentation is a computer vision task which consists in assigning an object class to sets of pixels in an image. This task is extremely challenging, as each object in the world generates an infinite number of images with variations in position, pose, lightning, texture, geometrical form and background. Natural image segmentation systems have to cope with these variations, while being limited in the amount of available training data. Increasing computing power, and recent releases of reasonably large segmentation datasets such as Pascal VOC [7] have nevertheless made the segmentation task a reality.

We rely on Convolutional Neural Networks (CNNs) [13], an important class of algorithms which have been shown to be state-of-the-art on large object recognition tasks [12, 24], as well as on fully supervised segmentation task [8]. One advantage of CNNs is that they learn sufficiently general features, and therefore they can excel...
in transfer learning: *e.g.* CNN models trained on the Imagenet classification database [6] could be exploited for different vision tasks [10, 11, 20]. Their main disadvantage, however, is the need of a large number of fully-labeled dataset for training. Given that classification labels are much more abundant than segmentation labels, it is natural to find a bridge between classification and segmentation, which would transfer efficiently learned features from one task to the other one.

Our CNN-based model is not trained with segmentation labels, nor bounding box annotations. Instead, we only consider a single object class label for a given image, and the model is constrained to put more weight on important pixels for classification. This approach can be seen as an instance of Multiple Instance Learning (MIL) [14]. In this context, every image is known to have (or not) – through the image class label – one or several pixels matching the class label. However, the positions of these pixels are unknown, and have to be inferred.

Because of computing power limitations, we built our model over the Overfeat feature extractor, developed by Sermanet *et al.* [21]. This feature extractor correspond to the first layers of a CNN, well-trained over ImageNet. Features are fed into few extra convolutional layers, which forms our “segmentation network”.

Training is achieved by maximizing the classification likelihood over the classification training set (subset of Imagenet), by adding an extra layer to our network, which constrains the model to put more weight on pixels which are important for the classification decision. At test time, the constraining layer is removed, and the label of each image pixel is efficiently inferred. Figure 1 shows a general illustration of our approach.

The paper is organized as follows. Section 2 presents related work. Section 3 describes our architecture choices. Section 4 compares our model with both weakly and fully supervised state-of-the-art approaches. We conclude in Section 5.

2. Related Work

Labeling data for segmentation task is difficult if compared to labeling data for classification. For this reason, several weakly supervised object segmentation systems have been proposed in the past few years. For instance, Vezhnevets and Buhmann [25] proposed an approach based on Semantic Texton Forest, derived in the context of MIL. However, the model fails to model relationship between superpixels. To model these relationships, [26] introduced a graphical model – named Multi-Image Model (MIM) – to connect superpixels from all training images, based on their appearance similarity. The unary potentials of the MIM are initialized with the output of [25].

In [27], the authors define a parametric family of structured models, where each model carries visual cues in a different way. A maximum expected agreement model selection principle evaluates the quality of a model from a family. An algorithm based on Gaussian processes is proposed to efficiency search the best model for different visual cues.

More recently, [30] proposed an algorithm that learns the distribution of spatially structural superpixel sets from image-level labels. This is achieved by first extracting graphlets (small graphs consisting of superpixels and encapsulating their spatial structure) from a given image. Labels from the training images are transferred into graphlets throughout a proposed manifold embedding algorithm. A Gaussian mixture model is then used to learn the distribution of the post-embedding graphlets, *i.e.* vectors output from the graphlet embedding. The inference is done by leveraging the learned GMM prior to measure the structure homogeneity of a test image.

In contrast with previous approaches for weakly supervised segmentation, we avoid designing task-specific features for segmentation. Instead, a CNN learns the features: the model is trained through a cost function which casts the problem of segmentation into the problem of finding pixel-level labels from image-level labels. As we will see in Section 4, learning the right features for segmentation leads to better performance compared to existing weakly supervised segmentation system. Another difference from our approach is that we train our model in a different dataset (Imagenet) from the one we validate the results (Pascal VOC).

Transfer Learning and CNNs In the last few years, convolutional networks have been widely used in the context of object recognition. A notable system is the one from Krizhevsky *et al.* [12], which performs very well on Imagenet. In [17] the authors built upon Krizhevsky’s approach and showed that a model trained for classification on Imagenet dataset can be used for classification in a different dataset (namely Pascal VOC) by taking into account the bounding box information. In a recent yet unpublished work [18], the authors adapt an Imagenet-trained CNN to the Pascal VOC classification task. The network is fine-tuned on Pascal VOC, by modifying the cost function to include a final max-pooling layer. Similar to our aggregation layer, the max-pooling outputs a single image-level score for each of the classes. In contrast, (1) we not limit ourselves to the Pascal VOC classification problem, but tackle the more challenging problem of segmentation and (2) our model is not fine-tuned on Pascal VOC.

In the same spirit, Girshick *et al.* [10] showed that a model trained for classification on Imagenet can be adapted for object detection on Pascal VOC. The authors proposed to combine bottom-up techniques for generating detection region candidates with CNNs. The authors achieved state-
of-the-art performance in object detection. Based upon this work, [11] derived a model that detects all instances of a category in an image and, for each instance, marks the pixels that belong to it. Their model, entitled SDS (Simultaneous Detection and Segmentation), uses category-specific, top-down figure-ground predictions to refine bottom-up detection candidates.

As for these existing state-of-the-art approaches, our system leverages features learned over the ImageNet classification dataset. However, our approach differs from theirs in some important aspects. Compared to [10, 17], we consider the more challenging problem of object segmentation and do not use any information other than the image-level annotation. [18] consider a weakly supervised scenario, but only deals with the classification problem. Compared to [11], we consider only the the image-level annotation to infer the pixel-level one. In that respect, we do not use any segmentation information (our model is not refined over the segmentation data either), nor bounding box annotation during the training period. One could argue that a classification dataset like ImageNet has somewhat already cropped properly objects. While this might true for certain objects, it is not the case for many images, and in any case the “bounding box” remains quite loose.

3. Architecture

As we pointed out in Section 1, CNNs are a very flexible model which can be applied on various image processing tasks, as they alleviate the need of task-specific features. CNNs learn a hierarchy of filters, which extract higher level of representations as one goes “deeper” in the hierarchy [29]. The type of features they learn is also sufficiently general that CNNs make transfer learning (to another task) quite easy. The main drawbacks of these models, however, is that a large amount of data is necessary during training.

Since the number of image-level object labels is much bigger than pixel-level segmentation labels, it is thus natural to leverage image classification datasets for performing segmentation. In the following, we consider a problem of segmentation with a set of classes C. We assume the classification dataset contains at least the same classes. Extra classes available at classification time, but which are not in the segmentation dataset are mapped to a “background” class. This background class is essential to limit the number of false positive during segmentation.

Our architecture is a CNN, which is trained over a subset of ImageNet, to produce pixel-level labels from image-level labels. As shown in Figure 2, our CNN is quite standard, with 10 levels of convolutions and (optional) pooling. It takes as input a 400×400 RGB patch I, and outputs $|C| + 1$ planes (one per class, plus the background class) corresponding to the score of the 12-times downsampled image pixels labels. During training, an extra layer, described in Section 3.1, aggregates pixel-level labels into an image-level label. For computational power reasons, we “froze” the first layers of our CNN, to the ones of some already well-trained (over Imagenet classification data) CNN model.

We pick Overfeat [21], trained to perform object classification on the ILSVRC13 challenge. The Overfeat model generates feature maps of dimensions $1024 \times h^p \times w^p$, where h^p and w^p are functions of the size of the RGB input image, the convolution kernel sizes, convolution strides and max-pooling sizes. Keeping only the first 6 convolution layers and 2 pooling layers of Overfeat, our RGB 400×400 image patch I is transformed into a $1024 \times 29 \times 29$ feature representation.

We add four extra convolutional layers (we denote H^p for feature planes coming out from OverFeat). Each of them (but the last one Y) is followed by a pointwise rectification non-linearity (ReLU) [16]:

$$H^p = \max(0, W^p H^{p-1} + b^p), \ p \in \{7, 8, 9\},$$

$$Y = W^{10} H^9 + b^{10}. \quad (1)$$

Parameters of the p^{th} layer are denoted with (W^p, b^p). On this step, we do not use any max-pooling. A dropout regularization strategy [23] is applied on all layers. The network outputs $|C| + 1$ feature planes of dimensions $h^p \times w^p$, one for each class considered on training, plus background.

3.1. Multiple Instance Learning

The network produces one score $s^k_{i,j} = Y^k_{i,j}$ for each pixel location (i,j) from the subsampled image I, and for each class $k \in C$. Given that at training time we have only access to image classification labels, we need a way to aggregate these pixel-level scores into a single image-level classification score $s^k = \text{aggreg}_{i,j}(s^k_{i,j})$, that will then be maximized for the right class label k^\ast. Assuming an aggregation procedure $\text{aggreg}()$ is chosen, we interpret image-level class scores as class conditional probabilities by applying a softmax [3]:

$$p(k|I, \theta) = \frac{e^{s^k}}{\sum_{c \in C} e^{s^c}}, \quad (2)$$

where $\theta = \{W^p, b^p \ \forall p\}$ represents all the trainable parameters of our architecture. We then maximize the log-likelihood (with respect to θ), over all the training dataset pairs (I, k^\ast):

$$\mathcal{L}(\theta) = \sum_{(k^\ast, I)} \left[s^{k^\ast} - \log \sum_{c \in C} e^{s^c} \right]. \quad (3)$$

Training is achieved with stochastic gradient, backpropagating through the softmax, the aggregation procedure, and up the to first non-frozen layers of our network.
Aggregation The aggregation should drive the network towards correct pixel-level assignments, such that it could perform decently on segmentation tasks. An obvious aggregation would be to take the sum over all pixel positions:

\[s^k = \sum_{i,j} s_{i,j}^k \quad \forall k \in \mathcal{C}. \tag{4} \]

This would however assign the same weight on all pixels of the image during the training procedure, even to the ones which do not belong to the class label assigned to the image. Note that this aggregation method is equivalent as applying a traditional fully-connected classification CNN with a mini-batch. Indeed, each value in the \(h^n \times w^n \) output plane corresponds to the output of the CNN fed with a sub-patch centered around the correspond pixel in the input plane. At the other end, one could apply a max pooling aggregation:

\[s^k = \max_{i,j} s_{i,j}^k \quad \forall k \in \mathcal{C}. \tag{5} \]

This would encourage the model to increase the score of the pixel which is considered as the most important for image-level classification. In our experience, this type of approach does not train very well. Note that at the beginning of the training all pixels might have the same (wrong) score, but only one (selected by the max) will have its score increased at each step of the training procedure. It is thus not surprising it takes an enormous amount of time to the model to converge.

We chose instead a smooth version and convex approximation of the max function, called Log-Sum-Exp (LSE) [2]:

\[s^k = \frac{1}{r} \log \left[\frac{1}{h^n \times w^n} \sum_{i,j} \exp(r \cdot s_{i,j}^k) \right]. \tag{6} \]

The hyper-parameter \(r \) controls how smooth one wants the approximation to be: high \(r \) values implies having an effect similar to the max, very low values will have an effect similar to the score averaging. The advantage of this aggregation is that pixels having similar scores will have a similar weight in the training procedure, \(r \) controlling this notion of “similarity”.

3.2. Inference

At test time, we feed the padded and normalized RGB test image \(I \) (of dimension \(3 \times h \times w \)) to our network, where the aggregation layer has been removed. We thus obtain \(|\mathcal{C}| + 1 \) planes of pixel-level scores \(s_{i,j}^k \) (\(1 \leq i \leq h^n, 1 \leq j \leq w^n \)). For convenience (see Section 3.2.1), we transform these scores into conditional probabilities \(p_{i,j}(k|I) \) using a softmax over each location \((i,j)\).

Due to the pooling layers in the CNN, the output planes labels correspond to a sub-sampled version of the input test image. As shown in [15, 19], one can efficiently retrieve the label of all pixels of the image using a CNN model, by simply shifting the input image in both spatial directions, and forwarding it again through the network.

3.2.1 Adding Segmentation Priors

Given we do not fine-tune our model on segmentation data, we observed our approach is subject to false positive. To circumvent this issue, we consider simple post-processing techniques, namely image-level prior (ILP) and three different smoothing priors (SP), with increasing amount of information. Figure 3 summarizes the pipeline of our approach during inference time.

Image-Level Prior The model makes inference using local context based on the patch surrounding a pixel. In order to improve the overall per-pixel accuracy, we add the global context information of the scene into play. We propose the use of an image-level prior (ILP) [22, 25] based on the output feature planes. This prior, which is extracted from the trained network, is important to reduce the number of false
Figure 3: Inference Pipeline. The test image is forwarded through the segmentation network to generate a $([C] + 1) \times h \times w$ output, one plane for each class. The image-level prior is extracted from these planes and the class of each pixel is selected by taking the maximum probability for each pixel. A smoothing prior is also considered to generate a smoother segmentation output.

Positives generated by the model. As at training time, the probability $p(k|I)$ of each class $k \in C$ to be present in the scene can be computed by applying the softmax in the LSE score of each label plane. This probability is used as the image-level prior to encourage the likely categories and discourage the unlikely ones.

The ILP is integrated into the system by multiplying each conditional probability $p_{i,j}(k|I)$ by its class ILP, that is:

$$\hat{y}_{i,j}(k) = p_{i,j}(k|I) \times p(k|I),$$

for each location (i,j) and class $k \in C$.

Smoothing Prior Predicting the class of each pixel independently from its neighbors yields noisy predictions. In general, objects have smooth boundaries and well defined shapes, different from the background which tends to be amorphous regions. At test time we considered three different approaches (of increasing prior knowledge) to impose local regions with strong boundaries to be assigned to the same label:

(i) **SP-sppxl** smooths the output using standard superpixels. We followed the method proposed by [9], which largely over-segments a given image into a set of disjoint components. Prediction smoothing is achieved by simply picking the label that appears the most in each superpixel.

(ii) **SP-bb** leverages bounding box candidates to improve the smoothing. We picked the BING algorithm [5] to generate a set of 10^4 (possibly overlapping) bounding box proposals given an image, each bounding box having a score. These scores are normalized to fit the $[0,1]$ interval. Each pixel (i,j) in the image is assigned a score (of belonging to an object) by summing the score of all bounding box proposals that contains the pixel. The score at each pixel is then converted into a probability $p((i,j) \in \text{Obj})$ by normalizing the sum by the number of boxes containing the pixel. Label smoothing for each pixel (i,j) is then achieved with:

$$\hat{y}_{i,j} = \begin{cases} k, & \text{if } \max_{k \in C} \hat{y}_{i,j}^k > \delta_k, \\ 0, & \text{otherwise} \end{cases}$$

where δ_k is a per-class confidence threshold and $\hat{y}_{i,j} = 0$ means that the background class is assigned to the pixel.

(iii) **SP-seg** is a smoothing prior which has been trained with class-independent segmentation labels. We consider the Multiscale Combinatorial Grouping (MCG) algorithm [1], which generates a series of overlapping object candidates with a corresponding score. Pixel label smoothing is then achieved in the same way as in SP-bb.

The smoothing prior improves our algorithm in two ways: (i) it forces pixels with low probability of being part of an object to be labeled as background and (ii) it guarantees local label consistency. While the former reduces the number of false positives, the latter increases the number of true positives. We will see in Section 4 that (as it can be expected) more complex smoothing priors improves performance accuracy.

4. Experiments

Given that our model uses only weak supervision labels (class labels), and is never trained with segmentation data, we compare our approach with current state-of-the-art weakly supervised segmentation systems. We also compare it against state-of-the-art fully supervised segmentation systems, to demonstrate that weakly supervised segmentation is a promising and viable solution.

4.1. Datasets

We considered the Pascal VOC dataset as a benchmark for segmentation. This dataset includes 20 different classes,
and represents a particular challenge as an object segmentation task. The objects from these classes can appear in many different poses, possibly highly occluded, and also possess a very large intra-class variation. The dataset was only used for testing purposes, not for training.

We created a large classification training set from the Imagenet dataset containing images of each of the twenty classes and also an extra class labeled as background – set of images in which none of the classes appear. We consider all the sub-classes located below each of the twenty classes in the full Imagenet tree, for a total of around 700,000 samples. For the background, we chose a subset of Imagenet consisting of a total of around 60,000 images not containing any of the twenty classes\(^1\). To increase the size of the training set, jitter (horizontal flip, rotation, scaling, brightness and contrast modification) was randomly added to each occurrence of an image during the training procedure. Each image was then normalized for each RGB channel. No other preprocessing was done during training.

4.2. Experimental Setup

Each training sample consists of a central patch of size 400 × 400 randomly extracted from a deformed image in the training set. If the image dimensions are smaller than 400 × 400, it is rescaled such that its smaller dimension is of size 400.

The first layers of our network are extracted (and “frozen”) from the public available Overfeat\(^2\) model. In all our experiments, we use the slow Overfeat model, as described in [21]. With the 400 × 400 RGB input image, the Overfeat feature extractor outputs 1024 feature maps of dimension 29 × 29. As detailed in Section 3, these feature maps are then fed into 4 additional convolutional layers followed by ReLU non-linearity. A dropout procedure with a rate of 0.5 is applied on each layer. The whole network has a total of around 20 million parameters. Table 1 details the architecture used in our experiments.

\(^1\)60K background images might look surprisingly not large, but we found not easy to pick images where none of the 20 Pascal VOC classes were not present.

\(^2\)http://cilvr.nyu.edu/doku.php?id=software:overfeat:start

<table>
<thead>
<tr>
<th>Conv. Layer</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td># channels</td>
<td>1024</td>
<td>768</td>
<td>512</td>
<td>21</td>
</tr>
<tr>
<td>Filter Size</td>
<td>3 × 3</td>
<td>3 × 3</td>
<td>3 × 3</td>
<td>3 × 3</td>
</tr>
<tr>
<td>Input Size</td>
<td>29 × 29</td>
<td>27 × 27</td>
<td>25 × 25</td>
<td>23 × 23</td>
</tr>
</tbody>
</table>

Table 1: Architecture Design. Architecture of the segmenter network used in our experiments.

4.3. Experimental Results

Compared to weakly supervised models We compare the proposed algorithm with three state-of-the-art approaches in weakly supervised segmentation scenario: (i) Multi-Image Model (MIM) [26], (ii) a variant, Generalized Multi-Image Model (GMIM) [27] and (iii) the most recent Probabilistic Graphlet Cut (PGC) [30, 31]. Note that there are variations in the experimental setup on the experiments. The compared models use Pascal VOC for weak supervision while we use Imagenet. Also, (iii) considers

<table>
<thead>
<tr>
<th>Model</th>
<th>VOC2008</th>
<th>VOC2009</th>
<th>VOC2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIM</td>
<td>8.11%</td>
<td>38.27%</td>
<td>28.43%</td>
</tr>
<tr>
<td>GMIM</td>
<td>9.24%</td>
<td>39.16%</td>
<td>29.71%</td>
</tr>
<tr>
<td>PGC</td>
<td>30.12%</td>
<td>43.37%</td>
<td>32.14%</td>
</tr>
<tr>
<td>aggreg-max</td>
<td>44.31%</td>
<td>45.46%</td>
<td>45.88%</td>
</tr>
<tr>
<td>aggreg-sum</td>
<td>47.54%</td>
<td>50.01%</td>
<td>50.11%</td>
</tr>
<tr>
<td>aggreg-LSE</td>
<td>56.25%</td>
<td>57.01%</td>
<td>56.12%</td>
</tr>
</tbody>
</table>

Table 2: Comparison with weakly supervised. Averaged per-class accuracy of weakly supervised models and ours for different Pascal VOC datasets. We consider three different aggregation layers.

The final convolution layer outputs a 21 feature maps of dimension 21 × 21. These feature maps are passed through the aggregation layer (in the case of LSE, we consider \(r = 5\)), which outputs 21 scores, one for each class. These scores are then transformed into posterior probabilities through a softmax layer.

Design architecture and hyper-parameters were chosen considering the validation data of the Pascal VOC 2012 segmentation dataset. We considered a learning rate \(\lambda = 0.001\) which decreases by a factor of 0.8 for every 5 million examples seen by the model. We trained our model using stochastic gradient descent with a batch size of 16 examples, momentum 0.9 and weight decay of 0.00005.

The optimal class confidence thresholds \(\delta_k\) for smoothing priors (see Section 3.2.1) were chosen through a grid search. The AP changes in function of the confidence threshold for each class. The different values for the threshold is due to the variability of each class in the training data and how their statistics approach the Pascal VOC images statistics.

Our network takes about a week to train on a Nvidia GeForce Titan GPU with 6GB of memory. All the experiments were conducted using Torch\(^3\).

\(^3\)http://torch.ch
additional labels on the data. In our training framework, the Pascal VOC dataset was used only for selecting the thresholds on the class priors. Our system learns features that are independent of the Pascal VOC data distribution and would a priori yields similar results in other datasets.

Table 2 reports the results of the three compared models and our approach. In our experiments, we consider the SP-sppxl smoothing prior, which does not take into account any segmentation or bounding box information. We consider the three aggregation layers described in Section 3.1. This result empirically demonstrates our choice of the Log-Sum-Exp layer.

The results for the compared models reported on this table are from Zhang et al. [30]. We use the same metric and evaluate on the same datasets (Pascal VOC 2008, 2009 and 2010) as the authors. The metric used, average per-class accuracy, is defined by the ratio of correct classified pixels of each class. We show that our model achieves significantly better results than the previous state-of-the-art weakly supervised algorithms, with an increase from 30% to 90% in average per-class accuracy.

Compared to fully supervised models In Table 3, we compare the performance of our model against the best performers in Pascal VOC 2012 segmentation competition: Second Order Pooling (O2P) [4], DivMBest [28] and Simultaneous Detection and Segmentation (SDS) [11]. Average precision metric\(^4\), as defined by the Pascal VOC competition, is reported. We show results using all three smoothing priors (as described in 3.2.1). The performance of our model increases as we consider more complex priors.

We reach near state-of-the-art performance for several classes (even with the simplest smoothing prior SP-sppxl, which is object and segmentation agnostic) while some other classes perform worse. This is not really surprising, given that the statistics of the images for some classes (e.g., dog, cat, cow) are closer in the two different datasets than for some other classes (e.g., bird, person). The results on the specific Pascal VOC challenge could be improved by “cheating” and considering training images that are more similar to those represented on the test data (e.g., instead of choosing all bird images from Imagenet, we could have chosen the bird breeds that are similar to the ones presented on Pascal VOC).

Effect of Priors Table 4 shows the average precision of each class on the Pascal VOC 2012 validation set considering the inference assuming no prior was used (base), only the image-level prior (base+ILP) and the image-level together with different smoothing priors (base+ILP+SP-sppxl, base+ILP+SP-bb, base+ILP+SP-seg). Table 4 illustrates inference in Pascal VOC images assuming different steps of inference. Priors have a huge importance to reduce false positives, and smooth predictions.

5. Conclusion

We proposed an innovative framework to segment objects with weakly supervision only. Our algorithm is able to distinguish, at a pixel level, the differences between different classes, assuming only few simple prior knowledge about segmentation. This is an interesting result as one might circumvent the necessity of using the very costly segmentation datasets and use only image-level annotations. Our approach surpasses by a large margin previous state-of-the-art models for weakly supervised segmentation. We also achieve competitive performance (at least for several classes) compared to state-of-the-art fully supervised segmentation systems.

\(^4\)AP = \(\frac{\text{True Positive}}{\text{True Positive} + \text{False Positive} + \text{False Negative}}\)
Figure 4: **Inference results.** For each test image (left), we show the output assuming the image-level prior (center) and image-level and \textit{SP-seg} smoothing prior (right).

Table 4: **Effect of priors on segmentation.** Per class average precision on Pascal VOC 2012 validation set. We consider the inference with no priors (base), with image-level prior (base+ILP) and different smoothing priors (base+ILP+SP-\textit{sppxl}, base+ILP+SP-\textit{bb}, base+ILP+SP-\textit{seg}).

<table>
<thead>
<tr>
<th></th>
<th>gold</th>
<th>aero</th>
<th>bike</th>
<th>bird</th>
<th>boat</th>
<th>bottle</th>
<th>bus</th>
<th>cat</th>
<th>chair</th>
<th>cow</th>
<th>dog</th>
<th>horse</th>
<th>mbike</th>
<th>person</th>
<th>plant</th>
<th>sheep</th>
<th>sofa</th>
<th>train</th>
<th>tv</th>
<th>mAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>37.0</td>
<td>10.4</td>
<td>12.4</td>
<td>10.8</td>
<td>5.3</td>
<td>5.7</td>
<td>25.2</td>
<td>21.1</td>
<td>25.15</td>
<td>4.8</td>
<td>21.5</td>
<td>8.6</td>
<td>29.1</td>
<td>25.1</td>
<td>23.6</td>
<td>25.5</td>
<td>12.0</td>
<td>28.4</td>
<td>8.9</td>
<td>22.0</td>
</tr>
<tr>
<td>base+ILP</td>
<td>73.2</td>
<td>25.4</td>
<td>18.2</td>
<td>22.7</td>
<td>21.5</td>
<td>28.6</td>
<td>39.5</td>
<td>44.7</td>
<td>46.6</td>
<td>11.9</td>
<td>40.4</td>
<td>11.8</td>
<td>45.6</td>
<td>40.1</td>
<td>35.5</td>
<td>35.2</td>
<td>20.8</td>
<td>41.7</td>
<td>17.0</td>
<td>34.7</td>
</tr>
<tr>
<td>base+ILP+SP-\textit{sppxl}</td>
<td>77.2</td>
<td>37.3</td>
<td>18.4</td>
<td>25.4</td>
<td>30.2</td>
<td>41.6</td>
<td>48.1</td>
<td>50.7</td>
<td>53.9</td>
<td>12.7</td>
<td>45.7</td>
<td>14.6</td>
<td>50.9</td>
<td>44.1</td>
<td>39.2</td>
<td>37.9</td>
<td>28.3</td>
<td>44.0</td>
<td>19.6</td>
<td>37.6</td>
</tr>
<tr>
<td>base+ILP+SP-\textit{bb}</td>
<td>78.6</td>
<td>46.9</td>
<td>18.6</td>
<td>27.9</td>
<td>30.7</td>
<td>44.0</td>
<td>49.6</td>
<td>49.8</td>
<td>51.6</td>
<td>11.6</td>
<td>44.7</td>
<td>14.6</td>
<td>50.4</td>
<td>44.7</td>
<td>40.8</td>
<td>38.5</td>
<td>26.0</td>
<td>45.0</td>
<td>20.5</td>
<td>36.9</td>
</tr>
<tr>
<td>base+ILP+SP-\textit{seg}</td>
<td>79.6</td>
<td>50.2</td>
<td>21.6</td>
<td>40.6</td>
<td>34.9</td>
<td>40.5</td>
<td>45.9</td>
<td>51.5</td>
<td>60.6</td>
<td>12.6</td>
<td>51.2</td>
<td>11.6</td>
<td>56.8</td>
<td>52.9</td>
<td>44.8</td>
<td>42.7</td>
<td>31.2</td>
<td>55.4</td>
<td>21.5</td>
<td>38.8</td>
</tr>
</tbody>
</table>

Acknowledgments

The authors thank the reviewers for their useful feedback and comments. This work was supported by Idiap Research Institute.

References

