
Understanding image representations

by measuring their equivariance and equivalence

Karel Lenc Andrea Vedaldi

Department of Engineering Science, University of Oxford

Abstract

Despite the importance of image representations such as

histograms of oriented gradients and deep Convolutional

Neural Networks (CNN), our theoretical understanding of

them remains limited. Aiming at filling this gap, we inves-

tigate three key mathematical properties of representations:

equivariance, invariance, and equivalence. Equivariance

studies how transformations of the input image are encoded

by the representation, invariance being a special case where

a transformation has no effect. Equivalence studies whether

two representations, for example two different parametrisa-

tions of a CNN, capture the same visual information or not.

A number of methods to establish these properties empir-

ically are proposed, including introducing transformation

and stitching layers in CNNs. These methods are then ap-

plied to popular representations to reveal insightful aspects

of their structure, including clarifying at which layers in

a CNN certain geometric invariances are achieved. While

the focus of the paper is theoretical, direct applications to

structured-output regression are demonstrated too.

1. Introduction

Image representations have been a key focus of the re-

search in computer vision for at least two decades. Notable

examples include textons [11], histogram of oriented gradi-

ents (SIFT [14] and HOG [4]), bag of visual words [3][24],

sparse [32] and local coding [31], super vector coding [35],

VLAD [9], Fisher Vectors [17], and the latest generation

of deep convolutional networks [10, 21, 33]. However, de-

spite their popularity, our theoretical understanding of rep-

resentations remains limited. It is generally believed that

a good representation should combine invariance and dis-

criminability, but this characterisation is rather vague; for

example, it is often unclear what invariances are contained

in a representation and how they are obtained.

In this work, we propose a new approach to study image

representations. We look at a representation φ as an ab-

stract function mapping an image x to a vector φ(x) ∈ R
d

and we empirically establish key mathematical properties

Conv1 Conv2

O
ri

g
.

H
F

li
p

V
F

li
p

R
o

t9
0

Figure 1: Equivariant transformation of CNN filters. Top:

Conv1 and Conv2 filters of a convolutional neural network visu-

alised with the method of [23]. Other rows: geometrically warped

filters reconstructed from an equivariant transformation of the net-

work output learned using the method of Sect. 2 for Horizontal

flip, Vertical flip and Rotation 90◦.

of this function. We focus in particular on three such prop-

erties (Sect. 2). The first one is equivariance, which looks

at how the representation changes upon transformations of

the input image. We demonstrate that most representations,

including HOG and most of the layers in deep neural net-

works, change in a easily predictable manner with the input

(Fig. 1). We show that such equivariant transformations can

be learned empirically from data (Sect. 2.1) and that, im-

portantly, they amount to simple linear transformations of

the representation output (Sect. 3.1 and 3.2). In the case

of convolutional networks, we obtain this by introducing

and learning a new transformation layer. By analysing the

learned equivariant transformations we are also able to find

and characterise the invariances of the representation, our

second property. This allows us to quantify invariance and

show how it builds up with depth in deep models.

The third property, equivalence, looks at whether the in-

formation captured by heterogeneous representations is in

fact the same. CNN models, in particular, contain millions

of redundant parameters [5] that, due to non-convex opti-

misation in learning, may differ even when retrained on the

same data. The question then is whether the resulting differ-

ences are genuine or just apparent. To answer this question

we learn stitching layers that allow swapping parts of dif-

ferent networks. Equivalence is then obtained if the result-

1



ing “Franken-CNNs” perform as well as the original ones

(Sect. 3.3).

The rest of the paper is organised as follows. Sect. 2 dis-

cussed methods to learn empirically representation equiv-

ariance, invariance, and equivalence. Sect. 3.1 and 3.2

present experiments on shallow and deep representation

equivariance respectively, and Sect. 3.3 on representation

equivalence. Sect. 3.4 demonstrates a practical application

of equivariant representations to structured-output regres-

sion. Finally, Sect. 4 summarises our findings.

Related work. The problem of designing invariant or

equivariant features has been widely explored in computer

vision. For example, a popular strategy is to extract in-

variant local descriptors [13] on top of equivariant (also

called co-variant) detectors [12, 13, 15]. Various authors

have also looked at incorporating equivariance explicitly in

the representations [20, 26]. Deep CNNs, including the

one of Krizhevsky et al. [10] and related state-of-the-art ar-

chitecutres, are deemed to build an increasing amount of

invariance layer after layer. This is even more explicit in

the scattering transform of Sifre and Mallat [22].

In all these examples, invariance is a design aim that

may or may not be achieved by a given architecture. By

contrast, our aim is not to propose yet another mechanism

to learn invariances, but rather a method to systematically

tease out invariance, equivariance, and other properties that

a given representation may have. To the best of our knowl-

edge, there is very limited work in conducting this type of

analysis. Perhaps the contributions that come closer study

only invariances of neural networks to specific image trans-

formations [8, 33]. However, we believe to be the first to

functionally characterise and quantify these properties in a

systematic manner, as well as being the first to investigate

the equivalence of different representations.

2. Notable properties of representations

Image representations such as HOG, SIFT, or CNNs can

be thought of as functions φ mapping an image x ∈ X
to a vector φ(x) ∈ R

d. This section describes three no-

table properties of representations — equivariance, invari-

ance, and equivalence — and gives algorithms to establish

them empirically.

Equivariance. A representation φ is equivariant with a

transformation g of the input image if the transformation

can be transferred to the representation output. Formally,

equivariance with g is obtained when there exists a map

Mg : Rd → R
d such that:

∀x ∈ X : φ(gx) ≈ Mgφ(x). (1)

A sufficient condition for the existence of Mg is that the

representation φ is invertible, because in this case Mg = φ◦
g◦φ−1. It is known that representations such as HOG are at

least approximately invertible [30]. Hence it is not just the

existence, but also the structure of the mapping Mg that is of

interest. In particular, Mg should be simple, for example a

linear function. This is important because the representation

is often used in simple predictors such as linear classifiers,

or in the case of CNNs, is further processed by linear filters.

Furthermore, by requiring the same mapping Mg to work

for any input image, intrinsic geometric properties of the

representations are captured.

The nature of the transformation g is in principle arbi-

trary; in practice, in this paper we will focus on geometric

transformations such as affine warps and flips of the image.

Invariance. Invariance is a special case of equivariance

obtained when Mg (or a subset of Mg) acts as the sim-

plest possible transformation, i.e. the identity map. Invari-

ance is often regarded as a key property of representations

since one of the goals of computer vision is to establish in-

variant properties of images. For example, the category of

the objects contained in an image is invariant to viewpoint

changes. By studying invariance systematically, it is possi-

ble to clarify if and where the representation achieves it.

Equivalence. While equi/invariance look at how a repre-

sentation is affected by transformations of the image, equiv-

alence studies the relationship between different representa-

tions. Two heterogenous representations φ and φ′ are equiv-

alent if there exist a map Eφ→φ′ such that

∀x : φ′(x) ≈ Eφ→φ′φ(x).

If φ is invertible, then Eφ→φ′ = φ′ ◦ φ−1 satisfies this con-

dition; hence, as for the mapping Mg before, the interest

is not just in the existence but also in the structure of the

mapping Eφ→φ′ .

Example: equivariant HOG transformations. Let φ de-

note the HOG [4] feature extractor. In this case φ(x) can

be interpreted as a H×W vector field of of D-dimensional

feature vectors or cells. If g denotes image flipping around

the vertical axis, then φ(x) and φ(gx) are related by a

well defined permutation of the feature components. This

permutation swaps the HOG cells in the horizontal direc-

tion and, within each HOG cell, swaps the components

corresponding to symmetric orientations of the gradient.

Hence the mapping Mg is a permutation and one has ex-

actly φ(gx) = Mgφ(x). The same is true for horizontal

flips and 180◦ rotations, and, approximately,1 for 90◦ rota-

tions. HOG implementations [28] do in fact explicitly pro-

vide such permutations.

Example: translation equivariance in convolutional rep-

resentations. HOG, densely-computed SIFT (DSIFT), and

convolutional networks are examples of convolutional rep-

resentations in the sense that they are obtained from local

and translation invariant operators. Barring boundary and

1Most HOG implementations use 9 orientation bins, breaking rotational

symmetry.



sampling effects, any convolutional representation is equiv-

ariant to translations of the input image as this result in a

translation of the feature field.

2.1. Learning properties with structured sparsity

When studying equivariance and equivalence, the trans-

formation Mg and Eφ→φ′ are usually not available in closed

form and must be estimated from data. This section dis-

cusses a number of algorithms to do so. The discussion fo-

cuses on equivariant transformations Mg , but dealing with

equivalence transformations Eφ→φ′ is similar.

Given a representation φ and a transformation g, the goal

is to find a mapping Mg satisfying (1). In the simplest case

Mg = (Ag,bg), Ag ∈ R
d×d, bg ∈ R

d is an affine trans-

formation φ(gx) ≈ Agφ(x) + bg . This choice is not as

restrictive as it may initially seem: in the examples above

Mg is a permutation, and hence can be implemented by a

corresponding permutation matrix Ag .

Estimating (Ag,bg) is naturally formulated as an empir-

ical risk minimisation problem. Given data x sampled from

a set of natural images, learning amounts to optimising the

regularised reconstruction error

E(Ag,bg) = λR(Ag) +
1

n

n
∑

i=1

ℓ(φ(gxi), Agφ(xi) + bg),

(2)

where R is a regulariser and ℓ a regression loss whose

choices are discussed below. The objective (2) can be

adapted to the equivalence problem by replacing φ(gx) by

φ′(x).

Regularisation. The choice of regulariser is particularly

important as Ag ∈ R
d×d has a Ω(d2) parameters. Since

d can be quite large (for example, in HOG one has d =
DWH), regularisation is essential. The standard l2 regu-

lariser ‖Ag‖
2

F was found to be inadequate; instead, sparsity-

inducting priors work much better for this problem as they

encourage Ag to be similar to a permutation matrix.

We consider two such sparsity-inducing regularisers.

The first regulariser allows Ag to contain a fixed number

k of non-zero entries for each row:

Rk(A) =

{

+∞, ∃i : ‖Ai,:‖0 > k,

‖A‖2F , otherwise.
(3)

Regularising rows independently reflects the fact that each

row is a predictor of a particular component of φ(gx).
The second sparsity-inducing regulariser is similar, but

exploits the convolutional structure of many representa-

tions. Convolutional features are obtained from translation

invariant and local operators (non-linear filters), such that

the representation φ(x) can be interpreted as a feature field

with spatial indexes (u, v) and channel index t. Due to

the locality of the representation, the component (u, v, t) of

φ(gx) should be predictable from a corresponding neigh-

Figure 2: Structured sparsity. Predicting equivariant features

at location (u, v) uses a corresponding small neighbourhood of

features Ωg,m(u, v).

bourhood Ωg,m(u, v) of features in the feature field φ(x)
(Fig. 2). This results in a particular sparsity structure for Ag

that can be imposed by the regulariser

Rg,m(A) =







+∞, ∃t, t′, (u, v), (u′, v′) 6∈
Ωg,m(u, v) : Auvt,u′v′t′ 6= 0

‖A‖2F , otherwise,

(4)

where m denotes the neighbour size and indexes of A have

been identified with triplets (u, v, t). The neighbourhood

itself is defined as the m × m input feature sites closer to

the back-projection of the output feature (u, v).2 In practice

(3) and (4) will be combined in order to limit the number of

regression coefficients activated in each neighbourhood.

Loss. As empirically shown in Sect. 3.2, the choice of loss ℓ

is important. For HOG and similar histogram-like features,

the l2, Hellinger’s, or χ2 distances work well. However, for

more sophisticated features such as deep layers in CNNs, it

was found that target-oriented losses can perform substan-

tially better in certain cases. To understand the concept of

target-oriented loss, consider a CNN φ trained end-to-end

on a categorisation problem such as the ILSVRC 2012 im-

age classification task (ILSVRC12) [19]. A common ap-

proach [1, 6, 18] is to use the first several layers φ1 of

φ = φ2 ◦ φ1 as a general-purpose feature extractor. This

suggests an alternative objective that preserves the quality

of the equivariant features φ1 in the original problem:

E(Ag,bg) = λR(Ag)+

1

n

n
∑

i=1

ℓ(yi, φ2 ◦ (Ag,bg) ◦ φ1(g
−1xi)). (5)

Here yi denotes the ground truth label of image xi and ℓ is

the same classification loss used to train φ. Note that in this

2Formally, denote by (x, y) the coordinates of a pixel in the input im-

age x and by p : (u, v) 7→ (x, y) the affine function mapping the feature

index (u, v) to the centre (x, y) of the corresponding receptive field (mea-

surement region) in the input image. Denote by Nk(u, v) the k feature

sites (u′, v′) that are closer to (u, v) (the latter can have fractional coor-

dinates) and use this to define the neighbourhood of the back-transformed

site (u, v) as Ωg,k(u, v) = Nk(p
−1 ◦ g−1 ◦ p(u, v)).



case (Ag,bg) is learned to compensate for the image trans-

formation, which therefore is set to g−1. This formulation

is not restricted to CNNs, but applies to any representation

φ1 given a target classification or regression task and a cor-

responding pre-trained predictor φ2 for it.

2.2. Equivariance in CNNs: transformation layers

The method of Sect. 2.1 can be substantially refined for

the case of convolutional representations and certain trans-

formation classes. The structured sparsity regulariser (4)

encourages Ag to match the convolutional structure of the

representation. If g is an affine transformation more can

be said: up to sampling artefacts, the equivariant transfor-

mation Mg is local and translation invariant, i.e. convolu-

tional. The reason is that an affine g acts uniformly on the

image domain3 so that the same is true for Mg . This has

two key advantages: it reduces dramatically the number of

parameters to learn and it can be implemented efficiently as

an additional layer of a CNN. Such a transformation layer

consists of a permutation layer that maps input feature sites

(u, v, t) to output feature sites (g(u, v), t) followed by a

bank of D linear filters, each of dimension m×m×D. Here

m corresponds to the size of the neighbourhood Ωg,m(u, v)
in Sect. 2.1. Intuitively, the main purpose of these filters is

to permute and interpolate feature channels.

Note that g(u, v) does not, in general, fall at integer co-

ordinates. In our case, the permutation layer assigns g(u, v)
to the closest lattice site by rounding but it can be also dis-

tributed to the nearest 2× 2 sites by using bilinear interpo-

lation.4

2.3. Equivalence in CNNs: stitching layers

The previous section looked at how equivariance can be

studied more efficiently in CNNs; this section does the same

for equivalence. Following the task-oriented loss formula-

tion of Sect. 2.1, consider two representations φ1 and φ′
1

and a predictor φ′
2

learned to solve a reference task using

the representation φ′
1
. For example, these could be obtained

by decomposing two CNNs φ = φ2 ◦ φ1 and φ′ = φ′
2
◦ φ′

1

trained on the ImageNet ILSVCR data (but φ1 could also be

learned on a different problem or be handcrafted).

The goal is to find a mapping Eφ1→φ′

1
such that φ′

1
≈

Eφ1→φ′

1
φ1. This map can be seen as a “stitching transfor-

mation” allowing φ′
2
◦ Eφ1→φ′

1
◦ φ1 to perform as well as

φ′
2
◦ φ′

1
on the original classification task. Hence this trans-

formation can be learned by minimizing the loss ℓ(yi, φ
′
2
◦

Eφ1→φ′

1
◦ φ1(xi)) in an objective similar to (5). In a CNN

the map Eφ1→φ′

1
can be interpreted as a stitching layer. Fur-

thermore, given the convolutional structure of the represen-

3This means that g(x+ u, y + v) = g(x, y) + (u′, v′).
4Better accuracy could be obtained by using image warping techniques.

For example, sub-pixel accuracy can be obtained by upsampling in the per-

mutation layer and then allowing the transformation filter to be translation

variant (or, equivalently, by introducing a suitable non-linear mapping be-

tween the permutation layer and transformation filters).

0 30 60 90 120 150 180
0

0.2

0.4

0.6

0.8

1

Rotation [◦]

A
P

−0.5 −0.2 0 0.2 0.5
0

0.2

0.4

0.6

0.8

1

Iso-Scale 2x[-]

None

LS m = 3

RR λ = 1 m = 3

FS k = 5 m = 3

Figure 4: Equivariant classification using HOG features. Clas-

sification performance of a HOG-based classifier trained to dis-

criminate dog and cat heads as the test images are gradually ro-

tated and scaled and the effect compensated by equivariant maps

learned using LS, RR, and FS.

HOG size

k m 3× 3 5× 5 7× 7 9× 9
5 ∞ 1.67 12.21 82.49 281.18

5 1 0.97 2.06 3.47 5.91

5 3 1.23 3.90 7.81 13.04

5 5 1.83 7.46 17.96 30.93

Table 1: Regression cost. Cost (in seconds) of learning the equiv-

ariant regressors of Fig. 4. As the size of the HOG arrays becomes

larger, the optimisation cost increases significantly unless struc-

tured sparsity is considered by setting m to a small number.

tation, this layer can be implemented as a bank of linear

filters. No permutation layer is needed in this case, but it

may be necessary to down/upsample the features if the spa-

tial dimensions of φ1 and φ′
1

do not match.

3. Experiments

The experiments begin in Sect. 3.1 by studying the prob-

lem of learning equivariant mappings for shallow repre-

sentations. Sect. 3.2 and 3.3 move on to deep convolu-

tional representations, examining equivariance and equiv-

alence respectively. In Sect. 3.4 equivariant mappings are

applied to structure-output regression.

3.1. Equivariance in shallow representations

This section applies the methods of Sect. 2.1 to learn

equivariant maps for shallow representations, and HOG fea-

tures in particular. The first method to be evaluated is sparse

regression, followed by structured sparsity. Finally, the

learned equivariant maps are validated in example recog-

nition tasks.

Sparse regression. The first experiment (Fig. 3) explores

variants of the sparse regression formulation (2). The goal

is to learn a mapping Mg = (Ag,bg) that predicts the effect

of selected image transformations g on the HOG features

of an image. For each transformation, the mapping Mg is

learned from 1,000 training images by minimising the reg-

ularised empirical risk (5). The performance is measured

as the average Hellinger’s distance ‖φ(gx)−Mgφ(x)‖Hell.



0 30 60 90 120 150 180
0

0.4

0.8

1.2

1.6
H

el
l.

d
is

t.
p

er
ce

ll

(a) Rotation [◦]

−0.5 −0.2 0 0.2 0.5
0

0.4

0.8

1.2

1.6

(b) Iso-scale 2x

1 3 5 7 9
0

0.4

0.8

1.2

1.6

(c) Neighbourhood size m [cells]

None

LS

RR λ = 1

RR λ = 0.1

FS k = 1

FS k = 5

FS k = 25

Figure 3: Regression methods. The figure reports the HOG feature reconstruction error (average per-cell Hellinger distance) achieved by

the learned equivariant mapping Mg by setting g to different image rotations (3a) and scalings (3b) for different learning strategies (see

text). No other constraint is imposed on Ag . In the right panel (3c) the experiment is repeated for the 45◦ rotation, but this time imposing

structured sparsity on Ag for different values of the neighbourhood size m.

x φ−1φ(x) φ−1φ(gx) φ−1Mgφ(x)

g
=

R
o

t
4
5
◦

g
=

S
c
2
−

1 2
g
=

S
c
2

1 2

Figure 5: Qualitative evaluation of equivariant HOG. Visual-

isation of the features φ(x), φ(gx) and Mgφ(x) using the φ−1

HOGgle [30] HOG inverse. Mg is learned using FS with k = 5
and m = 3 and g is set to a rotation by 45◦ and up/down-scaling

by
√

2 respectively. The dashed boxes show the support of the

reconstructed features.

on a test set of further 1,000 images.5 Images are randomly

sampled from the ILSVRC12 train and validation datasets

respectively.

This experiment focuses on predicting a small array of

5×5 of HOG cells, which allows to train full regression ma-

trices even with naive baseline regression algorithms. Fur-

thermore, the 5 × 5 array is predicted from a larger 9 × 9
input array to avoid boundary issues when images are ro-

tated or rescaled. Both these restrictions will be relaxed

later. Fig. 3 compares the following methods to learn Mg:

choosing the identity transformation Mg = 1, learning Mg

by optimising the objective (2) without regularisation (Least

Square – LS), with the Frobenius norm regulariser for dif-

ferent values of λ (Ridge Regression – RR), and with the

sparsity-inducing regulariser (3) (Forward-Selection – FS,

using [25]) for a different number k of regression coeffi-

cients per output dimension.

As can be seen in Fig. 3a, 3b, LS overfits badly, which is

not surprising given that Mg contains 1M parameters even

for these small HOG arrays. RR performs significantly bet-

ter, but it is easily outperformed by FS, confirming the very

sparse nature of the solution (e.g. for k = 5 just 0.2% of the

1M coefficients are non-zero). The best result is obtained

5The Hellinger’s distance (
∑

i(
√
xi − √

yi)
2)1/2 is preferred to the

Euclidean distance as the HOG features are histograms.

by FS with k = 5. As expected, the prediction error of FS

is zero for a 180◦ rotation as this transformation is exact

(Sect. 2), but note that LS and RR fail to recover it. As one

might expect, errors are smaller for transformations close to

identity, although in the case of FS the error remains small

throughout the range.

Structured sparse regression. The conclusion of the pre-

vious experiments is that sparsity is essential to achieve

good generalisation. However, learning Mg directly, e.g. by

forward-selection or by l1 regularisation, can be quite ex-

pensive even if the solution is ultimately sparse. Next, we

evaluate using the structured sparsity regulariser (4), where

each output feature is predicted from a prespecified neigh-

bourhood of input features dependent on the image trans-

formation g. Fig. 3c repeats the experiment of Fig. 3a for

a 45◦ rotation, but this time limited to neighbourhoods of

m×m input HOG cells. To be able to span larger intervals

of m, an array of 15 × 15 HOG cells is used. Since spatial

sparsity is now imposed a-priori, LS, RR, and FS perform

nearly equivalently for m ≤ 3, with the best result achieved

by FS with k = 5 and a small neighbourhood of m = 3
cells. There is also a significant computational advantage

in structured sparsity (Tab. 1) as it limits the effective size

of the regression problems to be solved. We conclude that

structured sparsity is highly preferable over generic sparsity.

Regression quality. So far results have been given in

term of the reconstruction error of the features; this para-

graph relates this measure to the practical performance of

the learned mappings. The first experiment is qualitative

and uses the HOGgle technique [30] to visualise the trans-

formed features. As shown in Fig. 5, the visualisations of

φ(gx) and Mgφ(x) are indeed nearly identical, validating

the mapping Mg . The second experiment (Fig. 4) evaluates

instead the performance of transformed HOG features quan-

titatively, in a classification problem. To this end, an SVM

classifier 〈w, φ(x)〉 is trained to discriminate between dog

and cat faces using the data of [16] (using 15 × 15 HOG

templates, 400 training and 1,000 testing images evenly

split among cats and dogs). Then a progressively larger

rotation or scaling g−1 is applied to the input image and

the effect compensated by Mg , computing the SVM score

as 〈w,Mgφ(g
−1x)〉 (equivalently the model is transformed

by M⊤
g ). The performance of the compensated classifier is

nearly identical to the original classifier for all angles and



Orig. FS k = 1 m = 1 FS k = 1 m = 5 FS k = 1 m = 25 Joint OPT

VFlip TF FS k = 3 m = 1 FS k = 3 m = 5 FS k = 3 m = 25 ‖x‖2

102 103 104 105 106

0.5

0.6

0.7

0.8

T
o

p
-1

C
la

ss
if

.
E

R
R

102 103 104 105 106 102 103 104 105 106 102 103 104 105 106 102 103 104 105 106

102 103 104 105 106
0.2

0.6

1

1.4

l2
d

is
t.
[1
0
3
]

(a) Conv1

102 103 104 105 106

(b) Conv2

102 103 104 105 106

(c) Conv3

102 103 104 105 106

(d) Conv4

102 103 104 105 106

(e) Conv5

Figure 6: Comparison of regression methods for a CNN. Regression error of an equivariant map Mg learned for vertical image flips for

different layers of a CNN. FS (gray and brown lines) and the task-oriented objective (purple) are evaluated against the number of training

samples. Both the task loss (top) and the feature reconstruction error (bottom) are reported. In the task loss, the green dashed line is the

performance of the original classifier on the original images (best possible performance) and the red dashed line the performance of this

classifier on the transformed images (worst case). In the second row, the l2 reconstruction error per cell is visualised together with the

baseline - average l2 distance of the representation to zero vector.

0 15 30 45 60 75 90

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Rotation [◦]

C
la

ss
if

.
E

rr
o

r

None

Conv1

Conv2

Conv3

Conv4

Conv5

Figure 7: Learning equivariant CNN mappings for image ro-

tations. The setting is similar to Fig. 6, extended to several ro-

tations g but limted to the task-oriented regression method. The

solid and dashed lines report respectively the top1 and top5 errors

on the ILSVRC12 validation set.

scales, whereas the uncompensated classifier 〈w, φ(g−1x)〉
rapidly fails, particularly for rotation. We conclude that

equivariant transformations encode visual information ef-

fectively.

3.2. Equivariance in deep representations

The previous section validated learning equivariant

transformations in shallow representations such as HOG.

This section extends these results to deep representations,

using the ALEXN CNN [10] as a reference state-of-the-

art deep feature extractor using the MatConvNet frame-

work [29]. ALEXN is the composition of twenty func-

tions, grouped into five convolutional layers (comprising

filtering, max-pooling, normalisation and ReLU) and three

fully-connected layers (filtering and ReLU). The experi-

ments look at the convolutional layers Conv1 to Conv5 right

after the linear filters (learning the linear transformation lay-

ers after the ReLU was found to be harder due to the non-

negativity of the features).

Regression methods. The first experiment (Fig. 6) com-

pares different methods to learn equivariant mappings Mg

in a CNN. The first method is FS, computed for different

neighbourhood sizes m and sparsity k. The second is the

task oriented formulation of Sect. 2.1 using a transforma-

tion layer. Both the l2 reconstruction error of the features

and the classification error (task-oriented loss) are reported.

As in Sect. 2.2, the latter is the classification error of the

compensated network φ2 ◦Mg ◦φ1(g
−1x) in the ImageNet

ILSVCR data (the reported error is measured on the vali-

dation data, but optimised on the training data). The figure

reports the evolution of the loss as more training samples

are used. For the purpose of this experiment, g is set to

vertical image flip. Fig. 7 repeats the experiments for the

task-oriented objective and rotations g from 0 to 90 degrees

(the fact that intermediate rotations are slightly harder to re-

construct suggests that a better Mg could be learned by ad-

dressing more carefully interpolation and boundary effects).

Several observations can be made. First, all methods

perform substantially better than doing nothing (∼ 75%
top-1 error), recovering most if not all the performance of

the original classifier (43%). This demonstrates that linear

equivariant mappings Mg can be learned successfully for

CNNs too. Second, for the shallower features up to Conv2,

FS is better: it requires less training samples and it has a

smaller reconstruction error and comparable classification

error than the task-oriented loss. Compared to Sect. 3.1,

however, the best setting m = 3, k = 25 is substantially less

sparse. However, from Conv3 onwards, the task-oriented

loss is better, converging to a much lower classification er-

ror than FS. FS still achieves a significantly smaller recon-

struction error, showing that feature reconstruction is not

always predictive of classification performance. Third, the

classification error increases somewhat with depth, match-

ing the intuition that deeper layers contain more specialised

information: as such, perfectly transforming these layers



for transformations not experienced during training (such

as vertical flips) may not be possible.

Testing transformations. Next, we investigate which geo-

metric transformations can be represented by different lay-

ers of a CNN (Tab. 2), considering in particular horizon-

tal and vertical flips, rescaling by half, and rotation of 90◦.

First, for transformations such as horizontal flips and scal-

ing, learning equivariant mappings is not better than leav-

ing the features unchanged: the reason is that the CNN is

implicitly learned to be invariant to such factors. For ver-

tical flips and rotations, however, the learned equivariant

mapping substantially reduce the error. In particular, the

first few layers are easily transformable, confirming their

generic nature.

Quantifying invariance. One use of the mapping Mg is

the identification of invariant features in the representation.

These are the ones that are best predicted by themselves af-

ter a transformation. In practice, a transformation layer in a

CNN (Sect. 2.2) identifies invariant feature channels since

the same transformation filters are applied uniformly at all

spatial locations. In practice, invariance is almost never

achieved exactly; instead, the degree of invariance of a fea-

ture channel is scored as the ratio of the Euclidean norm

of the corresponding row of Mg with the same after sup-

pressing the “diagonal” component of that row. Then, the p

rows of Mg with the highest invariance score are replaced

by (scaled) rows of the identity matrix. Finally, the perfor-

mance of the modified transformation M̄g is evaluated and

accepted if the classification performance does not deteri-

orate by more than 5% relative to Mg . The corresponding

feature channels for the largest possible p are then be con-

sidered approximately invariant.

Table 3 reports the result of this analysis for horizontal

and vertical flips, rescaling, and 90◦ rotation in the ALEXN

CNN. There are several notable observations. First, for

transformations for which the network is overall invariant

such as horizontal flips and rescaling, invariance is obtained

largely in Conv3 or Conv4. Second, invariance is not al-

ways increasing with depth, as for example Conv1 tends to

be more invariant than Conv2. This is possible because,

even if the feature channels in a layer are invariant, the spa-

tial pooling in the subsequent layer may not be. Third, the

number of invariant features is significantly smaller for un-

expected transformations such as vertical flips and 90◦ ro-

tations, further validating the approach.

3.3. Equivalence of deep representations

While the previous two sections studied the equivariance

of representations, this section looks at their equivalence.

The goal is to clarify whether heterogeneous representations

may in fact capture the same visual information by replac-

ing part of a representation with another using the methods

of Sect. 2 and Sect. 2.3.

Layer
Horiz. Flip Vert. Flip Sc. 2−

1

2 Rot. 90◦

Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5

None 0.44 0.21 0.75 0.54 0.61 0.37 0.75 0.54

Conv1 0.43 0.20 0.43 0.20 0.45 0.22 0.44 0.20

Conv2 0.45 0.22 0.46 0.22 0.48 0.24 0.46 0.22

Conv3 0.45 0.21 0.46 0.22 0.49 0.25 0.47 0.23

Conv4 0.44 0.21 0.48 0.24 0.49 0.25 0.49 0.25

Conv5 0.44 0.21 0.51 0.26 0.50 0.26 0.53 0.28

Table 2: CNN equivariance. Performance on the ILSVRC12 val-

idation set of compensated CNN classifier using learned equiv-

ariant mappings for selected transformations. For reference, the

top-1 and top-5 error of the unmodified ALEXN are 0.43 and 0.20
respectively.

Layer
Horiz. Flip Vert. Flip Sc. 2−

1

2 Rot. 90◦

Num % Num % Num % Num %

Conv1 52 54.17 53 55.21 95 98.96 42 43.75

Conv2 131 51.17 45 17.58 69 26.95 27 10.55

Conv3 238 61.98 132 34.38 295 76.82 120 31.25

Conv4 343 89.32 124 32.29 378 98.44 101 26.30

Conv5 255 99.61 47 18.36 252 98.44 56 21.88

Table 3: CNN invariance. Number and percentage of invariant

feature channels in the ALEXN network, identified by analysing

corresponding equivariant transformations.

Layer
IMNET → ALEXN PLCS → ALEXN PLCS-H → ALEXN

Top1 Top5 Top1 Top5 Top1 Top5

Conv1 0.43 0.20 0.43 0.20 0.43 0.20

Conv2 0.46 0.22 0.47 0.23 0.46 0.22

Conv3 0.46 0.22 0.50 0.25 0.47 0.23

Conv4 0.46 0.22 0.54 0.29 0.49 0.24

Conv5 0.50 0.25 0.65 0.39 0.52 0.27

Table 4: CNN equivalence. Performance on the ILSVRC12 val-

idation set of several “Franken-CNNs” obtained by stitching the

first portion of IMNET, PLCS and PLCS-H up to a certain convolu-

tional layer and the last portion of ALEXN.

To validate this idea, the first several layers φ′
1

of the

ALEXN CNN φ′ = φ′
2
◦φ′

1
are swapped with layers φ1 from

IMNET, also trained on the ILSVRC12 data, PLCS [34],

trained on the MIT Places data, and PLCS-H, trained on a

mixture of MIT Places and ILSVRC12 images. These rep-

resentations have a similar, but not identical, structure and

entirely different parametrisations.

Table 4 shows the top-1 performance of hybrid models

φ′
2
◦ Eφ1→φ′

1
◦ φ1, where the equivalence map Eφ1→φ′

1

is learned as a stitching layer (Sect. 2.3) from ILSVRC12

training images. There are a number of notable facts. First,

setting Eφ→φ′ = 1 to the identity map has a top-1 error

> 99% (not shown in the table), matching the intuition

that different parametrisations make feature channels not

directly compatible. Second, a very good level of equiva-

lence can be established up to Conv4 between ALEXN and

IMNET, and a slightly less good one between ALEXN and

PLCS-H; however, in PLCS deeper layers are substantially

less compatible. Specifically, Conv1 and Conv2 are inter-

changeable in all cases, whereas Conv5 is not fully inter-

changeable, particularly for PLCS. This corroborates the

intuition that Conv1 and Conv2 are generic image codes,

whereas Conv5 is more task-specific. Note however that,



even in the worst case, performance is dramatically better

than chance, demonstrating that all such features are com-

patible to an extent.

3.4. Application to structuredoutput regression

As a complement of the theoretical investigation so

far, this section shows a direct practical application of

the learned equivariant mappings of Sect. 2 to structured-

output regression [27]. In structured regression an input

image x is mapped to a label y by the function ŷ(x) =
argmax

y,z〈φ(x,y, z),w〉 (direct regression) where z is an

optional latent variable and φ a joint feature map. If y

and/or z include geometric parameters, the joint feature can

be partially of fully rewritten as φ(x,y, z) = My,zφ(x),
reducing inference to the maximisation of 〈M⊤

y,zw, φ(x)〉
(equivariant regression). There are two computational ad-

vantages: (i) the representation φ(x) needs to be computed

just once and (ii) the vectors M⊤
y,zw can be precomputed.

This idea is demonstrated on the task of pose estima-

tion, where y = g is a geometric transformation in a class

g−1 ∈ G of possible poses of an object. As an example,

consider estimating the pose of cat faces in the PASCAL

VOC 2007 (VOC07) [7] data using for G either (i) rota-

tions or (ii) affine transformations (Fig. 9). The rotations in

G are sampled uniformly every 10 degrees and the ground-

truth rotation of a face is defined by the line connecting the

nose to the midpoints between the eyes. These keypoints

are obtained as the center of gravity of the corresponding

regions in the VOC07 part annotations [2]. The affine trans-

formations in G are obtained instead by clustering the vec-

tors [c⊤l , c
⊤
r , c

⊤
n ]

⊤ containing the location of eyes and nose

of 300 example faces in the VOC07 data. The clusters are

obtained using GMM-EM on the training data and used to

map the test data to the same pose classes for evaluation.

G then contains the set of affine transformations mapping

the keypoints [c̄⊤l , c̄
⊤
r , c̄

⊤
n ]

⊤ in a canonical frame to each

cluster center.

The matrices Mg are pre-learned (from generic images,

not containing cats) using FS with k = 5 and m = 3 as in

Sect. 2. Since cat faces in VOC07 data are usually upright,

a second more challenging version of the data (denoted by

the symbol 	) augmented with random image rotations is

considered as well. The direct 〈w, φ(gx)〉 and equivariant

〈w,Mgφ(x)〉 scoring functions are learned using 300 train-

ing samples and evaluated on 300 test ones.

Table 5 reports the accuracy and speed obtained for HOG

and CNN Conv3, Conv4, and Conv5 features for direct and

equivariant regression. The latter is generally as good or

nearly as good as direct regression, but up to 22 times faster

validating once more the mappings Mg . Fig. 8 shows the

cumulative error curves for the different regressors.

φ(x)
HOG Conv3 Conv4 Conv5

Bsln g Mg g Mg g Mg g Mg

Rot [◦] 23.8 14.9 17.0 13.3 11.6 10.5 11.1 10.1 13.4

Rot 	 [◦] 86.9 18.9 19.1 13.2 15.0 12.8 15.3 12.9 17.4

Aff [-] 0.35 0.25 0.25 0.25 0.28 0.24 0.26 0.24 0.26

Time/TF [ms] - 18.2 0.8 59.4 6.9 65.0 7.0 70.1 5.7

Speedup [-] - 1 21.9 1 8.6 1 9.3 1 12.3

Table 5: Equivariant regression. The table reports the prediction

errors for the cat head rotation/affine pose with direct/equivariant

structured SVM regressors. The error is measured in expected de-

grees of residual rotation or as the average keypoint distance in the

normalised face frame, respectively. The baseline method predicts

a constant transformation.

HOG Conv3 Conv4 Conv5 Bsln

φ(gx) Mgφ(x)

0 60 120 180
0

20

40

60

80

100

%
o

f
te

st
d

at
a

(a) 	 CatH [◦]

0 0.2 0.4 0.6 0.8 1

(b) CatH AFF [-]

Figure 8: Equivariant regression errors. Cumulative error

curves for the rotation and affine pose regressors of Table 5.

Figure 9: Equivariant regression examples. Rotation (top) and

affine pose (bottom) prediction for cat faces in the VOC07 parts

data. The estimated affine pose is represented by eyes and nose

location. The first four columns contain examples of successful

regressions an the last a failure case. Regression uses the CNN

Conv5 features computed within the green dashed box.

4. Summary

This paper introduced the idea of studying representa-

tions by learning their equivariant and equivalence proper-

ties. It was shown that shallow representations and the first

several layers of deep state-of-the-art CNNs transform in an

easily predictable manner with image warps and that they

are interchangeable, and hence equivalent, in different ar-

chitectures. Deeper layers share some of these properties

but to a lesser degree, being more task-specific. In addition

to the use as analytical tools, these methods have practical

applications such as accelerating structured-output regres-

sors classifier in a simple and elegant manner.

Acknowledgments. Karel Lenc was partially supported by

an Oxford Engineering Science DTA.



References

[1] K. Chatfield, K. Simonyan, A. Vedaldi, and A. Zisserman. Return

of the devil in the details: Delving deep into convolutional nets. In

Proc. BMVC, 2014. 3
[2] X. Chen, R. Mottaghi, X. Liu, S. Fidler, R. Urtasun, and A. Yuille.

Detect what you can: Detecting and representing objects using holis-

tic models and body parts. In IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2014. 8
[3] G. Csurka, C. R. Dance, L. Dan, J. Willamowski, and C. Bray. Visual

categorization with bags of keypoints. In Proc. ECCV Workshop on

Stat. Learn. in Comp. Vision, 2004. 1
[4] N. Dalal and B. Triggs. Histograms of oriented gradients for human

detection. In Proc. CVPR, 2005. 1, 2
[5] M. Denil, , B. Shakibi, L. Dinh, M. Ranzato, and N. de Freitas. Pre-

dicting parameters in deep learning. In Proc. NIPS, 2013. 1
[6] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and

T. Darrell. Decaf: A deep convolutional activation feature for generic

visual recognition. CoRR, abs/1310.1531, 2013. 3
[7] M. Everingham, A. Zisserman, C. Williams, and L. V. Gool. The

PASCAL visual obiect classes challenge 2007 (VOC2007) results.

Technical report, Pascal Challenge, 2007. 8
[8] I. Goodfellow, H. Lee, Q. V. Le, A. Saxe, and A. Y. Ng. Measuring

invariances in deep networks. In Advances in neural information

processing systems, pages 646–654, 2009. 2
[9] H. Jégou, M. Douze, C. Schmid, and P. Pérez. Aggregating local

descriptors into a compact image representation. In Proc. CVPR,

2010. 1
[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. In Proc. NIPS, 2012.

1, 2, 6
[11] T. Leung and J. Malik. Representing and recognizing the visual ap-

pearance of materials using three-dimensional textons. IJCV, 43(1),

2001. 1
[12] T. Lindeberg. Principles for automatic scale selection. Technical

Report ISRN KTH/NA/P 98/14 SE, Royal Institute of Technology,

1998. 2
[13] D. G. Lowe. Object recognition from local scale-invariant features.

In Proc. ICCV, 1999. 2
[14] D. G. Lowe. Distinctive image features from scale-invariant key-

points. IJCV, 2(60):91–110, 2004. 1
[15] K. Mikolajczyk and C. Schmid. A performance evaluation of local

descriptors. In Proc. CVPR, 2003. 2
[16] O. Parkhi, A. Vedaldi, C. V. Jawahar, and A. Zisserman. The truth

about cats and dogs. In Proc. ICCV, 2011. 5
[17] F. Perronnin and C. Dance. Fisher kernels on visual vocabularies for

image categorizaton. In Proc. CVPR, 2006. 1
[18] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson. CNN fea-

tures off-the-shelf: an astounding baseline for recognition. In CVPR

DeepVision Workshop, 2014. 3
[19] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,

Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and

L. Fei-Fei. Imagenet large scale visual recognition challenge, 2014.

3
[20] U. Schimdt and S. Roth. Learning rotation-aware features: From

invariant priors to equivariant descriptors. In Proc. CVPR, 2012. 2
[21] P. Sermanet, D. Eigen, X. Zhang, M. Mathieu, R. Fergus, and Y. Le-

Cun. Overfeat: Integrated recognition, localization and detection

using convolutional networks. volume abs/1312.6229, 2014. 1
[22] L. Sifre and S. Mallat. Rotation, scaling and deformation invariant

scattering for texture discrimination. In Proc. CVPR, 2013. 2
[23] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside con-

volutional networks: Visualising image classification models and

saliency maps. In ICLR Workshop, 2013. 1
[24] J. Sivic and A. Zisserman. Video Google: A text retrieval approach

to object matching in videos. In Proc. ICCV, 2003. 1
[25] K. Sjöstrand, L. H. Clemmensen, R. Larsen, and B. Ersbøll. Spasm:

A matlab toolbox for sparse statistical modeling. Journal of Statisti-

cal Software, 2012. 5
[26] K. Sohn and H. Lee. Learning invariant representations with local

transformations. CoRR, abs/1206.6418, 2012. 2

[27] B. Taskar, C. Guestrin, and D. Koller. Max-margin markov networks.

In Proc. NIPS, 2003. 8
[28] A. Vedaldi and B. Fulkerson. VLFeat – An open and portable library

of computer vision algorithms. In Proc. ACM Int. Conf. on Multime-

dia, 2010. 2
[29] A. Vedaldi and K. Lenc. MatConvNet - convolutional neural net-

works for MATLAB. CoRR, abs/1412.4564, 2014. 6
[30] C. Vondrick, A. Khosla, T. Malisiewicz, and A. Torralba. HOGgles:

Visualizing object detection features. In Proc. ICCV, 2013. 2, 5
[31] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong. Locality-

constrained linear coding for image classification. Proc. CVPR,

2010. 1
[32] J. Yang, K. Yu, and T. Huang. Supervised translation-invariant sparse

coding. In Proc. CVPR, 2010. 1
[33] M. D. Zeiler and R. Fergus. Visualizing and understanding convolu-

tional networks. CoRR, abs/1311.2901, 2013. 1, 2
[34] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva. Learning

Deep Features for Scene Recognition using Places Database. NIPS,

2014. 7
[35] X. Zhou, K. Yu, T. Zhang, and T. S. Huang. Image classification

using super-vector coding of local image descriptors. In Proc. ECCV,

2010. 1


