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Abstract

This paper proposes a robust multi-image based blind

face hallucination framework to super-resolve LR faces.

The proposed framework first estimates both blurring ker-

nel and transformations of multiple LR faces by robust de-

blurring and registration in PCA subspace. A patch-wise

mixture of probabilistic PCA prior is then incorporated for

face super-resolution. Previous work on face SR using PCA

prior can be viewed as special cases of the framework. Ex-

perimental results in both simulated and real LR sequences

demonstrate very promising performance of the proposed

method.

1. Introduction

The paper focuses on multi-image based blind face hal-

lucination to super-resolve low-resolution (LR) faces in im-

age sequences. There has been much previous work carried

out on face hallucination [1, 3, 15, 29, 7, 4, 27, 13, 17, 10]

and face subspace based methods are often employed for

face super-resolution (SR). PCA prior based face SR was

presented in [3] with two MAP formulations, FS-MAP and

IS-MAP. PCA prior is used in [15] as global constraints

in combination with a patch-based local constraint from

[6] for face SR, where the soft-constraint is essentially the

same as FS-MAP in [3]. Nonnegative Matrix Factorization

(NMF) was adopted in [29] as the global constraint, which

is then combined with sparse coding for face hallucination.

Face SR in eigen-domain was presented in [7]. Tensor-

based approaches were introduced in [13, 17] to halluci-

nate facial expression using multi-modal faces. The asym-

metry of registration of LR faces was pointed out in [4],

where a Resolution-Aware Fitting (RAF) based on AAM

[5] was proposed for joint registration and super-resolution

to avoid interpolating LR images. Face SR based on image

alignment was recently proposed where exemplars of HR

faces are matched to an LR face by either dense SIFT flow

[24, 11] or facial feature matching [28].

Most previous work on face SR utilizes only a single LR

face, which may limit SR performance due to insufficient

measurements available. Multiple LR images are often ex-

ploited for generic image SR [22, 8, 19], in combination

with generic image priors, such as Tikhonov regularization,

Total Variation (TV) or Huber MRF based sparsity prior.

However for multi-image based SR, often a lot of LR im-

ages are used and registration errors will arise for moving

objects or multi-view images. Recent work [26, 16, 23, 9]

proposed to combine registration and/or deblurring with

multi-image SR.

This paper presents a robust multi-image based blind

face hallucination framework to super-resolve LR faces in

image sequences. The proposed method first estimate both

blurring kernel and transformations of multiple LR faces

by robust deblurring and registration in PCA subspace us-

ing PCA prior. A patch-wise mixture of probabilistic PCA

(MPPCA) prior [25] is then incorporated for face SR. Pre-

vious work on face SR using PCA prior can be viewed as

special cases and it can be shown that FS-MAP[3]/Soft-

Constraint[15] reduces to one iteration step in the frame-

work. Previous work [15, 4, 27, 13] on face SR using sin-

gle LR face manually or automatically aligned a face to a

normalized face. For face SR using multiple LR faces [3],

additional transformations between multiple LR faces need

to be estimated by feature matching or tracking. However,

due to low visual quality of LR faces, there are often signif-

icant errors in the initial alignment, which actually may de-

grade performance of face SR. In addition, fixed and small

blurring is often assumed in previous work, be it Gaussian

or square, which may not be valid in practice. The pro-

posed method is in the similar spirit of [26, 16], but ex-

plores face PCA subspace, rather than original high resolu-

tion (HR) image space, for robust deblurring and registra-

tion. In addition, a new patch-wise MPPCA prior, rather

than weak generic image priors, is applied to improve SR

performance. The proposed method improves face SR per-

formance, by combining robust blurring kernel and transfor-

mation estimation with the patch-wise MPPCA prior, with

very promising results in both simulated and real LR se-

quences.

The remainder of the paper is organized as follows. Face

hallucination is formulated in section 2. Section 3 describes

the multi-image based blind face hallucination framework.

Results in both simulated and real LR sequences are pre-



sented in section 4 and the paper is concluded in section 5.

2. Face Hallucination Formulation

2.1. Observation model

The process of image acquisition can be modeled by an

observation model,which relates an original HR image x to

an observed LR image zt, both vectors in lexicographical

order,

zt = S(s)K(k)W(wt)x+ nt (1)

where W(wt) = W(H(wt)) warps an HR image via trans-

formation H(wt) parameterized by wt, K(k) represents

blurring effect caused by blurring kernel k, S(s) is the

sub-sampling operator with fixed factor s, and nt is ad-

ditive sensor noise. In the process of image acquisition,

loss of image spatial resolution is mainly caused by blurring

(optical blurring, motion blurring and sensor Point Spread

Function (PSF)), sub-sampling and additive sensor noise.

(1) can be rewritten as zt = Ht(k,wt)x + nt , where

Ht(k,wt) = S(s)K(k)W(wt) combines warping, blur-

ring and sub-sampling operations. The observation model

provides data constraint [15] for an HR image to be esti-

mated.

Given multiple LR images, Z =
[

zt−T ; · · · ; zt+T

]

,

generated by multiple transformations but the same blurring

kernel k, the augmented observation model provides more

constraints for estimation,

Z = H(k,w)x + n (2)

whereH(k,w) =
[

Ht−T (k,wt−T ); · · · ;Ht+T (k,wt+T )
]

is an augmented operator using multiple transformations

w = {wt}, and n =
[

nt−T ; · · · ;nt+T

]

is the aug-

mented noise which is often assumed to be zero mean

Gaussian with covariance R = η2I. Note that except

sub-sampling factor s, both blurring kernel k and trans-

formation w are unknown and need to be estimated in

practice. The assumption of constant blurring kernel is

often valid for multiple LR images within short temporal

sliding windows, and it also significantly reduces the

number of unknowns thus make estimation more stable

given insufficient number of LR images.

2.2. Priors

For face subspace based method using PCA prior [3, 15],

it is assumed that latent PCA coefficients α are in a zero-

mean Gaussian distribution with diagonal covariance Λ. A

HR face x is then generated using eigenfaces D and mean

face µ via a generative model,

p(α) = N (α;0,Λ) and p(x|α) = N (x;µ +Dα,Σ)
(3)

where diagonal covariance Λ is composed of eigenvalues

of corresponding eigenfaces and covariance Σ = ε2I. In

addition to the PCA prior, priors of transformations p(w)
and blurring kernel p(k) can also be exploited. Combining

likelihood (2) and priors, the posterior is

p(x,k,w,α|Z) ∝ p(Z|x,k,w)p(x|α)p(α)p(k)p(w)
(4)

and if both blurring kernel k∗ and transformation w∗ are

known beforehand as in [3, 15], then the posterior can be

simplified to

p(x,α|Z,k∗,w∗) ∝ p(Z|x,k∗,w∗)p(x|α)p(α) (5)

Although PCA prior assumes a Gaussian distribution for

latent coefficients in PCA subspace, it can be shown that for

MAP estimation it is equivalent to a prior in image space,

x̂ = argmax
x,α

p(Z|x,k∗,w∗)p(x|α)p(α)

= argmax
x

p(Z|x,k∗,w∗)
{

max
α

p(α|x)p(x)
}

= argmax
x

p(Z|x,k∗,w∗)p(x)
{

max
α

p(α|x)
}

= argmax
x

p(Z|x,k∗,w∗)p(x)

where the last step is due to the fact that max
α

p(α|x) =

max
α

N (α; α̂, Λ̂) =
∣

∣

∣
2πΛ̂

∣

∣

∣

−
1

2

is a constant independent of

x, and the equivalent prior in image space is

p(x) =

∫

p(x|α)p(α)dα = N (x; x̃, P̃) (6)

where x̃ = µ and P̃ = DΛDT +Σ are predicted HR face

and its covariance respectively. Note that this image prior

can also be interpreted in two terms [21]: Euclidean dis-

tance to the PCA subspace and Mahalanobis distance within

the PCA subspace. Now the MAP estimation can be sim-

plified to

x̂ = argmax
x

p(x|Z,k∗,w∗)

= µ+K [Z −Hµ]
(7)

where p(x|Z,k∗,w∗) = N (x; x̂, P̂) is the posterior given

blurring kernel and transformation with mean x̂ = µ +
K [Z −Hµ] and covariance P̂ = (I − KH)P̃ by using

Kalman gain K = P̃HT
[

R +HP̃HT
]

−1

. It general-

izes previous work of both FS-MAP/IS-MAP [3] and soft-

constraint/hard-constraint [15], which can be shown to be-

come special cases.



2.3. Patch-wise MPPCA prior

Limitations of PCA prior It can be noted that (7) actually

is a linear estimator to estimate an HR image, where K is

a dense linear coefficient matrix, so each row in K linearly

combines all LR image pixels to estimate an HR pixel. This

holistic PCA approaches comes with an over-fitting issue,

as all pixels in an LR image are involved to estimate an HR

pixel, no matter how far they are spatially far away from the

HR pixel. It is well-known that correlation between pixels

decreases dramatically as the distance between pixels in-

creases. The over-fitting can be shown that although fitting

error of a training set is the lowest of all linear estimators

by using all LR pixels, fitting error of a testing set is much

higher in comparison with patch-based approaches.

The second limitation is that very roughly predicted

mean and covariance are used in the equivalent image

prior (6). The predicted mean is actually training sam-

ple mean µ = 1
N

∑

n

xn, while the predicted covariance

can be further rewritten as P̃ = C − dC + Σ, where

C = 1
N

∑

n

[xn − µ] [xn − µ]T is the covariance of train-

ing samples, dC = D′Λ′D′T consists of discarded eigen-

vectors and eigenvalues of C, so the predicted covariance

becomes the covariance of training samples if all eigenvec-

tors are used.

Patch-wise MPPCA We improve the simple PCA prior

model by a patch-wise MPPCA model [25], where an HR

image is spatially partitioned into local overlapping patches

as in [6, 29], patch-wise local MPPCA dictionaries are

learnt for each patch. The local patch-wise approach is to

address the first limitation of the holistic approach, while

MPPCA aims to improve both mean and covariance predic-

tion, which is the second limitation of the simple PCA prior.

For MPPCA, the generative model of an HR patch y is

p(α) = N (α;0, I) and p(y|α) =
∑

j

πjN (y;µj +Djα,Σj)

(8)

where πj , Dj , µj and Σj are the mixture weight, dictio-

nary, mean and covariance of jth component respectively,

normalized latent coefficients α is in zero-mean Gaussian

distribution with identity covariance. Given a HR train-

ing set, patch-wise MPPCA can be learned for each patch,

where mixture weights {πi,j}, dictionaries {Di,j}, means
{

µi,j

}

, covariances {Σi,j} of the ith patch can be esti-

mated iteratively as shown in [25]. Assuming independent

patches, they can be combined to

p(α) =
∏

i

p(αi) and p({yi} |α) =
∏

i

p(yi|αi) (9)

where p(yi|αi) =
∑

j

πi,jN (Fix;µi,j +Di,jαi,Σi,j), Fi

denotes an operator to extract the ith patch from an HR im-

age, and α = {αi}. The probability that image patches are

from learnt patch-wise MPPCA priors becomes

p({yi}) =
∏

i

p(yi) (10)

where p(yi) ∝
∑

j

πi,jN (yi;µi,j , P̃i,j), and P̃i,j =

Di,jD
T
i,j + I are patch-wisely predicted covariance. As

overlapping patches are not independent, logarithm of (10)

can be viewed as “Expected Patch Log Likelihood”(EPLL)

[30].

3. Multi-image based Blind Face Hallucination

In the previous section, both blurring kernel and trans-

formation are assumed to be known. However in practice,

they are unknown and need to be estimated, and it will be

shown in this section that both blurring kernel and multiple

transformations can be estimated efficiently in PCA sub-

space using PCA prior. Given estimated blurring kernel and

transformations, an HR face is then estimated using patch-

wise MPPCA prior.

3.1. Blurring kernel and transformation estimation

Instead of directly optimizing the posterior (4) to esti-

mate all the unknowns, argmin
x,k,w,α

p(x,k,w,α|Z), we opti-

mize marginalized posterior,

p(k,w|Z) =

∫ ∫

p(x,k,w,α|Z)dαdx (11)

where high dimensional HR image x and PCA coefficients

α are regarded as latent variables. Marginalized posterior

p(k,w|Z) can be approximated by its variational lower

bound,

log p(k,w|Z)
≥

∫ ∫

q(x,α) log [p(Z|x,k,w)p(x|α)p(α)p(k)p(w)] dxdα
−
∫ ∫

q(x,α) log q(x,α)dxdα+ const
= L(log p(k,w|Z))

(12)

where L(log p(k,w|Z)) is the lower bound of

log p(k,w|Z). Let q(x,α) = δ(x − µ − Dα)q(α),
then the variational lower bound becomes

L(log p(k,w|Z))
=

∫

q(α) log [p(Z|k,w,α)p(α)] dα
−
∫

q(α) log q(α)dα+ log p(k) + log p(w) + const
(13)

where q(α) is the approximated posterior of latent PCA

coefficients. Note that we utilize reduced dimensionalities



of PCA subspace, rather than the high dimensional image

space or filter space in [14], for blurring kernel and

transformation estimation, and full covariance of q(α) is

explored, rather than a diagonalized covariance in [14].

Lower bound (13) can be optimized by updating q(α), k
and w iteratively as follows:

Updating coefficients distribution q(α). Given k and w,

it can be shown that

q(α) = p(α|Z,k,w) = N (α; α̂, Λ̂) (14)

which is the posterior given blurring kernel and trans-

formation with mean α̂ = K [Z −Hµ] and covari-

ance Λ̂ = (I − KHD)Λ by using Kalman gain

K = ΛDTHT
[

R+HDΛDTHT
]

−1
. It is essen-

tially FS-MAP[3]/Soft-Constraint[15], however only mean

α̂ is used as the MAP estimation in FS-MAP[3]/Soft-

Constraint[15]. It can be shown that in addition to the

mean, covariance Λ̂, which represents uncertainties of the

MAP estimation, is important and will be used to estimate

the blurring kernel and transformation.

Updating blurring kernel k. Given q(α) and w, it

can be shown that the lower bound can be rewritten in

quadratic form

L(k) ∝ kTA(Λ̂)k+2bT (α̂)k−2 log p(k)+const (15)

where A(Λ̂) and b(α̂) involve the previously estimated

mean α̂ and covariance Λ̂. Prior p(k) includes L1 norm

constraint ‖k‖1 = 1, non-negativity constraint k ≥ 0. For

Gaussian blurring kernel, additional symmetric constraint

can be applied so that the dimensionality of the blurring

kernel can be further reduced. The blurring kernel is

initialized with an estimated blurring kernel at previous

frame and for the first frame it is initialized to be the Dirac

delta function.

Updating multiple transformations w. Given q(α)
and k, it can be shown that the lower bound reduces to

L(w) ∝ ‖Z −H(w)(µ+Dα̂)‖2 − 2 log p(w)

+ Tr
[

DTHT (w)H(w)DΛ̂
]

+ const
(16)

Note that covariance Λ̂ can be eigen-decomposed by

Λ̂ = VLVT , where V = [v1, · · · ,vL] and L =

diag([λ1, · · · , λL]), {vl}
L

l=1 and {λl}
L

l=1 are eigenvectors

and eigenvalues of Λ̂ respectively. Now the second term

becomes
L
∑

l=1

λl ‖H(w)Dvl‖
2
, so

L(w) ∝ ‖Z −H(w)(µ +Dα̂)‖2 − 2 log p(w)

+

L
∑

l=1

λl ‖H(w)Dvl‖
2
+ const

(17)

It can be observed that optimal transformation needs to

not only reduce the first two terms which are due to the ob-

servation model and prior respectively, but also reduce the

third term which involves covariance Λ̂, which represents

uncertainties of α̂.

Multiple transformations are initialized by tracking for-

wardly and backwardly in neighboring frames, and is com-

positional updated as in [2] but in a backward direction

as in [4] to avoid interpolating LR images. Given an

initialized transformation H̃t, the transformation is com-

positional updated by Ht = H̃t∆H(wt), where wt

are coefficients of Lie algebra generators
{

G(i)
}

and

∆H(wt) = exp

(

∑

i

w
(i)
t G(i)

)

is the incremental trans-

formation. The prior of w is p(w) =
∏

t

p(wt), where

p(wt) = N (wt;0,Q) is a zero mean Gaussian distribution

with covariance Q.

3.2. Super­resolution with patch­wise MPPCA
prior

Given estimated blurring kernel k∗ and multiple trans-

formations w∗, it can be shown that the variational lower

bound of log p(Z) is

L (log p(Z)) =

∫

q(x) log p(Z|x,k∗,w∗)dx

+
∑

i,j

qi,j

∫

q(x) log
[

N (Fix;µi,j , P̃i,j)
]

dx

+
∑

i,j

qi,j log
πi,j

qi,j
−

∫

q(x) log q(x)dx + const

(18)

where q(x) is an approximated posterior of an HR image,

latent association weights Q = {qi,j} indicates probabili-

ties that patch i is from mixture component j. The lower

bound can also be optimized by updating q(x) and Q
alternatively:

Updating HR image distribution q(x). Given Q, it can be

shown that

q(x) ∝ N (x; x̂, P̂) (19)

with mean x̂ = P̂

[

HTR−1Z +
∑

i

[

∑

j

qi,jµ
T
i,jP̃

−1
i,j

]

Fi

]



Algorithm 1 Multi-image Based Blind Face Hallucination

1. Initialize k(0) = k∗, w(0) = 0 and
{

H̃t

}

by tracking

2. Blurring kernel/transformation estimation: set k = 1

(i) Updating coefficients distribution α̂
(k)

and Λ̂
(k)

by (14)

(ii) Updating blurring kernelk(k) by optimizing (15)

(iii) Updating multiple transformations w(k) by op-

timizing (17)

if
∥

∥w(k) −w(k−1)
∥

∥ < ε and
∥

∥k(k) − k(k−1)
∥

∥ < ε

then

k∗ = k(k), w∗ = w(k),
{

H∗

t = H̃t∆H(w∗

t )
}

,

and go to 3

else

k = k + 1 go to (i)

end if

3. Super-resolution: set k = 1

(i) Updating HR image distribution x̂(k) and P̂(k)

by (19)

(ii) Updating association weights Q by (20)

if
∥

∥x̂(k) − x̂(k−1)
∥

∥ < ε then

x∗ = x̂(k) and stop

else

k = k + 1 go to (i)

end if

and covariance P̂ =

[

HTR−1H+
∑

i

FT
i

[

∑

j

qi,jP̃
−1
i,j

]

Fi

]

−1

Updating association weights Q. Given q(x), asso-

ciation weights Q is updated by

qi,j ∝ πi,jN (Fix̂;µi,j , P̃i,j) exp
(

− 1
2Tr

[

FT
i P̃

−1
i,j FiP̂

])

∑

j

qi,j = 1, ∀i

(20)

where it can be noted that covariance P̂, which represents

uncertainties of an estimated HR image x̂, is also involved

to estimate association weights.

Main stages of the proposed method using patch-wise

MPPCA combined with blurring kernel and transformation

estimation are summarized in algorithm 1.

4. Results

Experiments were carried out to test SR performance of

the proposed method in both simulated and real LR image

sequences. Frontal HR faces from FERET database [18] are

used as the training set, where all faces are normalized to

size 60× 60 by affine transformation using eyes and mouth

centres. For patch-wise MPPCA prior, overlapping patches

with size 6 × 6 are used to train mixtures with ten compo-

nents. Testing set includes BioID database [12], PubFig83

database [20] and real LR image sequences. Homography

is used in all experiments, and is initialized in the first frame

to be identity transformation for normalized BioID database

whereas affine transformations for PubFig83 database and

real LR sequences by using centers of eyes and mouth.

4.1. Simulated LR sequences

100 random HR faces from BioID database [12] are

used to simulate multiple LR faces, as shown in Fig. 1(a).

An HR face x is first transformed by multiple random ho-

mographies, and then blurred with a Gaussian kernel with

σ = 0.6s = 2.4 and sub-sampled by s = 4 to 15×15.

Finally Gaussian noise with η = 2 are added to obtain

a sequence of multiple (3) LR faces Z , as shown in Fig.

1(b). The Ground-Truth (GT) blurring kernel is shown in

Fig. 4(a) whereas an example of estimated blurring ker-

nels in Fig. 4(b). Our unoptimized MATLAB implemen-

tation takes about 15-20 minutes on 2.6GHz Xeon when 3

LR faces are used, where registration and blurring kernel

estimation is the most time-consuming part. Speed can be

much improved as both registration of multiple LR faces

and patch-wise MPPCA prior can be implemented in paral-

lel.

SR results using PCA prior, essentially FS-MAP/Soft-

Constraint [3, 15], in combination with the GT blurring ker-

nel and transformations initialized by tracking, are shown in

Fig. 1 (d). It serves as an indicator of SR performance of

previous work [3, 15] in practice. It can be noted that even

given the GT blurring kernel, inaccurate transformation es-

timation degrades SR performance significantly.

Results of generic HMRF prior [19], PCA prior [3, 15]

and patch-wise MPPCA prior, in combination with the GT

blurring kernel and the GT transformations, are shown in

Fig. 1(c), (f) and (h) respectively, which can be regarded

as, in general, upper bounds of SR performance that can be

achieved for these methods. It should be noted that results

of patch-wise MPPCA are often sub-optimal due to the it-

erative optimization.

Results of the proposed method using PCA prior and

patch-wise MPPCA prior, in combination with an estimated

blurring kernel and estimated transformations, are shown in

Fig. 1(e) and (g) respectively, which represent SR perfor-

mance of PCA prior and patch-wise MPPCA prior achieved

in practice so far. The results are visually close to the cor-

responding results using the GT blurring kernel and trans-

formations in Fig. 1(f) and (h). It is also interesting to ob-

serve in the last row how details of eyes and mouth were

kept along with a white dot in the corner of background us-

ing the patch-wise MPPCA prior, in comparison with PCA

prior.

Performance measures of SR using both PSNR and
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(a) (b) (c) (d) (e) (f) (g) (h)

Figure 1. Results of face hallucination using multiple simulated LR faces. (a) HR faces x. (b) LR faces Z obtained by warping HR faces

in (a) with random homographies, then blurring with Gaussian blurring kernel with σ = 0.6s and sub-sampling by s = 4 to 15×15,

and finally adding Gaussian noise with η = 2. (c) Results of generic HMRF prior in combination with the GT blurring kernel and

transformations. (d) Results of PCA prior in combination with the GT blurring kernel and transformations initialized by tracking. (e)

Results of PCA prior in combination with an estimated blurring kernel and transformations. (f) Results of PCA prior in combination with

the GT blurring kernel and transformations. (g) Results of the proposed patch-wise MPPCA prior in combination with an estimated blurring

kernel and transformations. (h) Results of the patch-wise MPPCA prior in combination with the GT blurring kernel and transformations.

Number below images is PSNR/SSIM. The images are better viewed by zooming.

23.42 28.95 28.44 28.63 22.00 26.14 25.50 25.74

23.07 25.34 25.61 25.62 21.39 25.09 25.41 25.40

22.40 25.49 27.44 27.53 22.59 25.45 25.72 25.93

(a) (b) (c) (d) (e) (f) (g) (h) (i) (j) (k) (l)

Figure 2. Results of face hallucination using single simulated LR face. (a)(g) HR faces x. (b)(h) LR faces Z obtained by blurring HR

faces in (a)(g) with σ = 0.4s and sub-sampling by s = 4. (c)(i) Results of [28] with the GT blurring kernel and GT HR faces for facial

feature detection. (d)(j) Results of [11, 24] with the GT blurring kernel and GT HR faces of same individuals. (e)(k) Results of patch-wise

MPPCA prior in combination with estimated blurring kernel and transformation. (f)(l) Results of patch-wise MPPCA prior in combination

with GT blurring kernel and estimated transformation. Number below images is PSNR. The images are better viewed by zooming.



Figure 3. Examples of masked faces used to measure PSNR.

(a) (b) (c) (d)

Figure 4. GT blurring kernels and examples of estimated blurring

kernels. (a) GT Gaussian blurring kernel with σ = 0.6s = 2.4. (b)

An example of estimated blurring kernel of (a). (c) GT Gaussian

blurring kernel with σ = 0.4s = 1.6. (d) An example of estimated

blurring kernel of (c).

SSIM are summarized in Table 1, where the effect of accu-

rate blurring kernel and transformation estimation becomes

evident. The importance of prior can be observed by com-

paring results of weak generic prior in Fig. 1 (c) and Table

1(c), with results of specific face subspace prior in Fig. 1

(f)(h) and Table 1(f)(h). In general, large number of LR

images is essential for generic image prior based SR to im-

prove SR performance [8, 26, 19, 16].

The effect of improving face prior from PCA to patch-

wise MPPCA can be noted by comparing results in Fig. 1

(f) and Table 1(f), with Fig.1(h) and Table 1(h). It can be

seen that the upper bound of SR performance using patch-

wise MPPCA prior is much improved in comparison with

that of holistic PCA prior.

The combined effect of prior and blurring kernel and

transformation estimation can also be observed by compar-

ing results in Fig. 1 (g) and Table 1(g), with Fig.1(e)(f)

and Table 1(e)(f). The proposed method, using patch-wise

MPPCA prior in combination with estimated blurring ker-

nel and transformations, not only is much better than that

of PCA prior using the same estimated blurring kernel and

transformations, but also surpass the upper bound of holistic

PCA prior, where GT blurring kernel and transformations

are utilized.

The proposed method is also compared with state of the

art face SR methods using single LR face [28, 11, 24]1,

which are all based on image-alignment and authors’ imple-

mentations are adopted. 100 HR faces in PubFig83 database

[20], which includes 83 individuals, are used for testing.

There is at least one face for each individual, including

some faces used in experiments of [11, 24]. Those faces,

which are from individuals of different ages, genders, poses,

expressions and illumination conditions, are blurred with

Gaussian blurring kernel with σ = 0.4s = 1.6 and then

sub-sampling by s = 4 without adding any noise. It fol-

1Note that the performance of [11] was shown to be as good as that of

[24], and it can serve as an indicator of the performance of [24].

Methods HMRF PCA MPPCA

[19] [3, 15]

(c) (d) (e) (f) (g) (h)

Blurring GT GT Est GT Est GT

Trans. GT Initial Est GT Est GT

PSNR 19.67 19.52 21.27 21.51 21.78 22.32

SSIM 0.67 0.72 0.76 0.77 0.79 0.81

Table 1. Performance comparison of face SR using multiple simu-

lated LR faces.

Methods Bicubic [28] [11] MPPCA

(c)(i) (d)(j) (e)(k) (f)(l)

Blurring GT GT Est GT

PSNR 24.78 22.29 26.12 25.85 26.17

Table 2. Performance comparison of face SR using single simu-

lated LR face.

lows similar test setting in their implementations in [28, 11],

however there is no blurring applied in [11, 24] whereas LR

faces are quite large with size about 30× 30 in [28], which

are much less challenging in comparison with LR faces used

here. The GT blurring kernel is shown in Fig. 4(c) whereas

an example of estimated blurring kernels in Fig. 4(d).

As blurring kernel needs to be known beforehand in

[28, 11, 24], GT blurring kernel are provided. In addition,

GT HR faces are supplied to the method in [28] for more ac-

curate facial feature detection, whereas other GT HR faces

of same individuals are made available to the method in

[11, 24] for SIFT flow estimation. Results are shown in Fig.

2. As the proposed method only super-resolves a facial re-

gion rather than a full image, performance is measured only

in a pre-processed GT facial mask by excluding background

pixels, so only PSNR is reported in Table. 2 due to irregular

shape of facial masks as shown in Fig. 3. It is more accurate

than unmasked measures in [28, 11, 24], which actually is

biased due to a large portion of background pixels and sim-

ilar background elsewhere in the dataset. Note that for all

methods, only the luminance channel is super-resolved and

then combined with bi-cubic interpolated color channels. It

can be noted that results of patch-wise MPPCA using GT

blurring kernel even outperforms those of [11], which have

other GT HR faces of same individuals available, whereas

results of patch-wise MPPCA using estimated blurring ker-

nel in Fig. 2 (e)(k) are visually very close to those using GT

blurring kernel in Fig. 2 (f)(l).

The proposed method works well for faces with poses

from -30 to +30 degree, though it should be noted that

errors in registration and blurring kernel may increase for

faces with poses from ±60 to ±90 degree, as after all only

frontal faces are used in training and homography becomes

not sufficient. The performance of methods in [28, 11, 24]



(a) (b) (c) (d) (e)

Figure 5. Results of face hallucination in real LR sequences. (a) Multiple LR faces obtained by tracking forwardly and backwardly in

sequences. (b) Results of bi-cubic interpolation. (c) Results of generic HMRF prior in combination with a fixed Gaussian blurring kernel

with σ = 0.4s and transformations initialized by tracking. (d) Results of PCA prior in combination with a fixed Gaussian blurring kernel

with σ = 0.4s and transformations initialized by tracking. (e) Results of the proposed method using patch-wise MPPCA in combination

with an estimated blurring kernel and estimated transformations. The images are better viewed by zooming.

also relies on the accuracy of face alignment, however a

whole dataset needs to be aligned to an LR face and usually

efficient early pruning by PatchMatch is essential. In prac-

tice, their performance may further degrade due to unknown

blurring kernel and unavailable GT HR faces of same indi-

viduals as shown in [24].

4.2. Real LR sequences

The proposed method was also applied to super-resolve

LR faces in challenging real sequences, where LR faces in

those sequences are usually not frontal and heavily blurred.

GT of both blurring kernel and transformations are not

available. LR faces with size range 12−30 in the sequences

are super-resolved by s = 3, where 5 consecutive fields are

used for SR due to interlaced video format. Note that only

LR faces, rather than whole images, in sequences are super-

resolved, and only the luminance channel is super-resolved.

Examples of results using bi-cubic interpolation, generic

HMRF prior [19] and PCA prior [3, 15], in combination

with a fixed Gaussian blurring kernel with σ = 0.4s and

transformations initialized by tracking, are shown in Fig.

5(b-d), where multiple LR faces are obtained by tracking

forwardly and backwardly in sequences. Results of the

proposed method, using patch-wise MPPCA prior com-

bined with estimated blurring kernel and transformations,

are shown in Fig. 5 (e). It can be observed that although

the non-frontal faces are heavily blurred, results are much

improved to become clearer and sharper by the proposed

method.

5. Conclusions

The paper presented a robust multi-image based blind

face hallucination framework to super-resolve LR faces in

image sequences. The proposed method first explored face

PCA subspace, rather than original HR image space, for

robust deblurring and registration. A new patch-wise MP-

PCA prior, rather than weak generic image priors, was then

incorporated for face SR. Previous work on face SR using

PCA prior becomes special cases of the framework. The

proposed method improves face SR performance by com-

bining robust blurring kernel and transformation estimation

with the patch-wise MPPCA prior, and the experimental re-

sults in challenging simulated and real LR sequences shown

the very promising performance of the proposed method.
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