On learning optimized reaction diffusion processes for effective image restoration

Yunjin Chen1,2, Wei Yu1, Thomas Pock1,3
1ICG, Graz University of Technology 2PDL, National University of Defense Technology
3Digital Safety & Security Department, AIT Austrian Institute of Technology GmbH

Image restoration is a long-standing problem in low-level computer vision with many interesting applications. The goal of this work is to propose a simple but effective approach with both high computational efficiency and high restoration quality. To that end, we extend conventional nonlinear reaction diffusion models by several parametrized linear filters as well as several parametrized influence functions.

In the fully discrete case \(u \in \mathbb{R}^N \), the conventional Perona-Malik type nonlinear diffusion process \([5]\) is formulated as the following discrete PDE with an explicit finite difference scheme

\[
\frac{u_{t+1} - u_t}{\Delta t} = - \sum_{i \in [x]} \nabla_i^T \Lambda(u_t) \nabla_i u_t - \sum_{i \in [y]} \nabla_i^T \phi(\nabla_i u_t),
\]

where matrices \(\nabla_x^T \) and \(\nabla_y^T \in \mathbb{R}^{N \times N} \) are finite difference approximation of the gradient operators in \(x \)-direction and \(y \)-direction, respectively and \(\Delta t \) denotes the time step. \(\Lambda(u_t) \in \mathbb{R}^{N \times N} \) is defined as a diagonal matrix

\[
\Lambda(u_t) = \text{diag} \left(g \left(\sqrt{(\nabla_x u_t)^2 + (\nabla_y u_t)^2} \right) \right)_{p=1, \ldots, N},
\]

where function \(g \) is known as edge-stopping function. If ignoring the coupled relation between \(\nabla_x u_t \) and \(\nabla_y u_t \), the P-M model can also be written as the second formula on the right side in \((1)\), where \(\phi(\nabla u) = (\phi(\nabla u)_1, \ldots, \phi(\nabla u)_N)^T \in \mathbb{R}^N \) with function \(\phi(z) = zg(z) \), known as influence function.

By introducing more linear filters and adjustable influence functions, our proposed nonlinear reaction diffusion model is formulated as

\[
\frac{u_{t+1} - u_t}{\Delta t} = - \sum_{i \in [x]} K_i^{(x)} \phi_i^{(x)} (u_{t+1} - u_t) - \psi(u_{t+1}, f_u),
\]

where \(K_i^{(x)} \in \mathbb{R}^{N \times N} \) is a highly sparse matrix, implemented as 2D convolution of the image \(u \) with the filter kernel \(k_i \), i.e., \(k_i u \Rightarrow k_i * u \), \(K_i \) is a set of linear filters and \(N_i \) is the number of filters. The specific formulation for the reaction term \(\psi(u) \) depends on applications. In our work, instead of making use of the well-chosen filters and influence functions, we train the nonlinear diffusion process for specific image restoration problems, including both the linear filters and the influence functions.

In this paper, we train our models for two representative image restoration problems: (1) image denoising with Gaussian noise and (2) JPEG blocking artifacts reduction. We use a loss minimization scheme to train the linear filters and the influence functions.

Table 1: Average PSNR (dB) on 68 images from for image denoising with \(\sigma = 15, 25 \).

<table>
<thead>
<tr>
<th>Method</th>
<th>(\sigma = 15)</th>
<th>(\sigma = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM3D ([2])</td>
<td>28.56</td>
<td>25.64</td>
</tr>
<tr>
<td>LSSC ([4])</td>
<td>28.70</td>
<td>27.83</td>
</tr>
<tr>
<td>EPLL ([7])</td>
<td>28.87</td>
<td>27.98</td>
</tr>
<tr>
<td>opt-MRF ([1])</td>
<td>28.78</td>
<td>28.92</td>
</tr>
</tbody>
</table>

Table 2: Run time comparison for image denoising (in seconds) with different implementations. (1) The run time results with gray background are evaluated with the single-threaded implementation on Intel(R) Xeon(R) CPU E5-2680 v2 @ 2.80GHz; (2) the blue colored run times are obtained with multi-threaded computation using Matlab \texttt{parfor} on the above CPUs; (3) the run time results colored in red are executed on a NVIDIA GeForce GTX 780Ti GPU. We do not count the memory transfer time between CPU/GPU for the GPU implementation (if counted, the run time will nearly double)

<table>
<thead>
<tr>
<th>Method</th>
<th>(\sigma = 15)</th>
<th>(\sigma = 25)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM3D ([2])</td>
<td>256.2</td>
<td>512.2</td>
</tr>
<tr>
<td>LSSC ([4])</td>
<td>1024.2</td>
<td>2048.2</td>
</tr>
<tr>
<td>WNNM ([3])</td>
<td>256.2</td>
<td>512.2</td>
</tr>
<tr>
<td>TRD(_{5 \times 5})</td>
<td>0.43</td>
<td>0.78</td>
</tr>
<tr>
<td>TRD(_{7 \times 7})</td>
<td>0.56</td>
<td>1.17</td>
</tr>
</tbody>
</table>

1) It is conceptually simple as it is just a time-dynamic nonlinear reaction diffusion model with trained filters and influence functions;
2) It has broad applicability to a variety of image restoration problems. In principle, all existing diffusion based models can be revisited with appropriate training;
3) It yields excellent results for several tasks in image restoration, including Gaussian image denoising, and JPEG deblocking;
4) It is computationally very efficient and well suited for parallel computation on GPUs.