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The problem of recovering intrinsic properties of a scene/object from im-
ages has attracted much attention in the past decade. Tremendous efforts
have been focused on intrinsic properties related to shading and reflectance
[1, 2]. In this paper, we explore a challenging type of intrinsic properties
called the ambient occlusion map. Ambient Occlusion (AO) characterizes
the visibility of a surface point due to local geometry occlusions. Given
a scene point x, its AO measures the occlusion of ambient light caused by
local surface geometry:

A(x) =
1
π

∫
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v(x, ẇ)〈ẇ · ṅ〉dẇ (1)

where ẇ is the direction of incident light; ṅ is the normal of x; and 〈·〉 refers
to the dot product. v(x, ẇ) is the local visibility function and is equal to 0 if
the light ray from ẇ is occluded from x.

Intuitively, we can illuminate the object using a dense set of uniform
directional lights ẇi and sum up images captured from all directions.

N

∑
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Ii = ρ

N

∑
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vi〈ẇi · ṅ〉= ρÃc (2)

AO term Ã cannot be resolved since the albedo ρ is also unknown.
Hauagge et.al [3] assume the visibility function follows cone-shaped dis-
tribution centered at the normal as A = π sin2

α , α is the cone’s half an-
gle. Under uniformly distributed lighting, they show that computing κ =
E[I]2/E[I2] (E[·] stands for expectation) directly cancels the albedo. For
their assumption to work, densely distributed light sources will be needed.

Instead of capturing one lighting direction at a time, we aim to en-
able multiple lighting directions in one shot. A downside though is that
we cannot use the κ statistics to cancel out the albedo. Instead, we build
our solution on compressive signal reconstruction. We use a binary vector
b = [l1, ...lN ] to represent the status of N lighting directions, where li = 1 or
0 corresponds to if the lighting direction ẇi is enabled or disabled. We have:

I = ρ

N

∑
i=1

livi〈ẇi · ṅ〉 (3)

We can now use a set of M strategically coded directional lighting pat-
terns. For each pattern b j, j = 1...M, we capture an image I j. This results
in an M×N measurement matrix B = [b1,b2....bM ]T . Rewrite Eqn. 3 as

I = ρB[V ∗W (ṅ)] (4)

where W (ṅ) = [〈ẇ1 · ṅ〉,〈ẇ2 · ṅ〉, ...,〈ẇN · ṅ〉] and [∗ ] refers to the pairwise
element-wise product. Given the measurements, we aim to solve for ρ , V
and ṅ. Our solution is to reduce the problem to two sub-problems and solve
them using iterative optimization.

Visibility Recovery Sub-problem. V is a binary pattern and solving V in
this optimization is NP-hard. We reduce this problem to an `∞ regularized
`1 minimization:

ρ̂,V̂ ← argmin
ρ,V

{
‖ρB(W0 ∗V )− I‖2

2 +λ1‖V‖1

+λ1‖V −0.5‖∞ +λ2‖∇V‖1
} (5)

where λ1,λ2 and λ3 are weighting factors. The new objective function con-
sists of four terms: 1) ‖ρB(W0 ∗V )− I‖2

2 corresponds to the fidelity term
where the estimated V should be consistent with the observed pixel intensi-
ties I; 2) ‖V‖1 is the sparse prior term that forces the visibility of negligible
light directions should be zero. With this term, the solution would favor a
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sparse set of visible light directions; 3) ‖V −0.5‖∞ is the binary prior term.
It is used to clamp the elements of V with high values to 1 and lows values
to 0. Combining ‖V‖1 and ‖V −0.5‖∞ with weighting factors allows us to
obtain an approximate binary solution; and 4) ‖∇V‖1 is the total variation
term, i.e., to bias towards a solution with compact visible areas.

Normal Recovery Sub-problem We then threshold the V̂ to get a binary
visibility vector Ṽ . Now that we have both the visibility vector and albedo,
we can refine the estimation of normal ṅ by solving for the following least
square problem:

ρ̄, ¯̇n← argmin
ρ,ṅ

‖ρ̂B[W (ṅ)∗Ṽ ]− I‖2

Subject to ‖ṅ‖2 = 1
(6)

Specifically, we relax the constraint to ‖ṅ‖ 6 1 and solve it via con-
strained least square minimization. Next, we use the result ¯̇n to update W .
We repeat the process to iteratively improve the visibility and normal esti-
mation.

We construct an encodable directional light source using the light field
probe [4] and validate our approach. Experiments show that our scheme
produces AO estimation at comparable accuracy to [3] but with a much s-
maller set of images. In addition, we can recover more general visibility
functions beyond the normal-centered cone-shaped models.
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