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Figure 1: Proposed hybrid architecture. The first three layers — (u), (u3) and (u3) — are unsupervised. Image patches are described by PCA-projected
SIFT or color descriptors (u). These descriptors are then embedded using FV-encoding, aggregated at the image level and normalized by square-rooting
and ¢>-normalization (u7). The resulting high-dimensional FV is PCA-projected and re-normalized (u3). The supervised layers (s}), (s2), .. (s;_1) involve
a linear projection followed by a reL.U. The last layer (sz.) involves a linear projection followed by a softmax or a sigmoid and produces the label estimates.
Our architecture can be considered deep as it stacks several unsupervised and supervised layers.

Two image classification paradigms have dominated the ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [11] in recent years: Fisher
Vectors (FV) [12] and Convolutional Neural Networks (CNN) [8]. FVs
involve extracting local descriptors, encoding them with high-order statis-
tics, aggregating them, and feeding them to kernel classifiers such as linear
SVMs. As for CNNs [9], they are feed-forward architectures which involve
multiple computational layers that alternate linear operations such as con-
volutions and non-linear operations such as max-pooling.

While CNNs have lately shown superior accuracy on large-scale clas-
sification tasks, deep architectures come with challenges. This includes the
requirement for large amounts of training data, their high computational cost
which makes training on GPUs or very large clusters a necessity, or their
lack of geometric invariance. This explains why the FV is still very com-
petitive for certain tasks — see the winning system [7] at the Fine-Grained
Visual Competition 2013 [2]. Hence, several works [13, 14] have started
exploring the combination of FVs and CNNs.

Our first contribution is a novel hybrid architecture that combines the
best of both worlds. Its first layers are unsupervised and involve the compu-
tation and dimensionality reduction of high-dimensional FVs. This is fol-
lowed by a set of supervised fully connected Neural Network (NN) layers —
akin to a Multi-Layer Perceptron (MLP) — trained through back-propagation.
See details in the Figure above and in the full paper. We show experimen-
tally on the ILSVRC 2010 dataset that the proposed architecture signifi-
cantly outperforms previous FV-based pipelines and that it comes close to
the accuracy of the “AlexNet” [8]: 17.6% top-5 error rate for our system vs.
17.0% for the latter.

Because it is unpractical to collect large amounts of labeled data for
each new task, we are also interested in transferring the mid-level features
learned by our architecture. Transferring features derived from deep classi-
fiers either to different class sets or even to new tasks (e.g. image retrieval
or object detection) has been a very active research topic lately [1, 4, 6, 10].

Our second contribution is to show that we can derive mid-level fea-
tures from our hybrid architecture which are competitive with those derived
from CNNs. For instance, we conducted experiments where we pre-trained
our architecture (with three hidden supervised layers and 4K units per hid-
den layer) on ILSVRC’12 and, given a new image, we used the output of
the penultimate layer as a novel representation. Using such features, we re-
port on PASCAL VOC’07 [5] a competitive 76.2% mean Average Precision
(mAP). This is far above the best FV results reported in [3] — 68.0% mAP.
Using these mid-level features we also report in the full paper competitive
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results for the problem of instance-level image retrieval on the INRIA Holi-
days and UKB datasets.
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