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The objective of this paper is to design an effective embedding method map-
ping local features describing image (e.g. SIFT) to a higher dimensional
representation used for image retrieval problem.

There is a wide range of methods [1, 2, 4, 5, 6, 7, 8] for finding a single
vector to represent a set of local vectors proposed in the literature. Among
these methods, VLAD [4] is a well-known embedding method used in image
retrieval problem while TLCC [7] is one of successful embedding methods
used in image classification problem.

VLAD and TLCC come from different motivations. VLAD’s motiva-
tion is to characterize the distribution of residual vectors over Voronoi cells
learned by a quantizer while TLCC’s motivation is to linearly approximate
a nonlinear function in high dimensional space, i.e., the nonlinear function
f (x) defined on Rd is approximated by wT φ(x) defined on RD where D> d.
Despite above differences, we show that VLAD is actually simplified ver-
sion of TLCC. This means that we can depart from the idea of linear approx-
imation of function to develop good embedding methods for image retrieval
problem.

In TLCC, f is approximated using only its first order derivative informa-
tion. In this paper, we propose to approximate f using higher order deriva-
tive information.

TLCC relied on the idea of coordinate coding defined bellow.

Definition 0.1 Coordinate Coding [8]
A coordinate coding of a point x ∈ Rd is a pair (γ(x),C), where C =
[v1, . . . ,vn] ∈ Rd×n is a set of n anchor points, and γ is a map of x ∈ Rd

to γ(x) = [γv1(x), . . . ,γvn(x)]
T ∈ Rn such that ∑

n
j=1 γv j (x) = 1. It induces

the following physical approximation of x in Rd: x′ = ∑
n
j=1 γv j (x)v j. A

good coordinate coding should ensure that x′ closes to x.

Our Function Approximation-based embedding (FAemb) method is based
on the following lemma.

Lemma 0.2 If f : Rd→R is of class of Ck+1 on Rd and ∇k f (x) is Lipschitz
continuous with constant M > 0 and (γ(x),C) is coordinate coding of x,
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where α is multi-index notation [3].
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where V (A) is vectorization function flattening the matrix A to a vector by
putting its consecutive columns into a column vector. ∇2 is Hessian matrix.

The result derived from (2) is that the nonlinear function f (x) can be
approximated by linear form wT φ(x) where w can be defined as
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Table 1: Comparison with the state of the art on Holidays and Oxford5k
datasets. The frameworks are named by embedding methods used. n is
number of anchor points. D is dimension of embedded vectors. Reference
results are obtained from corresponding papers.

Frame n D mAP
work Hol. Ox5k

VLAD [4] 256 16,384 58.7 -
Fisher [4] 256 16,384 62.5 -

VLADLCS [2] 64 8,192 65.8 51.7
VLADintra [1] 64 8,192 56.5 44.8
VLADintra [1] 256 32,536 65.3 55.8

VLATimproved [6] 64 9,000 70.0 -
Temb [5] 64 8,064 72.2 61.2
Temb [5] 128 16,256 73.8 62.7

Our framework
FAemb 8 7,245 72.7 63.6
FAemb 16 15,525 75.8 67.7
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2
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and the embedded vector φ(x)-

FAemb can be defined as

φ(x) =
[
s1γv j (x);s2γv j (x)(x−v j);

γv j (x)V
(
(x−v j)(x−v j)

T
)]n

j=1 ∈ Rn(1+d+d2) (3)

where s1,s2 are nonnegative scaling factors to balance three types of codes.
In order to get a good approximation of f , the RHS of (2) should be

small enough. Furthermore, from definition of coordinate coding 0.1, (γ(x),C)
should ensure that the reconstruction error ‖x′−x‖2 should be small. Putting
two above criteria together, we find (γ(x),C) which minimize the following
constrained objective function

Q(γ(x),C) = ‖x−Cγ(x)‖2
2 +µ

n
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1

st. 1T
γ(x) = 1 (4)

After learning C using training descriptors (e.g. minimizing (4) over
training set), given a new descriptor x, we get γ(x) by minimizing (4) us-
ing learned C. From γ(x), we get the embedded vector φ(x)-FAemb by
using (3).

Table 1 presents results of our image retrieval framework using FAemb
embedding method and the state of the art on Holidays and Oxford5k datasets.
FAemb compares favorably with state-of-the-art embedding methods for im-
age retrieval, such as VLAD, Fisher kernel, Temb, even with a shorter pre-
sentation.
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