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The objective of this paper is to design an effective embedding method map-
ping local features describing image (e.g. SIFT) to a higher dimensional
representation used for image retrieval problem.

There is a wide range of methods [1, 2, 4, 5, 6, 7, 8] for finding a single
vector to represent a set of local vectors proposed in the literature. Among
these methods, VLAD [4] is a well-known embedding method used in image
retrieval problem while TLCC [7] is one of successful embedding methods
used in image classification problem.

VLAD and TLCC come from different motivations. VLAD’s motiva-
tion is to characterize the distribution of residual vectors over Voronoi cells
learned by a quantizer while TLCC’s motivation is to linearly approximate
a nonlinear function in high dimensional space, i.e., the nonlinear function
f(x) defined on R is approximated by w” ¢ (x) defined on R where D > d.
Despite above differences, we show that VLAD is actually simplified ver-
sion of TLCC. This means that we can depart from the idea of linear approx-
imation of function to develop good embedding methods for image retrieval
problem.

In TLCC, f is approximated using only its first order derivative informa-
tion. In this paper, we propose to approximate f using higher order deriva-
tive information.

TLCC relied on the idea of coordinate coding defined bellow.

Definition 0.1 Coordinate Coding [8]

A coordinate coding of a point x € R? is a pair (y(x),C), where C =
[Vi,...,V4] € R& is a set of n anchor points, and ¥ is a map of x € R?
10 Y(x) = [, (X),..., %, (X)) € R" such that i W, (x) = L. It induces
the following physical approximation of x in R4: x' = ):;f:] Y, (X)vj. A
good coordinate coding should ensure that X' closes to x.

Our Function Approximation-based embedding (FAemb) method is based
on the following lemma.

Lemma 0.2 If f: RY — Ris of class of C*t1 on R? and V¥ f(x) is Lipschitz
continuous with constant M > 0 and (y(x),C) is coordinate coding of X,
then
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where o is multi-index notation [3].
If k =2, then (1) becomes
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where V(A) is vectorization function flattening the matrix A to a vector by

putting its consecutive columns into a column vector. V2 is Hessian matrix.
The result derived from (2) is that the nonlinear function f(x) can be

approximated by linear form w’ ¢ (x) where w can be defined as
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Table 1: Comparison with the state of the art on Holidays and Oxford5k
datasets. The frameworks are named by embedding methods used. n is
number of anchor points. D is dimension of embedded vectors. Reference
results are obtained from corresponding papers.

Frame n D mAP

work Hol. | Ox5k

VLAD [4] 256 16,384 | 58.7 -

Fisher [4] 256 16,384 | 62.5 -
VLADj cs [2] 64 8,192 | 658 | 51.7
VLADjra [1] 64 8,192 | 56.5 | 448
VLADjra [1] 256 32,536 | 653 | 55.8

VLATimproved [6] 64 9,000 | 70.0 -
Temb [5] 64 8,064 | 722 | 61.2
Temb [5] 128 16,256 | 73.8 | 62.7

Our framework

FAemb 8 7,245 | 727 | 63.6
FAemb 16 15,525 | 75.8 | 67.7
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FAemb can be defined as

Lf(v); %Vf(vj);% (v (sz(vj)))r‘ | and the embedded vector ¢ (x)-
2 =

¢(X) = [SIYV_,' (X);SQ’}/VI(X)(X— Vj);

W, (x)V ((X—Vj)(x—vj)T> ];:1 c Rr(1+d+d?)
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where 51,57 are nonnegative scaling factors to balance three types of codes.

In order to get a good approximation of f, the RHS of (2) should be
small enough. Furthermore, from definition of coordinate coding 0.1, (y(x), C)
should ensure that the reconstruction error ||x" — x||, should be small. Putting
two above criteria together, we find (y(x), C) which minimize the following
constrained objective function

0(Y(x).C) =[x~ Cy)[3 + Zl 7, ] x =,
2

st. 1T y(x) =1 “)

After learning C using training descriptors (e.g. minimizing (4) over
training set), given a new descriptor X, we get y(x) by minimizing (4) us-
ing learned C. From 7(x), we get the embedded vector ¢ (x)-FAemb by
using (3).

Table 1 presents results of our image retrieval framework using FAemb
embedding method and the state of the art on Holidays and Oxford5k datasets.
FAemb compares favorably with state-of-the-art embedding methods for im-
age retrieval, such as VLAD, Fisher kernel, Temb, even with a shorter pre-
sentation.
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