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Figure 1: Examples of rank-2 constructive extensions. Several smaller min-
imal cases are glued together with a few extra constraints. For these ex-
tensions the multiplicity of solutions grows as nW = nW1 nW2 respectively
nW = 2nW1 nW2 nW3 . We have implemented the method of extending the al-
gorithms, i.e. { fW1 , fW2 , . . . fWn}→ fW .

Low-rank matrix factorization is an essential problem in many areas includ-
ing computer vision, with applications in e.g. affine structure-from-motion,
photometric stereo, and non-rigid structure from motion. However, very
little attention has been drawn to minimal cases for this problem or to us-
ing the minimal configuration of observations to find the solution. Minimal
problems are useful when either outliers are present or the observation ma-
trix is sparse. In this paper, we first give some theoretical insights on how
to generate all the minimal problems of a given size using Laman graph
theory [1, 2]. We then propose a new parametrization and a building-block
scheme to solve these minimal problems by extending the solution from a
small sized minimal problem.

Low rank matrix factorization is usually formulated as minimizing

min
U,V
‖W � (X−UTV )‖, (1)

where ‖.‖ is a matrix norm – typically the L1- or L2-norm. The binary
matrix W ∈ {0,1}m×n is used to indicate if a certain entry X(i, j) is present
(W (i, j) = 1) or missing (W (i, j) = 0). Here � is the Hadamard product,
that is, the element-wise product.

An index matrix W is said to be rigid if for general data, the low-rank
matrix factorization problem given by

W � (X−UTV ) = 0, (2)

is locally well defined. A minimal low-rank matrix factorization problem is
finding two factor matrices U and V that exactly solves (2), where W is a
minimal index matrix and X is the measurement matrix. For the minimal
problem, with general coefficients, characterized by a minimal index matrix
W , there is a finite number nW > 0 of solutions, where nW only depends on
the index matrix W .

The minimal problems in low-rank matrix factorization can be con-
structed in a recursive way. The idea is that one starts with the smallest
index matrix, and by a series of extensions every index matrix can be gener-
ated. For example, for r = 2, the smallest index matrix is

W =

[
1 1
1 1

]
. (3)

From this we can construct new minimal index matrices. We distinguish be-
tween constructive extensions and non-constructive extensions. For a con-
structive extension from W to W ′, one can infer the number of solutions
nW ′ from nW and construct the solver, denoted by fW ′ from fW . For non-
constructive extensions, it can be shown that W is minimal if and only if W ′
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Figure 2: The results on the Book (top) and Hand (bottom) dataset using
our method with an extra 10% missing data added in the blocks. The blue
crosses are the measurements. The yellow dots are the recovered measure-
ments (usually coinciding with the actual measurement). The green dots are
the recovered missing data.

Algorithm 10 % missing data

Dataset [3] Our [3] Our

Book 0.3522 0.1740 8.0436 0.1772
Hand 0.8613 0.6891 1.5495 0.7297

Table 1: The result on linear shape basis estimation on the Book and Hand
dataset, where the second experiment contains an extra 10% missing data.
The numbers depict the Frobenius errors using our method compared to the
method of [3].

is minimal. However, we can in general neither infer the number of solu-
tions nW ′ from nW nor derive a solver fW ′ from fW . We propose extensions
and reductions which are denoted Henneberg-k extensions/reductions. Of
these Henneberg-1 is constructive, whereas Henneberg-k are generally non-
constructive. We also show how several minimal problems can be ”glued”
in a constructive way, as in Fig. 1.

The minimal solvers can be used in a RANSAC framework to han-
dle both missing data and outliers. We have tested our methods on both
synthetic data and real data in two applications, namely affine structure
from motion and non-rigid structure-from-motion. We have compared our
method to a number of the state-of-the-art methods. In Table 1 the results on
non-rigid structure-from-motion are shown. The visual result of our method
is shown in Fig. 2.
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