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1 Introduction

In this paper, we introduce the concept of shape signals, i.e., series of shapes
which have a natural temporal or spatial ordering, as well as a variational
formulation for the regularization of these signals. The latter can be seen as
generalization of the Rudin-Osher-Fatemi (ROF) functional to shape-valued
data, cf. also [4]. Our framework is generic in the sense that it can be com-
bined with any shape space. Concretely, we derive a variant of the classical
finite-dimensional representation of Kendall which allows for the explicit
computation of geodesics. So, it facilitates the efficient numerical treatment
of the variational formulation by means of a cyclic proximal point algo-
rithm. Similar to the ROF-functional, we demonstrate experimentally that
`1-type penalties both for data fidelity term and regularizer perform best in
regularizing shape signals. Finally, we show applications of our method to
shape signals obtained from synthetic, photometric, and medical data sets.

2 The Model

A shape(-valued) signal of length k is a vector f = (f1, . . . , fk) ∈Mk, with
each member being an element of the shape space M. We assume that f
is given, e.g., as a result of a segmentation algorithm; we wish to find a
regularized version x∗ which is given as a minimizer of the functional

E(x) = D(x, f)+αR(x), α > 0. (1)

While D(x, f) is a data fidelity term which penalizes the deviation from f,
R(x) is a regularizer penalizing large variation in x. We consider data terms

D(x, f) =
k

∑
i=1

(h◦d)(xi, fi), (2)

where h is one of the following functions: h(s) = s which leads to an `1-type
penalization, h(s) = s2/2 which leads to an `2-type penalization, and

h(s) =

{
s2, s < 1/

√
2,√

2s−1/2, otherwise,
(3)

which yields the manifold-valued equivalent of the well-known Huber-norm
– a differentiable compromise between the `1-norm and the `2-norm. Fur-
therore, we consider regularizers of the form

R(x) =
k−1

∑
i=1

(h◦d)(xi,xi+1). (4)

As d(xi,xi+1) can be considered as a manifold-valued forward difference,
R can be interpreted as a first order approximation of the classical Tikhonov
regularizer in case of h(s) = s2/2. Further, it can be seen as the total varia-
tion regularizer if h(s) = s. In case of (3), R is a shape-valued differentiable
approximation of the total variation regularizer (sometimes called Huber-
ROF), which can be used to avoid the staircasing problem associated with
total variation denoising, cf. Chambolle and Pock [1].

3 The Shape Space

We derive a shape representation which is not rotationally invariant which
we call oriented Kendall shapes. By normalizing x w.r.t. translation, we
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Figure 1: Regularization of Shape Signals: Objects segmented from video
data enjoy a natural temporal ordering and thus form a shape signal. First
row: Three frames of the "parachute" sequence from [3] segmented with the
method proposed by [2]. Second row: Regularized shapes obtained with our
method. Third and fourth row: Shape signal of the original segmentations
(third row) and regularized shape signal (fourth row). Only a few shapes of
this sequence are shown for better visibility. Shapes corresponding to the
selected frames are highlighted in red.

remove two real degrees of freedom and obtain as the representation space

V2n−2 =

{
x ∈ R2n :

2n

∑
i=1

xi = 0

}
⊂ R2n. (5)

Next, we notice that a shape x ∈ V2n−2 can be scaled by multiplying all
components xi with a real number s 6= 0. Consequently, all shapes x which
are equivalent w.r.t. translation and scaling lie on the real line

Lx = {s · x : s ∈ R\{0}}. (6)

In other words, Lx is the equivalence class of all shapes which are equiva-
lent w.r.t. translations and scalings. The set of all these equivalence classes
can now be identified with the real projective space RP2n−3 or, synony-
mously, with the real unit sphere S2n−3

R (with antipodal points identified).
This means that by enforcing scale invariance we are removing another de-
gree of freedom. As a consequence, the exponential mapping and the inverse
exponential mapping are given by the respective mappings of Sn−3

R . In con-
trast to the rotation invariant version of the Kendall shape space, we employ
the real-valued scalar product 〈x,y〉= ∑

n
i=1 xiyi as well as its induced norm

on S2n−3
R .
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