“Visual textures” are regions of images that exhibit some form of spatial regularity. In applications such as texture synthesis and classification, algorithms require a small texture to be provided as an input, which is assumed to be representative of a larger region to be re-synthesized or categorized. We aim to characterize and infer such representatives automatically. We construct a new representation that compactly summarizes a texture, while using significantly less storage, that can be used for texture compression and synthesis.

To characterize visual textures we use the notions of Markovianity, stationarity and ergodicity. A texture is then defined as a region Ω of an image I that can be rectified into a sample of a stochastic process that is stationary, ergodic and Markovian. It is parametrized by (a) the Markov neighborhood ω and its Markov scale $r = |\omega|$, (b) the stationarity region $\bar{\Omega}$ and its stationarity scale $\sigma = |\bar{\Omega}|$, (c) a sufficient statistic θ_{ω} defined on ω, and (d) Ω, the texture region. Note that $\omega \subset \Omega$. In describing a texture, we seek the smallest ω, in the sense of minimum area (“scale”) $|\omega| = r$, so the corresponding θ_{ω} is a minimal (Markov) sufficient statistic.

In a non-parametric setting, θ_{ω} is a collection of intensity values. $\omega = \bigcup_{k=1,...,K} \omega_k$ is the union of K sample regions ω_k. Collectively the neighborhoods capture the variability of the texture. A texture is represented by $\theta_{\omega} = \{\theta_{\omega,1}, \theta_{\omega,2}, \ldots, \theta_{\omega,M}\}$.

Collectively the neighborhoods ω define the texture space $\bar{\Omega}$. For each neighborhood ω_k, we synthesize a novel instance of the texture, starting from ω_k and its nearest neighbor in ω_k. The nearest neighbor ω_k is uniquely specified by the image given r and ω_k (Fig. 1).

Given a representation $\{\omega, \omega, \theta_{\omega}\}$, we can synthesize novel instances of the texture by sampling from $dP(I(\omega))$ within ω_k. We choose a subset of neighborhoods from ω that satisfy the compatibility conditions and by construction also respect the Markov structure. We perform this selection and simultaneously also infer I by minimizing [1],

$$E(I, \{\omega_k\}) = \sum_{\omega_k \in \Omega} v_{\omega_k}||I(\omega_k) - I(\omega_k)||^2.$$

An illustration of the quantities involved is shown in Fig. 1. v_{ω_k} is used to reduce the effect of outliers. The process is performed in a multi-scale and multi-resolution fashion.

We extend synthesis to video, by performing synthesis using a causal approach. We use the already synthesized frames from previous time steps as a boundary condition and extend the textures to the next frame. Using a causal approach we also synthesize multiple textures simultaneously for video and images without computing a segmentation map. This is useful for applications such as video compression, hole-filling and frame interpolation (see Fig. 2). Boundary conditions are implicitly defined by the computed “structure” regions of the videos.

To evaluate the quality of the texture synthesis algorithm, we need a criterion that measures the similarity of the input, I, and synthesized, \hat{I}, textures. We introduce the Texture Qualitative Criterion (TQC), represented by E_{TQC}, which is composed of two terms. The first, $E_1(I, \hat{I})$, penalizes structural dissimilarity, whereas $E_2(I, \hat{I})$ penalizes statistical dissimilarity. Let $\omega = \omega_k$ be patches within Ω, the domains of Ω, and their nearest neighbors be ω_k/ω_k, which are selected within the domains of I/\hat{I}.

$$E_1(I, \hat{I}) = \frac{1}{2N} \sum_{r=1}^{N} ||I(\omega_k) - \hat{I}(\omega_k)||^2,$$

$$E_2(I, \hat{I}) = \frac{1}{2N} \sum_{r=1}^{N} ||\phi(I(\omega_k)) - \phi(\hat{I}(\omega_k))||^2.$$