A Linear Least-Squares Solution to Elastic Shape-from-Template

Abed Malti, Adrien Bartoli, Richard Hartley
1 Fluminance/NRIA, Rennes, France. 2 ALCoV/ISIT, UMR 6284 CNRS/Université d’Auvergne, Clermont-Ferrand, France.
3 Australian National University and NICTA, Canberra, Australia

<table>
<thead>
<tr>
<th>Method</th>
<th>Deformation</th>
<th>Time</th>
<th>Acc</th>
<th>Noise</th>
<th>Init/params</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isometric</td>
<td>Conformal</td>
<td>Elastic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>analytic-GbM [2]</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>non-linear-GbM [3]</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>non-linear-MbM [4]</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>sequential-MbM [1]</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>linear-MbM-Proposed</td>
<td>+</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 1: Strong (+) and weak (-) points of state-of-the-art SfT methods. GbM stands for geometric method and MbM for mechanical methods. Time is the computational cost. Acc is the accuracy of the method to recover the deformed shape. Noise is the sensitivity of the method to image noise. Init/params tells if the method requires an initial shape or hyper-parameters (-) or not (+). Isometric SfT methods are limited to isometric deformations and are not mentioned.

SfT (Shape-from-Template) is to reconstruct a 3D deformed surface from its image, a 3D shape template and some priors among the physics or the statistics which rule the deformation. In physics-based priors, the geometric and mechanical priors are the most used. This paper uses the latter one. While geometric priors tend to use invariant measures between deformations, mechanical priors represent the physics that rules the deformation. Such methods have the potential for real applications since they address a wider class of deforming objects such as organs, tissues and other elastic objects.

Current geometric/mechanical SfT methods suffer from caveats that are summarized in table 1. First, the types of deformations: geometric approaches [2, 3] may not behave well when the prior is not fulfilled by the deformation, while mechanical methods [1, 4] cover a larger range of deformations (such as linear elasticity). Second, the tradeoff between accuracy and speed of estimation. Analytical solutions [2] are fast but with lower accuracy. Non-linear optimization methods [3, 4] are more accurate but at a higher computational cost. Moreover, their accuracy depends on the initialization and on some hyper-parameters. Methods based on Kalman filtering [1] also require an initialization step besides the fact that errors may accumulate over the considered time frame. In summary, physics-based approaches lack a method which is (i) able to exploit the mechanical constraints to cover a large deformation range, (ii) robust to noise, and (iii) both accurate and fast. Developing such a method is the main goal of this work. The answer we propose is to use mechanical constraints into a linear least-squares estimation framework.

We use finite elements (FEM) to represent the surface and the deformation. This is particularly adapted to SfT and fits the problem we want to solve. Indeed, only the finite discrete set of point correspondences has a natural boundary condition through the RBC (Reprojection Boundary Constraint). Any other point of the surface is free from boundary conditions and is only subject to the physical prior. Thus, we use the finite set of correspondences as nodes of the elements (triangles). Each element is subject to the mechanical laws that rule the deformation. We use a weak formulation of both of these laws to derive a linear relation (via the stiffness matrix) between the displacement of the nodes and the external deforming forces. The assembly of all elementary matrices reconstruct the global stiffness matrix that links the global external deforming force to the global deformation δX. We further constrain the problem with a set of SBC (Solid Boundary Constraints) to rigidly position the template in the deformed image. Minimizing this force subject to the RBC and SBC is a linear least-squares problem that can be solved very efficiently.

Let n be the number of point correspondences. We propose to formalize

SfT as follows: find the 3D displacement field $(X, \delta X) \in \mathbb{R}^{3n} \times \mathbb{R}^{3n}$, where:

(i) δX minimizes the norm of the applied forces for the deformation, (ii) $X + \delta X$ satisfies the RBC, and (iii) X is a rigid positioning of the template in the deformed frame thanks to the SBC. See figure 1 for an illustration.

Formally speaking, finding $(X, \delta X)$ involves two main steps:

1. Find X from X_0 with a PnP method applied to the solid boundary points of SBC. X_0 is the template pose in the world coordinate frame.

2. Find δX such that:

$$
\min_{\delta X \in \mathbb{R}^{3n}} \frac{1}{2} \| K \delta X \|^2 \text{ s.t. } \left\{ \begin{array}{l}
P \delta X = b \quad \text{RBC} \\ S \delta X = 0 \quad \text{SBC} \end{array} \right.
$$

Matrix K is the stiffness matrix of size $3n \times 3n$. Note that $f = K \delta X$ is thus the vector of external forces to be minimized. P is an n-block diagonal matrix of dimension 2×3 per block. P and b enforce the fact that the n points must lie on the sightlines that pass through the n corresponding points in the deformed image. S is an $m \times 3n$ sparse matrix. It adds m depth displacement constraints which together with the corresponding $2m$ equations of RBC set the m solid boundary points. In the paper, we describe how to compute K and we show that if it is full rank, then there exists a unique solution to this problem.

In the paper, we test the proposed method on a various deformations using synthetic and real datasets. We compared the obtained results to the methods referenced in table 1. Our conclusion is, that the linear formulation together with mechanical priors covers a large panel of deformations and brings efficiency in both computation cost and accuracy.

