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In this paper, we focus primarily on image retrieval using binary codes [3].
In this approach, each image is encoded into a binary code such that the
nearest neighbors in the corresponding Hamming space remain the same as
the actual nearest neighbors in the original feature space. Calculating the
binary code, i.e. encoding, is in this case evaluating a mapping function f
from some d-dimensional inputs to k-dimensional outputs. However if d
and k are large, computational efficiency of f becomes a bottleneck at test
time.

Typically, a single bit in a binary code is obtained by a dot product
between the normal vector of a hyperplane and the feature vector, which
implies O(dk) time complexity. In [1] a bilinear projection is employed
to reduce the time complexity to O(d

√
k). Recently, [2] proposed to use

the columns of a circulant matrix as linear projections. This enables faster
projection to generate k-bits (k > 1) by Fast Fourier Transform (FFT) which
is O(d log(d)). In this paper, we propose an optimization that learns a sparse
projection to binary codes with a constraint on the computational budget.

We propose to find a mapping f that quantizes the data into binary val-
ues while: 1-minimizing the quantization error, and 2-minimizing the com-
putational cost of f .

We formulated the problem as learning of a prediction function fw :
X → Y , which is a many-one mapping between some input space X and
an output space Y that is parameterized by a parameter vector w. Given a
set of n training input-output pairs {(xi,yi)}n

i=1, the conventional empirical
risk minimization approach for learning the optimal parameter vector w∗
involves solving the following optimization problem:

w∗ = argmin
w

n

∑
i=1

`(yi, fw(xi)). (1)

where `(y, ŷ) is a loss function that measures the discrepancy between the
prediction ŷ and the ground truth output y.

A simple but popular representation for the prediction function for bi-
nary classification problems is fw(x) = sign(wTx), where sign is element
wise sign function {sign : R 7→ {+1,−1}}. In the case of binary codes
learning the parameter vector w is replaced by a parameter matrix W. In
this paper, we focus on binary code predictors that tie themselves to a fixed
computational budget. More formally, we want to solve the computation-
bounded risk minimization problem that is defined as:

argmin
W,b

∑
n
i=1 `(bi,sign(WTxi)) (2)

st. ‖w‖0 ≤ l (3)

where bi ∈ {−1,1}k is the desired binary code for xi and ‖w‖0 denotes the
`0 norm that counts the number of non-zero components of W since only
these many multiplications are needed to evaluate the function.

Sparse Projection When Binary Codes Are Given

To improve the computation cost of f , a relatively straightforward idea is
to make the matrix W sparse. When ‖W‖0 ≤ l, i.e. when number of non-
zero entries of W is at most l, then clearly f can be computed in O(l).
However, directly solving for `0-norm is intractable. Therefore, sparsity is
often incorporated by introducing an `1 penalty on the parameter matrix W
followed by thresholding.

W∗ = argmin
W
{‖WTX−B‖F +λ |W|`1} (4)

It can be shown that the optimal solution for W can be computed indepen-
dently for each column of W.
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Figure 1: Comparison of the accuracy (area-under-the-curve) and compu-
tational cost of the proposed algorithm (SBE) with the kd-tree method for
different sparsity values. The curves correspond to increasing code lengths
for SBE and decreasing bucket size for kd-tree. Our method achieves the
same accuracy as a kd-tree while being 100 times faster.

Joint Optimization

There is no guarantee that the exact codes can be reconstructed by sparse
mapping, we need to incorporate the search for binary codes into the main
objective. Similar to the Equation 4, we aim to minimize the quantization
error while maintaining the low `1-norm. In contrast to Equation 4, B is an
unknown variable.

(W∗,B∗) = argmin
W,B

{‖WTX−B‖F +λ |W|`1} (5)

To solve the optimization of Equation 5, we replace the matrix B with
an explicit sign function of an orthogonal projection of the data as follows:

(W∗,P∗) =argmin
W,P

{‖WTX− sign(PTX)‖F +λ |W|`1}

s.t. PTP = I
(6)

where P∈Rd×k is an orthogonal matrix. This orthogonal projection ensures
the low correlation between the bits, and also in contrast to Equation 5, it
provides an update for binary codes which is not directly dependent on W.
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