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Convolutional sparse coding (CSC) has become an increasingly important
tool in machine learning and computer vision. Image features can be learned
and subsequently used for classification and reconstruction tasks. As op-
posed to patch-based methods, convolutional sparse coding operates on whole
images, thereby seamlessly capturing the correlation between local neigh-
borhoods. Grosse et al. [3] were the first to propose a frequency domain
method for 1D audio signals, while [1, 2] later demonstrate efficient fre-
quency domain approaches for 2D image data. While this is the first step to-
wards making CSC practical, these frequency methods can introduce bound-
ary artifacts for both learning and reconstruction [4] and, as inherently global
approaches, make it difficult to work with incomplete data.

In this paper, we propose a new approach to solving CSC problems.We
propose a new splitting-based approach to convolutional sparse coding and
show that our method converges significantly faster and also finds better so-
lutions than the state of the art. In addition, the proposed method is the first
efficient approach to allow for proper boundary conditions to be imposed
and it also supports feature learning from incomplete data as well as general
reconstruction problems.

We propose the following, general formulation for convolutional sparse
coding:
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where zk are sparse feature maps that approximate the data term x when
convolved with the corresponding filters dk of fixed spatial support. M is a
diagonal or block-diagonal matrix, such that it decouples linear systems of
the form (MT M+ I)x = b into many small and independent systems that
are efficiently solved. This allows us to use unmodified filters in boundary
regions, thus preserving the convolutional nature of the problem without
requiring circular boundaries or other conditions. Furthermore, we show
that M allows for efficient learning and reconstruction from incomplete data.

To efficiently solve (1), we reformulate it as the following sum of func-
tions in (2).

argmin
d,z

f1(Dz)+
K

∑
k=1

( f2(zk)+ f3(dk)) , with (2)

f1(v) =
1
2
‖x−Mv‖2

2, f2(v) = β‖v‖1, f3(v) = indC(v),

where D is the matrix representing the sum of convolutions with all fil-
ters. The splitting into different functions, which might be unintuitive on the
first sight, leads to an efficient optimization method that separates the filter-
ing via D from the masking operator M in f1. The subproblem involving
filtering can then be solved efficiently in the spectral domain, while the the
subproblem involving M can be solved in the spatial domain. To achieve
this, we derive an optimization method for the general sum-of-function ob-
jectives from (3).

argmin
z

I

∑
i=1

fi (Kiz) , (3)

where Ki : Rbi×ai are arbitrary matrices, fi : Rbi → R are closed, proper,
convex functions, and i ∈ {1, . . . , I}, such that fi(K j · ) : Rai → R. For the
objective from (2) we derive a fast and flexible ADMM-based method which
then ultimately is specialized to solve (2).

For the popular datasets from [5], we plot the empirical convergence
of the proposed algorithm and compare it to the state of the art in Fig. 1.
In both cases we learn K = 100 filters. Our method outperforms recent
methods [1, 2] by a large margin (even when the others are augmented with
our factorization strategy).

This is an extended abstract. The full paper is available at the Computer Vision Foundation
webpage.
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Figure 1: Convergence for two datasets (left N = 10 images, right N =
100). The proposed algorithm converges to a better solution in less time
than competing methods.

Fig. 1 also shows that our method does in fact find lower objective to
the non-convex CSC problem. Fig. 2 shows the resulting filters after con-
vergence (ours after 13 iterations, Bristow after 300 iterations).

Figure 2: Filters learned on city dataset [5]. Filters learned with our method
(left) and with that described in [1, 2] (right). Our method finds a local
optimum with objective 3−4× lower than comparable methods.

In summary, we propose a new method for learning and reconstruction
problems using convolutional sparse coding. Our formulation is flexible
in allowing for proper boundary conditions, it allows for feature learning
from incomplete observations, or any type of linear operator applied to the
estimation. We demonstrate that our framework is faster than the state of
the art and converges to better solutions.

[1] Hilton Bristow and Simon Lucey. Optimization methods for convolu-
tional sparse coding. arXiv:1406.2407, 2014.

[2] Hilton Bristow, Anders Eriksson, and Simon Lucey. Fast convolutional
sparse coding. In Proc. CVPR, pages 391–398, 2013.

[3] Roger B. Grosse, Rajat Raina, Helen Kwong, and Andrew Y. Ng. Shift-
invariance sparse coding for audio classification. In Proc. UAI, pages
149–158, 2007.

[4] Koray Kavukcuoglu, Pierre Sermanet, Y-Lan Boureau, Karol Gregor,
Michaël Mathieu, and Yann LeCun. Learning convolutional feature hi-
erachies for visual recognition. In Proc. NIPS, 2010.

[5] Matthew D Zeiler, Dilip Krishnan, Graham W Taylor, and Robert Fer-
gus. Deconvolutional networks. In Proc. CVPR, pages 2528–2535,
2010.

http://www.cv-foundation.org/openaccess/CVPR2015.py
http://www.cv-foundation.org/openaccess/CVPR2015.py

