Topological data analysis offers a rich source of valuable information to study vision problems. Yet, so far we lack a theoretically sound connection to popular kernel-based learning techniques, such as kernel SVMs or kernel PCA. In this work, we establish such a connection by designing a multi-scale kernel for persistence diagrams (see Fig. 1), a stable summary representation of topological features in data. We show that this kernel is positive definite and prove its stability with respect to the 1-Wasserstein distance. Experiments on two benchmark datasets for 3D shape classification/retrieval and texture recognition show considerable performance gains of the proposed method compared to an alternative approach that is based on the recently introduced persistence landscapes.

Persistence diagrams. Persistence diagrams are a concise description of the topological changes occurring in a growing sequence of shapes, called filtration. In particular, during the growth of a shape, holes of different dimension (i.e., gaps between components, tunnels, voids, etc.) may appear and disappear. Intuitively, a k-dimensional hole, born at time b and filled at time d, gives rise to a point (b, d) in the k^{th} persistence diagram. A persistence diagram is thus a multiset of points in \mathbb{R}^2.

Filtrations from functions. A standard way of obtaining a filtration is to consider the sublevel sets $f^{-1}(-\infty, t]$ of a function $f : \Omega \to \mathbb{R}$ defined on some domain Ω. For $t \in \mathbb{R}$, it is easy to see that the sublevel sets indeed form a filtration parameterized by t. We denote the resulting persistence diagram by D_f. Example(s): Consider a grayscale image, where Ω is the rectangular domain of the image and f is the grayscale value at any point of the domain (i.e., at a particular pixel). A sublevel set would thus consist of all pixels of Ω with value up to a certain threshold t. Another example would be a piecewise linear function on a triangular mesh Ω, such as the popular heat kernel signature [6]. Yet another commonly used filtration arises from point clouds P embedded in \mathbb{R}^n, by considering the distance function $d_P(x) = \min_{p \in P} \|x - p\|$ on $\Omega = \mathbb{R}^n$. The sublevel sets of this function are unions of balls around P.

The persistence scale-space (PSS) kernel. We propose a stable multiscale kernel k_{σ} for the set of persistence diagrams D. This kernel will be defined via a feature map $\Phi_{\sigma} : D \to L_2(\Omega)$, with $\Omega \subset \mathbb{R}^2$ denoting the closed half plane above the diagonal, i.e., $\Omega = \{x = (x_1, x_2) \in \mathbb{R}^2 : x_2 \geq x_1\}$.

Since a persistence diagram D can be uniquely represented as a sum of Dirac delta distributions, we use the sum as an initial condition for a heat diffusion problem with a Dirichlet boundary condition on the diagonal. The solution of this partial differential equation (see paper) is an $L_2(\Omega)$ function for any chosen scale parameter $\sigma > 0$. We define the feature map (see Fig. 2 for an illustration) $\Phi_{\sigma} : D \to L_2(\Omega)$ at scale $\sigma > 0$ of a persistence diagram D as $\Phi_{\sigma}(D) = \{u_{r,\sigma} : \Omega \times \mathbb{R}_+ \to \mathbb{R}\}$,

$$u(x,t) = \frac{1}{4\pi t} \sum_{p \in D} \exp \left(- \frac{\|x-p\|^2}{4t} \right) - \exp \left(- \frac{\|x-p\|^2}{4t} \right)$$

being the closed-form solution to the aforementioned partial differential equation. This map yields the persistence scale space kernel k_{σ} on D as

$$k_{\sigma}(F,G) = \langle \Phi_{\sigma}(F), \Phi_{\sigma}(G) \rangle_{L_2(\Omega)}$$

and we can derive a simple expression for evaluating the kernel:

$$k_{\sigma}(F,G) = \frac{1}{8\pi^2} \sum_{q \in G} \exp \left(- \frac{\|p-q\|^2}{8\sigma} \right) - \exp \left(- \frac{\|p-q\|^2}{8\sigma} \right)$$

where $q = (b, a)$ is $q = (a, b)$ mirrored at the diagonal.

Evaluation. In the paper, we report results on two vision tasks where persistent homology has already been shown to provide valuable discriminative information [3]: shape classification/retrieval (on SHREC 2014 [5]) and texture image classification (on the Outex_TC_00000 benchmark [4]); see Fig. 3 for an illustration of the datasets. We primarily compare against a kernel that can be constructed based on Bubenik’s concept of persistence landscapes [2], a representation of persistence diagrams as functions in the Banach space $L_p(\mathbb{R}^2)$. For $p = 2$, we can use the Hilbert space structure of $L_2(\mathbb{R}^2)$ to construct a kernel analogously to (2). Our experimental results are listed in the paper.

Implementation. DIPHA [1] is freely available at http://goo.gl/EXSpnl, the kernel implementation (compatible with DIPHA) will be made available right after the conference.