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Abstract

The goal of this work is to represent objects in an RGB-D
scene with corresponding 3D models from a library. We ap-
proach this problem by first detecting and segmenting object
instances in the scene and then using a convolutional neural
network (CNN) to predict the pose of the object. This CNN
is trained using pixel surface normals in images containing
renderings of synthetic objects. When tested on real data,
our method outperforms alternative algorithms trained on
real data. We then use this coarse pose estimate along with
the inferred pixel support to align a small number of pro-
totypical models to the data, and place into the scene the
model that fits best. We observe a 48% relative improve-
ment in performance at the task of 3D detection over the
current state-of-the-art [34], while being an order of mag-
nitude faster.

1. Introduction

Truly understanding a scene involves reasoning not just
about what is visible but also about what is not visible. Con-
sider for example the images in Figure 1. After we recog-
nize an object as a chair, we have a pretty good sense of
how far it extends in depth and what it might look like from
another viewpoint. One way of achieving this kind of un-
derstanding in a computer vision system would be by ‘re-
placing in-place’ the chair pixels by the rendering of a 3D
CAD model of the chair. This explicit correspondence to
a 3D CAD model leads to a richer representation than out-
put from traditional computer vision algorithms like object
detection, semantic or instance segmentation, fine-grained
categorization and pose estimation. Each of these tasks by
themselves is insufficient from a robotics perspective for
tasks like trajectory optimization, motion planning or grasp
estimation. Our proposed system starts from a single RGB-
D image of a cluttered indoor scene and produces the output
visualized in Figure 1. Our approach is able to successfully

Figure 1: Output of our system: Starting from an RGB-D
image, we produce a 3D scene where each object has been
replaced by a 3D model.

retrieve relevant models and align them with the data. We
believe such an output representation will enable the use of
perception in fields like robotics.

Figure 2 describes our approach. We use the output of
the detection and segmentation system [13], and first infer
the pose of each detected object using a neural network.
We train this CNN on synthetic data using surface normal
images instead of depth images as input. We show that this
CNN trained on synthetic data works better than one trained
on real data. We then use the top k inferred pose hypothe-
ses to initialize a search over a small set of 3D models,
their scales and exact placements. We use a modified it-
erative closest point (ICP) algorithm for this task and show
that, when initialized properly, it provides reasonable re-
sults even when working at the level of object categories
rather than exact instances (the setting in which ICP is typ-
ically used). In doing so we only use 2D annotations on the
image for training all our models, and at test time, are able
to generate a rich 3D representation of the scene.

Our final output is a set of 3D model that have been
aligned to the objects present in the image. The richness
and quality of the output from our system becomes manifest
when we compare against current state-of-the-art methods
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Figure 2: Overview of approach: We start with an im-
proved version of the object detection instance segmenta-
tion output from [13]. We first infer the pose of the object
using a convolutional neural network, and then search for
the best fitting model that explains the data.

for 3D detection. A natural side-product of our output is a
3D bounding box for each object in the scene. When we use
this 3D bounding box for 3D detection we observe an im-
provement over the current state-of-the-art method (‘Sliding
Shapes’) [34] of 19% absolute AP points (48% relative),
while being at least an order of magnitude faster.

2. Related Work

A large body of work in computer vision has focused on
the problem of object detection, where the final output is
a bounding box around the object, [6, 7, 8, 26, 39]. There
has also been substantial work on labeling each pixel in the
image with a semantic label e.g. [1, 5]. Recent work from
Hariharan et al. [14], Tighe et al. [37] brings these two lines
of research together by inferring the pixel support of object
instances.

There have been corresponding works for RGB-D im-
ages studying the problems of object detection [4, 13,
17, 20, 21, 22, 24, 34, 35, 36], semantic segmentation
[3, 12, 13, 19, 25, 32, 33], and more recently instance seg-
mentation [13, 33]. Since our approach builds on an ob-
ject detection system, we discuss this body of research in
more detail. Modifications to deformable part models [7]
for RGB-D images were proposed in [11, 17, 35, 36]. More
recently, in [13], a geocentric embedding for depth images
into horizontal disparity, height above ground and angle
with gravity was proposed to learn features on bottom-up
bounding box proposals with a CNN. That method also pro-
duced an instance segmentation where pixels belonging to
the detected object are labeled. [18, 24] operate in a similar
paradigm of reasoning with bottom-up region proposals, but
focus on modeling object-object, object-scene, and image-
text relationships.

We note that, although all of these outputs are useful rep-
resentations, each of them is far from an understanding of

the world that would enable a robot to interact with it.
We are of course not the first ones to raise this argu-

ment. There is a lot of research on 3D scene understanding
from a single RGB image [15, 29], and 3D object analysis
[2, 16, 23, 30, 41]. Given the challenging nature of the prob-
lem, most of these works are restricted to unoccluded clean
instances and fail under clutter. In this paper, we study the
problem in the context of the challenging NYUD2 dataset
and analyze how RGB-D data can be effectively leveraged
for this task.

The most relevant research to our work comes from Song
and Xiao [34] and Guo and Hoiem [10]. Song and Xiao [34]
reason in 3D, train exemplar SVMs using synthetic data,
and slide these exemplars in 3D space to search for objects,
thus naturally dealing with occlusion. Their approach is in-
spiring, but computationally expensive (25 minutes per im-
age per category). They also show examples where their
model is able to place a good fitting exemplar to data, but
they do not address the problem of estimating good 3D
models that fit the data. We differ from their philosophy
and propose to reason on the problem in 2D to effectively
prune large parts of the search space, and then do detailed
3D reasoning with the top few winning candidates. As a
result, our final system is significantly faster (taking about
two minutes per image). We also show that lifting from
a 2D representation to a 3D representation is possible and
show that naively fitting a box around the detected region
outperforms the model from [34].

Guo and Hoeim [10] start with a bottom-up segmenta-
tion, retrieve nearest neighbors from the training set, and
align the retrieved candidate with the data. In contrast, we
use category knowledge in the form of top-down object de-
tectors and inform the search procedure about the orienta-
tion of the object. Moreover, our algorithm does not rely on
detailed annotations (which take about 5 minutes for each
scene) [9] of the form used in [10]. We also propose a
category-level metric to evaluate the rich and detailed out-
put from such algorithms.

Finally, [28, 31], among many others, study the same
problem but either consider known instances of objects, or
rely on user interaction.

3. Estimating Coarse Pose
In this section, we propose a convolutional neural net-

work to estimate the coarse pose of rigid objects from a
depth image. Contemporary work [38] studies the problem
on RGB images.

Assume C(k, n, s) is a convolutional layer with kernel
size k × k, n filters and a stride of s, P{max,ave}(k, s) a
max or average pooling layer of kernel size k×k and stride
s, N a local response normalization layer, RL a rectified
linear unit, and D(r) a dropout layer with dropout ratio r.
Our network has the following architecture: C(7, 96, 4) −



RL − Pmax(3, 2) − D(0.5) − N − C(5, 128, 2) − RL −
Pmax(3, 2) − N − C(3, (Npose + 1)Nclass, 1) − RL −
Pave(14, 1).

As input to the network we use 3-channel surface nor-
mal images, where the three channels encode Nx, Ny and
Nz using the angle the normal vector makes with the three
geocentric directions obtained with the gravity estimation
algorithm from [12]. We use the angle in degrees and shift
it to center at 128 instead of 90. Note that we do not use
the HHA embedding [13] because it explicitly removes the
azimuth information to allow learning pose-invariant repre-
sentations for object detection.

Given that reliable annotations for such a detailed task
are extremely challenging to obtain [9], we use 3D models
from ModelNet [40] to train the network. In particular, we
use the subset of models as part of the training set and work
with the 10 categories for which the models are aligned to
a canonical pose (bathtub, bed, chair, desk, dresser, mon-
itor, night-stand, sofa, table, toilet). We sample 50 mod-
els for each category and render 10 different poses for each
model placed on a horizontal floor at locations and scales
estimated from the NYUD2 dataset [32] (some examples
are provided in supplementary material). We place one ob-
ject per scene, and sample boxes with more than 70% over-
lap with the ground truth box as training examples. We crop
and warp the bounding box in the same way as Girshick et
al. [8]. Note that warping the normals preserves the angles
that are represented (as opposed to warping a depth image
or a HHA image [13] which will change the orientation of
surfaces being represented).

We train this network for classification using a softmax
regression loss and share the lower layers of the network
among different categories. We also adopt the geocentric
constraint and assume that the object rests on a surface and
hence must be placed flat on the ground. Thus, we only
have to determine the azimuth of the object in the geocentric
coordinate frame. We bin this azimuth into Nposebin bins
(20 in the experiments) and train the network to predict the
bin for each example.

At test time, we simply forward propagate the image
through the network and take the output pose bin as the
predicted pose estimate. Given that the next stage requires
a good initialization, in the experimental section we work
with the top k(= 2) modes of prediction.

4. Model Alignment
We now consider the problem of placing a 3D object

model in the scene. We start from the instance segmenta-
tion output from [13], and infer the coarse pose of the ob-
ject using the neural network introduced in Section 3. With
this rough estimate of the pixel support of the object and a
coarse estimate of its pose, we solve an alignment problem
to obtain an optimal placement for the object in the scene.

4.1. Model Search

Note that our pose estimator provides only an orientation
for the model. It does not inform about the size of the object,
or about which model would fit the object best. Thus, in this
stage, the algorithm searches over scales and CAD models,
inferring an optimal rotation R and translation t for each
candidate.

To search over scale, we gather category-level statistics
from the 3D bounding box annotations of [9]. In particular,
we use the area of the bounding box in the top view, esti-
mate the mean of this area and its standard deviation, and
take Nscale stratified samples from N (µarea, σarea). Such
statistics do not require annotations and can also be obtained
from online furniture catalogues. To search over scale, we
isotropically scale each model to have the sampled area in
the top-view.

To search over models, we select a small number
Nmodels of 3D models for each category (5 in our exper-
iments). Care was taken to pick distinct models, but this
selection could also be done in a data-driven manner (by
picking models that explain the data well).

Finally, we optimize over R and t iteratively using it-
erative closest point (ICP) [27], which we modify by con-
straining the rotation estimate to be consistent with the grav-
ity direction. We initialize R using the pose estimate ob-
tained from Section 3, and the inferred direction of gravity
[12]. We initialize translation components tx and tz by us-
ing the median of the world co-ordinates of the points in
the segmentation mask, and set ty such that the model is
resting on the floor (this constraint helps with heavily oc-
cluded objects, e.g. chairs, for which often only the back
is visible). The following subsection describes the model
alignment procedure.

4.2. Model Alignment

The input to the model alignment algorithm is a depth
image D, a segmentation mask S, a 3D model M at a given
fixed scale s and an initial estimate of the transformation
(a rotation matrix R0 and a translation vector t0) for the
model. The output of the algorithm is a rotation R and a
transformation t, such that the 3D model M rendered with
transformationsR and t explains as many points as possible
in the segmentation mask S. We solve this problem approx-
imately by the following procedure which we repeat for N
iterations.

Render model: Use the current estimate of the transfor-
mation parameters (s,R, t) to render the modelM to obtain
a depth image of the model. Project points from the depth
image that belong to the segmentation mask S (to obtain
point set Pobject, and the points from the rendered model’s
depth image to 3D space (to obtain point set Pmodel).

Re-estimate model transformation parameters: Run
ICP to align points in Pobject to points in Pmodel. We form



correspondence by associating each point in Pobject with
the closest point in Pmodel, which prevents associations for
occluded points in the object. We also reject the worst 20%
of the matches based on the distance. This allows the as-
sociation to be robust in the presence of over-shoot in the
segmentation mask S. Lastly, while estimating the updates
of the transformation (R, t), we enforce as additional con-
straint for the rotation matrix R to operate only about the
direction of gravity.

4.3. Model Selection

Now we need to select the fitted model that best explains
the data among NscaleNmodel candidates. We pose this se-
lection as a learning problem and compute a set of features
to capture the quality of the fit to the data. We compute
the following features: number and fraction of pixels of the
rendered model that are occluded, which are explained by
the data, fraction and number of pixels of the input instance
segmentation which are explained by the model, intersec-
tion over union overlap of the instance segmentation with
mask of the model explained by the data, and mask of the
model which is unoccluded. We learn a linear classifier on
these features to pick the best fitting model. This classifier is
trained with positives coming from rendered models which
have more than 50% overlap with a ground truth region.

5. Experiments
We evaluate our approach on the NYUD2 dataset from

Silberman et al. [32] and use the standard train set of 795
images and test set with 654 images. We split the 795 train-
ing images into 381 train and 414 validation images. For
synthetic data we use the collection of aligned models made
available by Wu et al. [40].

5.1. Coarse Pose Estimation

Here we describe our experiments to evaluate our coarse
pose estimator. We present two evaluations, one on syn-
thetic data and another one on real data.

To measure performance, we work with ground truth
boxes and consider the distribution of the angular error in
the top view. In particular, we plot the angular error δθ on
the X-axis and the accuracy (the fraction of data which in-
curs less than δθ error) on the Y-axis. Note that we plot
this graph for small ranges of δθ (0◦ to 45◦) as accuracy
in the high error ranges is useless from the perspective of
model alignment. Moreover, since selecting among mul-
tiple hypotheses can be beneficial for the alignment stage,
a more appropriate metric is the topk accuracy (fraction of
instances which are within δθ of the topk predictions of the
model).

1This version uses only the depth image for all steps except for region
proposal generation, we do not expect this to impact this result signifi-
cantly.
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Figure 3: Performance on a NYUD2 val set. We plot accu-
racy (fraction of instances for which we are able to predict
pose within a δθ angle) as a function of δθ. The top plots
show top1 accuracy and the bottom plots show top2 accu-
racy. Note that real in the legend refers to model trained on
real data, syn refers to the model trained on synthetic data
and NNN stands for normal image.

To evaluate this task, we work with the annotations from
Guo and Hoiem [9], who annotated the NYUD2 dataset
with 3D CAD models for the following 6 categories: chair,
bed, sofa, table, desk and book shelf. To obtain interpretable
results, we work with categories which have a clearly de-
fined pose: chair, sofa and bed (bookshelf is not among the
10 categories which are pose aligned in ModelNet [40]).
The top row in Figure 3 plots the top1 accuracy and the sec-
ond row plots top2 accuracy. Note that there is a large num-
ber of objects which have missing depth data (for instance
30% of chairs have more than 50% missing depth pixels),
hence we plot these curves only for instances with less than
50% depth pixels missing. We also experimented with the
HHA network from [13] with and without fine-tuning for
this task, training a shallow network from random initial-
ization using HHA images and normal images. All these
experiments are done by training on the real data, and we
see that we are able to outperform these variants by training
on clean synthetic data. Evaluation on the synthetic data is
provided in the supplementary material.

5.2. Model Fitting

We first describe and evaluate the instance segmentation
system we are using to estimate the target objects pixel sup-
port for our model fitting procedure. We then specify how



Table 1: Test set results for detection and instance segmentation on NYUD2: First line reports AP b (bounding box
detectionAP ) performance using features from just the bounding box and second line reportsAP b when using features from
the region mask in addition to features from the bounding box. Third and fourth lines report the corresponding performance
when using the full trainval set to finetune (instead of only using the train set). Subsequent lines reportAP r (region detection
AP [14]). Using features from the region in addition to features from the box (row 6) improves performance over the
refinement method used in [13] (row 5). Finally, finetuning over the trainval set boosts performance further.
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AP b

[13] train 35.9 39.5 69.4 32.8 1.3 41.9 44.3 13.3 21.2 31.4 35.8 35.8 50.1 31.4 39.0 42.4 50.1 23.5 33.3 46.4
[13] + Region Features train 39.3 50.0 70.6 34.9 3.0 45.2 48.7 15.2 23.5 32.6 48.3 34.9 50.2 32.2 44.2 43.1 54.9 23.4 41.5 49.9
[13] trainval 38.8 36.4 70.8 35.1 3.6 47.3 46.8 14.9 23.3 38.6 43.9 37.6 52.7 40.7 42.4 43.5 51.6 22.0 38.0 47.7
[13] + Region Features trainval 41.2 39.4 73.6 38.4 5.9 50.1 47.3 14.6 24.4 42.9 51.5 36.2 52.1 41.5 42.9 42.6 54.6 25.4 48.6 50.2

AP r
[13] (Random Forests) train 32.1 18.9 66.1 10.2 1.5 35.5 32.8 10.2 22.8 33.7 38.3 35.5 53.3 42.7 31.5 34.4 40.7 14.3 37.4 50.3
[13] + Region Features train 34.0 33.8 64.4 9.8 2.3 36.6 41.3 9.7 20.4 30.9 47.4 26.6 51.6 27.5 42.1 37.1 44.8 14.7 42.7 62.6
[13] + Region Features trainval 37.5 42.0 65.1 12.7 5.1 42.0 42.1 9.5 20.5 38.0 50.3 32.8 54.5 38.2 42.0 39.4 46.6 14.8 48.0 68.4

Table 2: Test set results for 3D detection on NYUD2: We report the 3D detection AP [34]. We use the evaluation code
from [34]. ‘3D all’ refers to the setting with all object instances where as ‘3D clean’ refers to the setting when instances with
heavy occlusion and missing depth are considered difficult and not used for evaluation [34]. See Section 5.2.2 for details.

3D all 3D clean

mean bed chair sofa table toilet mean bed chair sofa table toilet

Our (3D Box on instance segm. from [13]) 48.4 74.7 18.6 50.3 28.6 69.7 66.1 90.9 45.9 68.2 25.5 100.0
Our (3D Box around estimated model) 58.5 73.4 44.2 57.2 33.4 84.5 71.1 82.9 72.5 75.3 24.6 100.0

Song and Xiao [34] 39.6 33.5 29.0 34.5 33.8 67.3 64.6 71.2 78.7 41.0 42.8 89.1
Our [no RGB1] (3D Box on instance segm. from [13]) 46.5 71.0 18.2 49.6 30.4 63.4 62.3 86.9 43.6 57.4 26.6 96.7
Our [no RGB1] (3D Box around estimated model) 57.6 72.7 47.5 54.6 40.6 72.7 70.7 84.9 75.7 62.8 33.7 96.7

to accurately lift our 2D output to 3D. We compare against
[34] and [10] for the task of 3D detection. Next, we pro-
pose a new metric to evaluate 3D model placement, and
present control experiments for the design choices in the
model alignment algorithm. Finally, we show examples of
our output.

5.2.1 Object Detection and Instance Segmentation

We note that our instance segmentation system from [13]
computed CNN features on bounding boxes, not free-form
regions. We experiment with features computed on the
masked region in addition to features on the box [14], and
observe that these additional information improves perfor-
mance for bounding box detection as well as instance seg-
mentation, thus achieving state-of-the-art results on these
tasks (Table 1). AP b goes up from 35.9% to 39.3%, AP r

improves from 32.1% [13] to 34.0%. In [13], the model
was only finetuned on 381 training images, AP b and AP r

both improve further when finetuning over the 795 trainval
images (rows 4 and 7 in Table 1).

We use these final instance segmentations for this work.
Of course, one could refine further these regions [13, 14] to
obtain even better instance segmentations, but we chose to

work with this intermediate output to minimize the number
of times we train on the same data.

5.2.2 3D Detection

We next illustrate the richness of our approach by demon-
strating results on the task of 3D object detection. Note
that our method outputs a model aligned with objects in the
image. A trivial side-product of our output is a 3D bound-
ing box (obtained by putting a box around the inferred 3D
model). We use this 3D bounding box as our output for 3D
detection task and compare to the method from Song and
Xiao [34] which was specifically designed and trained for
this task.

We tackle the 3D detection task in the setting proposed
by Song and Xiao in [34], who work with images from the
NYUD2 dataset but create different splits for different cat-
egories and consider two levels of difficulty: a ‘clean’ task
where they remove instances which are heavily occluded or
have missing depth, and an ‘all’ task in which they consider
all instances. Given their use of non-standard splits which
are different from the standard NYUD2 dataset splits, we
evaluate on the intersection of the standard NYUD2 test set
and their test set for each category being studied.



In addition, we also compare to a simple baseline using
the instance segmentation from [13] as described in Sec-
tion 5.2.1 for 3D detection. We use a simple heuristic here:
putting a tight fitting box around the 3D points in the in-
ferred instance segmentation. We determine the extent of
the box in the top view by searching over the orientation of
the rectangular box such that its area is minimized, set the
bottom of the box to rest on the floor and estimate the height
as the maximum height of the points in the instance seg-
mentation. All these operations are done using percentiles
(δ and 100− δ, with δ = 2) to be robust to outliers.

We report the performance in Table 2 (Precision Recall
curves are available in the supplementary material). We ob-
serve that this simple strategy of fitting a box around the
inferred instance segmentation (denoted as ‘Our (3D Box
on instance segmentation from Gupta et al. [13])’ in Ta-
ble 2) already works better than the method proposed in [34]
which was specifically designed for this task. At the same
time, this method is faster (40 seconds CPU + 30 seconds
on a GPU) and scales well with number of categories, as
compared to 25 minutes per categories per image for [34].
This result shows that starting with well established 2D rea-
soning (since [13] does 2D reasoning, it is more readily
able to leverage rich features for RGB images) to prune out
large parts of the search space is not only more efficient, but
also more accurate than starting from 3D reasoning for such
tasks.

Finally, a 3D box around our final output (denoted ‘Our
(3D Box around estimated model)’) outperforms both [34]
and the baseline of putting a 3D bounding box around the
instance segmentation output, providing further empirical
evidence for the efficacy and utility of the methods pro-
posed in the paper. We observe a large improvement over
the baseline in performance for non-box like objects, chair,
sofa and toilet. The improvement for chair is particularly
striking (18.6% to 44.2% in the ‘all’ setting). This is be-
cause chairs are often heavily occluded (e.g. chair occluded
behind a table) and the box around the visible extent sys-
tematically underestimates the actual amodal box.

Guo and Hoiem [10] also align 3D CAD models to ob-
jects in the image. We also compare to their work on this
3D detection task. We take the scenes produced by the algo-
rithm from [10], compute tight 3D bounding boxes around
detected objects and benchmark them in the same setup as
described above to obtain a point on the Precision Recall
plot (available in the supplementary material) for categories
that both works consider: bed, chair, table and sofa. This
comparison is also favorable to our method, and on average
we obtain twice as much precision at the same recall and
twice as much recall at the same precision.

Lastly, we also report performance of our system when
only using the depth image for object detection, pose es-
timation and model placement steps (last two rows) (the

bottom-up region generation step still uses the RGB image,
we do not expect this to impact this result significantly).
We see that this version of our system is better than the full
version for some categories. We believe the reason is RGB
information allows our full system to detect objects with
missing depth with high scores which become high scoring
false positives when the model placement step fails in the
absence of enough depth data. On average this ablated ver-
sion of our system performs comparably to our final system,
and continues to outperform the algorithm from [34].

5.2.3 Model Alignment

Performance Metric Given that the output of our algorithm
is a 3D model placed in the scene, it is not immediately ob-
vious how to evaluate performance. One might think of
evaluating individual tasks such as pose estimation, sub-
type classification, key point prediction or instance segmen-
tation, but doing these independently does not measure the
performance of 3D model placement. Moreover, for many
categories we are considering there may not be a consistent
definition of pose (e.g. table), or key points (e.g. sofa), or
sub-types (e.g. chair).

Thus, to measure performance of placing 3D models in
the scene, we propose a new metric which directly evaluates
the fit of the inferred model with the observed depth image.
We assume that there is a fixed library of 3D models L,
and a given algorithm A has to pick one of these models,
and place it appropriately in the scene. We assume we have
category-level instance segmentation annotations.

Our proposed metric is a generalization of the Average
Precision, the standard metric for evaluating detection and
segmentation [14]. Instead of just using the image-level in-
tersection over union of the predicted box (in case of AP b)
or region (in case ofAP r) with the ground truth, we also en-
force the constraint that the prediction must agree with the
depth values observed in the image. In particular, we mod-
ify the way intersection between a prediction and a ground
truth instance in computed. We render the model from the
library L as proposed by the algorithm A to obtain a depth
map and a segmentation mask. We then do occlusion check-
ing with the given image to exclude pixels that are definitely
occluded (based on a threshold tocclusion). This gives us the
visible part of the object Pvisible. We then compute the in-
tersection I between the output and the ground truth G by
counting the number of pixels which are contained in both
Pvisible and G, but in addition also agree on their depth val-
ues by being within a distance threshold of tagree with each
other. Union U is computed by counting the number of pix-
els in the ground truth G and the visible extent of the object
Pvisible as |G ∪ Pvisible|. If this I

U , is larger than tiou then
this prediction is considered to explain the data well, other-
wise not. With this modified definition of overlap, we plot



Table 3: Experiments for model placement on NYUD2: We report theAPm for
three different setting: using ground truth object segmentation masks, using latent
positive segmentation masks and using the detection output from the instance
segmentation from [13] (on the val set). We report performance on two different
values for threshold tagree. We also report performance on the test set. See
Section 5.2.3 for details.

val set test set

ground truth segm latent positive setting detection setting detection setting

0.5, 5 0.5, 5 0.5, 5 0.5, 5 AP r 0.5, 5 0.5, 5 AP r 0.5, 5 0.5, 5 AP r

tagree 7 ∞ 7 ∞ upper 7 ∞ upper 7 ∞ upper

bound bound bound

bathtub 57.4 76.8 55.3 83.3 94.7 6.7 19.4 25.7 7.9 50.4 42.0

bed 42.3 87.3 28.8 86.0 96.1 25.8 63.2 57.0 31.8 68.7 65.0

chair 45.3 74.1 29.0 56.9 70.1 11.8 25.2 30.4 14.7 35.6 42.9

desk 33.9 67.4 20.3 40.9 55.7 3.0 4.0 6.2 4.1 10.8 12.0

dresser 82.7 92.0 76.1 96.0 100.0 13.3 21.1 21.1 26.3 35.0 36.1

monitor 31.4 39.8 18.4 20.8 41.3 12.5 12.5 26.8 5.7 7.4 11.4

night-stand 62.5 77.6 51.3 65.2 87.9 18.9 21.6 25.5 28.1 33.7 34.8

sofa 45.1 85.0 28.5 72.0 92.4 10.5 30.4 37.7 21.8 48.5 47.4

table 18.8 52.2 15.8 34.3 46.8 5.5 11.9 13.3 5.6 12.3 15.0

toilet 66.0 100.0 46.0 86.0 100.0 35.9 72.4 73.2 41.8 68.4 68.4

mean 48.5 75.2 37.0 64.1 78.5 14.4 28.2 31.7 18.8 37.1 37.5

Table 4: Control Experiment: Vari-
ation in APm. See text for details.
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a precision recall curve and measure the area under it as
measure of the performance of the algorithm A. We denote
this average precision as APm. To account for the inherent
noise in the sensor we operate with disparity as opposed to
the depth value, and set thresholds toccluded and tagree on
disparity. This allows for larger error in far away objects as
opposed to close by objects. While this behavior may not
be desirable, it is unavoidable given the noise in the input
depth image behaves similarly.

Evaluation We evaluate our algorithm in 3 different set-
tings: first using ground truth segmentations, second using
high scoring instance segmentations from [13] that overlap
with the ground truth by more than 50% (denoted as ‘la-
tent positive setting’), and third a completely unconstrained
setting using only the instance segmentation output without
any ground truth (denoted as ‘detection setting’). Table 3
left summarizes results in these settings on the val set.

We use an tiou of 0.5 to count a true positive, tocclusion
of 5 disparity units, and report performance at two differ-
ent values of tagree 7 and∞. An error of 7 disparity units
corresponds to a 20 cm error at 3 meters. A tagree of ∞
corresponds to AP r subject to the constraint that the seg-
mentation must come from the rendering of a 3D model.

We see that even when working with ground truth seg-
mentations, estimating and placing a 3D model to explain
the segment is a hard task. We obtain a (model average

precision) APm of 48.5% in this setting. Even when eval-
uating at tagree of∞, we only get a performance of 75.2%
which is indicative of the variety of our 3D model library
and accuracy of our pose estimator.

In the second setting, we take the highest scoring detec-
tion which overlaps with more than 50% with the ground
truth mask. Note that this setup decouples the performance
of the detector from the performance of the model place-
ment algorithm while at the same time exposing the model
placement algorithm with noisier segmentation masks. Un-
der this setting, the AP r upper bound is 78.5% which
means that only that percentage of regions have a bottom-up
region which overlaps with more than 0.5 with the ground
truth mask, indicating the recall of the region proposal gen-
erator that we are using [13]. In this setting the performance
at tagree = ∞ is 64.1% and at tagree = 7 is 37.0%. This
shows that our model alignment is fairly robust to segmen-
tation errors and we see a small drop in performance from
48.5% to 37.0% when moving from ground truth setting to
latent positive setting.

In the detection setting (using no ground truth informa-
tion at all), we observe an AP r upper bound of 31.7%
(which is comparable to AP r reported in Table 1 but
slightly different because (a) these are on the validation set,
and (b) we ignore pixels with missing depth values in com-
puting this metric). In this setting we observe a performance



Figure 4: Visualizations of the output on the test set: We show images with multiple objects replaced with corresponding
3D CAD models. We show the image, models overlaid onto the image and the depth map for models placed in the scene.
Depth maps are visualized using the ‘jet’ colormap, far away points are red and and close by points are blue.

of 14.4% for tagree of 7 and 28.2% for tagree of∞. We also
reportAPm on the test set in the detection setting in Table 3
right.

Control Experiments We perform additional control
experiments to study the affect of the number of scales, the
number of models, difference in hand picking models ver-
sus randomly picking models, number of pose hypotheses,
and the importance of initialization for the model alignment
stage. These experiments are summarized in Table 4 and
discussed below.

As expected, performance improves as we search over
more scales (but saturates around 10 scales) (Table 4 top).
The performance increases as we use more models. Hand
picking models so that they capture different modes of vari-
ation is better than picking models randomly, and that per-
formance does not seem to saturate as we keep increasing
the number of models we use during model alignment step
(Table 4 bottom), although this comes at proportionately
larger computation time. Finally, using two pose hypothesis
is better than using a single hypothesis. The model align-
ment stage is indeed sensitive to initialization and works
better when used with the pose estimate from Section 3.

This difference is more pronounced when using a single
pose hypothesis (33% using our pose estimate versus 27%
when not using it, Table 4 middle).

Qualitative Visualizations Finally, we provide qualita-
tive visualizations of the output of our method in Figure 4
where we have replaced multiple objects with correspon-
dent 3D models. Many more are available in the supple-
mentary material.

Conclusion: In this work we motivated and investigated
the problem of representing objects in a RGB-D scene with
corresponding 3D models. We approached this problem by
first detecting and segmenting out object instances using
CNN based features. We then used a CNN to estimate pose
for each detected object. With the inferred pixel support and
coarse pose estimate we initialized a model alignment pro-
cedure to replace objects in the scene with correspondence
CAD models.
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