As very large datasets of high-dimensional vectors proliferate, machine learning, computer vision, and information retrieval systems that work with such datasets increasingly rely on lossy vector compression or hashing schemes. A crucial requirement for these schemes is the ability to evaluate distances and scalar products between compressed and uncompressed vectors efficiently and without explicit decompression. At the moment, systems that are based on the product quantization[3] are often preferred.

Given a dataset of vectors in \mathbb{R}^D, product quantization starts by splitting the vector dimensions into M groups. Each dimension group is then quantized separately and independently from others using codebooks of small size (most often 256 codewords), whereas codewords in the codebooks have the dimension D/M. In the PQ compression scheme, an input vector is approximated as a concatenation of M codewords (one codeword from each codebook). Product quantization implicitly relies on the limited amount of correlation between the dimension groups, since each codebook is learned independently from others. The encoding process within PQ is very simple and fast, and the computation of scalar product and distances between a large number of PQ-compressed vectors and an uncompressed vector can be implemented very efficiently using look-up tables.

Recently, [1] have proposed an alternative compression scheme called additive quantization (AQ) that pushes the coding accuracy of PQ-based methods even further. Similarly to PQ, AQ maintains a set of M codebooks. However, the codewords within the codebooks are full-length, i.e. D-dimensional. During the compression stage AQ represents a vector as a sum of M codewords (one codeword from each codebook). The vector code is thus the same as within PQ, i.e. M codeword numbers. The additive nature of the compression means that the evaluation of scalar products between AQ-compressed and uncompressed vectors can use the same look-up table trick and is thus very fast. Evaluation of Euclidean distances takes slightly more time or an extra byte of memory but is still efficient. In general, AQ achieves a significant boost in coding accuracy over PQ, which can be explained by the lack of low-correlation assumption between dimension groups. Furthermore, AQ codebooks possess an increased number of parameters that can be adjusted at the codebook learning stage in order to fit the data distribution.

The main limitation of the AQ-compression is the inefficiency of the encoding step. As shown in [1], finding the optimal combination of the codebook vectors is equivalent to the MAP-inference in the fully-connected Markov random field with unstructured and highly non-submodular pairwise potentials. As reported in [1], none of the standard MRF optimization methods work well and therefore a special kind of Beam Search is used, which is able to find approximate codings resulting in lower coding error than PQ-compression. Still, this approximate inference takes orders of magnitude more time than PQ encoding, and can be prohibitively slow for many practical applications, especially when online encoding of new vectors is needed.

Here, we propose a new coding scheme called Tree Quantization (TQ) that belongs to the same family as PQ and AQ. Similarly to PQ and AQ, TQ maintains a set of M codebooks and, similarly to AQ, it encodes a vector as a sum of M codewords from different codebooks. The TQ-code for a vector is thus, once again, a set of M codeword numbers. The difference from AQ lies in the special structure that TQ imposes onto its codebooks. The encoding is based on a tree graph (the coding tree), where vertices correspond to codebooks, while each of the D dimensions is assigned to an edge. Each codebook then encodes only the dimensions that are assigned to edges that are incident to the vertex corresponding to this codebook (1). All other dimensions are then fixed to zero for all codewords in a given codebook.

The encoding process within the tree quantization is performed via the MAP-inference in a tree-shaped model, and is therefore exact and efficient.