We are headed for a world in which the skies are occupied not only by
birds and planes but also by unmanned drones ranging from relatively large
Unmanned Aerial Vehicles (UAVs) to much smaller consumer ones. Some
of these will be instrumented and able to communicate with each other
to avoid collisions but not all. Therefore, the ability to use inexpensive and
light sensors such as cameras for collision-avoidance purposes will become
increasingly important.

This problem has been tackled successfully in the automotive world and
there are now commercial products [2, 5] designed to sense and avoid both
pedestrians and other cars. In the world of flying machines most of the
progress is achieved in the accurate position estimation and navigation from
single or multiple cameras [1, 3, 4, 6], while not so much is done in the
field of visual-guided collision avoidance [7]. On the other hand, it is not
possible to simply extend the algorithms used for pedestrian and automobile
detection to the world of aircrafts and drones, as flying object detection
poses some unique challenges:

- The environment is fully 3D dimensional, which makes the motions
 more complex.
- Flying objects have very diverse shapes and can be seen against ei-
 ther the ground or the sky, which produces complex and changing
 backgrounds, as shown in Fig. 1.
- Given the speeds involved, potentially dangerous objects must be de-
 tected when they are still far away, which means they may still be
 very small in the images.

As a result, motion cues become crucial for detection. However, they
are difficult to exploit when the images are acquired by a moving camera
and feature backgrounds that are difficult to stabilize because they are non-
planar and fast changing. Furthermore, since there can be other moving ob-
jects in the scene, for example, the person in Fig. 1, motion by itself is not
enough and appearance must also be taken into account. In these situations,
state-of-the-art techniques that rely on either image flow or background sta-
bilization lose much of their effectiveness.

Figure 1: Detecting a small drone against a complex moving background.
(Left) It is almost invisible to the human eye and hard to detect from a single
image. (Right) Yet, our algorithm can find it by using motion cues.

We suggest solving the fast small flying objects detection problem by
classifying 3D descriptors computed from spatio-temporal image cubes (st-
cubes). These st-cubes are formed by stacking motion-stabilized image
windows over several consecutive frames, which gives more information than
using a single image. What makes this approach both practical and effective
is a regression-based object-centric motion-stabilization algorithm. Unlike
those that rely on optical flow, it remains effective even when the shape of
the object to be detected is blurry or barely visible.

Fig. 2 illustrates some examples of the st-cubes with and without mo-
tion compensation. Implementation and more thorough description of the
method for regression-based motion compensation is described in the paper.

Our conclusion is that temporal information from a sequence of frames
plays a vital role in detection of small fast moving objects like UAVs or air-
crafts in complex outdoor environments. We therefore developed an object-
centric motion compensation approach that is robust to changes of the ap-
pearances of both the object and the background. This approach allows us
to outperform state-of-the-art techniques on two challenging datasets. Mo-
tion information provided by our method has a variety of applications, from
detection of potential collision situations to improvement of vision-guided
tracking algorithms.

Monocular Visual Odometry. In International Conference on Robotics
and Automation, 2014.
and Modular Multi-Sensor Fusion Approach Applied to MAV Naviga-
A System for Autonomous Flight Using Onboard Computer Vision. In
R. Siegwart. Monocular Vision for Long-Term Micro Aerial Vehicle
831, 2013.
Visual Detection and Implementation Aspects of a UAV See and Avoid