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Abstract

The objective of this paper is to design an embed-
ding method mapping local features describing image (e.g.
SIFT) to a higher dimensional representation used for im-
age retrieval problem.

By investigating the relationship between the linear ap-
proximation of a nonlinear function in high dimensional
space and state-of-the-art feature representation used in im-
age retrieval, i.e., VLAD, we first introduce a new approach
for the approximation. The embedded vectors resulted by
the function approximation process are then aggregated to
form a single representation used in the image retrieval
framework.

The evaluation shows that our embedding method gives
a performance boost over the state of the art in image re-
trieval, as demonstrated by our experiments on the standard
public image retrieval benchmarks.

1. Introduction
The problem of finding a single vector representing a set

of local vectors describing an image is an important prob-

lem in computer vision. This is because the single rep-

resentation provides two main benefits. First, it contains

the power of local descriptors, such as set of SIFT de-

scriptors [17]. Second, the single represented vectors can

be either compared with standard distances used in image

retrieval problem or used by robust classification methods

such as SVM in classification problem.

There is a wide range of methods for finding a sin-

gle vector to represent a set of local vectors proposed

in the literature such as bag-of-visual-words (BoW) [28],

Fisher vector [22], vector of locally aggregated descriptor

(VLAD) [12] and its improvements [7, 2], super vector cod-

ing [33], vector of locally aggregated tensor (VLAT) [26,

20] which is higher order (tensor) version of VLAD, trian-

gulation embedding (Temb) [14], sparse coding [21], local

coordinate coding (LCC) [32], locality-constrained linear

coding [29] which is fast version of LCC, local coordinate

coding using local tangent (TLCC) [31] which is higher or-

der version of LCC. Among these methods, VLAD [13] and

VLAT [20] are well-known embedding methods used in im-

age retrieval problem [13, 20] while TLCC [31] is one of

successful embedding methods used in image classification

problem.

VLAD is designed for image retrieval problem while

TLCC is designed for image classification problem. They

also come from different motivations. VLAD’s motivation

is to characterize the distribution of residual vectors over

Voronoi cells learned by a quantizer while TLCC’s motiva-

tion is to linearly approximate1 a nonlinear function in high

dimensional space. Despite above differences, we show that

VLAD is actually simplified version of TLCC. This means

that we can depart from the idea of linear approximation

of function to develop good embedding methods for image

retrieval problem.

To find the single representation, all aforementioned

methods include two main steps in the processing: embed-

ding and aggregating. The embedding step maps each local

descriptor to a high dimensional vector while the aggregat-

ing step converts set of mapped high dimensional vectors

to a single vector. This paper focuses on the first step. In

particular, we develop a new embedding method which can

be seen as the generalization of TLCC and VLAT.

In next sections, we first present a brief description

of TLCC and show the relationship between TLCC and

VLAD. We then present our motivation for designing new

embedding method.

1.1. TLCC

TLCC [31] is designed for image classification problem.

Its goal is to linearly approximate a smooth nonlinear func-

tion f(x), i.e. a nonlinear classification function, defined

on a high dimensional feature space R
d. TLCC’s approach

finds an embedding scheme φ: R
d → R

D mapping each

x ∈ R
d as

x �→ φ(x) (1)

1The meaning of “linear approximation” in this paper is that the non-

linear function f(x) defined on R
d is approximated by a linear function

wTφ(x) defined on R
D where D > d.



such that f(x) can be well approximated by a linear func-

tion, namely wTφ(x). To solve above problem, TLCC’s au-

thors relied on the idea of coordinate coding defined bellow.

They showed that with a sufficient selection of coordinate

coding, the function f(x) can be linearly approximated.

Definition 1.1 Coordinate Coding [32]
A coordinate coding of a point x ∈ R

d is a pair (γ(x),C)2,
where C = [v1, . . . ,vn] ∈ R

d×n is a set of n anchor
points (bases), and γ is a map of x ∈ R

d to γ(x) =

[γv1(x), . . . , γvn(x)]
T ∈ R

n such that

n∑
j=1

γvj (x) = 1 (2)

It induces the following physical approximation of x in R
d:

x′ =
n∑

j=1

γvj
(x)vj (3)

A good coordinate coding should ensure that x′ closes to
x 3.

Let (γ(x),C) be coordinate coding of x. Under assump-

tion that f is (α, β, ν) Lipschitz smooth, they showed (in

lemma 2.2 [31]) that, for all x ∈ Rd

∣∣∣∣∣∣f(x)−
n∑

j=1

γvj (x)

(
f(vj) +

1

2
∇f(vj)

T (x− vj)

)∣∣∣∣∣∣
≤ 1

2
α ‖x− x′‖2 + ν

n∑
j=1

|γvj
(x)| ‖x− vj‖32 (4)

To ensure a good approximation of f(x), they mini-

mize the RHS of (4). (4) further means that the func-

tion f(x) can be linearly approximated by wTφ(x) where

w =
[
1
sf(vj);

1
2∇f(vj)

]n
j=1

and TLCC embedding φ(x)

defined as

φ(x) =
[
sγvj

(x); γvj
(x)(x− vj)

]n
j=1

∈ R
n(1+d) (5)

where s is a nonnegative constant.

1.2. TLCC as generalization of VLAD

Although TLCC is designed for classification problem

and its motivation is different from VLAD, TLCC can be

seen as a generalization of VLAD.

If we add following constraint to γ(x)

‖γ(x)‖0 = 1 (6)

2C is same for all x.
3Although the reconstruction error condition for a good coordinate cod-

ing, i.e, x′ closes to x, is not explicit mentioned in original definition of

coordinate coding, it can be inferred from objective functions of LCC [32]

and TLCC [31].

then we have x ≈ x′ = v∗. The RHS of (4) becomes

1

2
α ‖x− v∗‖2 + ν ‖x− v∗‖32 (7)

where v∗ is anchor point corresponding to nonzero element

of γ(x). One of solutions for minimizing (7) under con-

straints (2) and (6) is K-means algorithm. When K-means

is used, we have

v∗ = argmin
v∈C

‖x− v‖2 (8)

where C is set of anchor points learned by K-means.

Now, considering (5), if we choose s = 0 and

we remove zero elements attached with s, φ(x) =[
0, . . . , 0, (x− v∗)T , 0, . . . , 0

]T ∈ R
nd will become

VLAD.

1.3. Motivation for designing new embedding
method

The relationship between TLCC and VLAD means that

if we can find φ(x) such that f(x) can be well linearly ap-

proximated (f(x) ≈ wTφ(x)), we then can use φ(x) for

image retrieval problem. However, in TLCC’s approach,

by departing from assumption that f is (α, β, ν) Lipschitz

smooth, f is approximated using only its first order approx-

imation at anchor points, i.e., f is approximated as sum of

weighted tangents at anchor points. It is not straightforward

to use the TLCC framework to have a better approximation,

for examples, approximation of f using its second order or

higher order approximation at anchor points.

Therefore, in this paper, we propose to use Taylor expan-

sion for function approximation and it is more straightfor-

ward to achieve a higher order approximation of f at anchor

points by this way. The embedded vectors, resulted by the

function approximation process, will be used as new image

representations in our image retrieval framework. In fol-

lowing sections, we will note our Function Approximation-

based embedding method as FAemb.

The remaining of this paper is organized as follows. Sec-

tion 2 introduces related background. Section 3 introduces

FAemb embedding method. Section 4 presents experimen-

tal results. Section 5 concludes the paper.

2. Preliminaries
In this section, we review related background preparing

for detail presenting of new embedding method in section 3.

Taylor’s theorem for high dimensional variables

Definition 2.1 Multi-index [8]: A multi-index is a d-tuple
of nonnegative integers. Multi-indices are generally de-
noted by α:

α = (α1, α2, . . . , αd)



where (αj ∈ {0, 1, 2, ...}). If α is a multi-index, we define

|α| = α1 + α2 + · · ·+ αd;α! = α1!α2! . . . αd!

xα = x1
α1x2

α2 . . . xd
αd

∂αf(x) =
∂|α|f(x)

∂α1(x1)∂α2(x2) . . . ∂αd(xd)

where x = (x1, x2, . . . xd)
T ∈ R

d

Theorem 2.2 (Taylor’s theorem for high dimensional vari-

ables) [8] Suppose f : Rd → R of class of Ck+1 4 on R
d. If

a ∈ R
d and a+ h ∈ R

d, then

f(a+ h) =
∑
|α|≤k

∂αf(a)

α!
hα +Ra,k(h) (9)

where Ra,k(h) is Lagrange remainder given by

Ra,k(h) =
∑

|α|=k+1

∂αf(a+ ch)
hα

α!
(10)

for some c ∈ (0, 1).

Corollary 2.3 If f is of class of Ck+1 on R
d and

|∂αf(x)| ≤ M for x ∈ R
d and |α| = k + 1, then

|Ra,k(h)| ≤ M

(k + 1)!
‖h‖k+1

1 (11)

The proof of corollary 2.3 is given in [8]

3. Embedding based on function approxima-
tion (FAemb)

In this section, we introduce our embedding method. It

is inspired from function approximation based on Taylor’s

theorem represented in previous section.

3.1. Derivation of FAemb

Lemma 3.1 If f : R
d → R is of class of Ck+1 on R

d and
∇kf(x) is Lipschitz continuous with constant M > 0 and
(γ(x),C) is coordinate coding of x, then

∣∣∣∣∣∣f(x)−
n∑

j=1

γvj (x)
∑
|α|≤k

∂αf(vj)

α!
(x− vj)

α

∣∣∣∣∣∣
≤ M

(k + 1)!

n∑
j=1

|γvj
(x)| ‖x− vj‖k+1

1 (12)

4It means that all partial derivatives of f up to (and including) order

k + 1 exist and continuous.

The proof of Lemma 3.1 is given in Appendix A.1.

If k = 1, then (12) becomes∣∣∣∣∣∣f(x)−
n∑

j=1

γvj (x)
(
f(vj) +∇f(vj)

T (x− vj)
)
∣∣∣∣∣∣

≤ M

2

n∑
j=1

|γvj
(x)| ‖x− vj‖21 (13)

In the case of k = 1, f is approximated as sum of its

weighted tangents at anchor points.

If k = 2, then (12) becomes∣∣∣∣∣∣f(x)−
n∑

j=1

γvj (x)
(
f(vj) +∇f(vj)

T (x− vj)

+
1

2

(
V
(∇2f(vj)

))T
V
(
(x− vj)(x− vj)

T
))

∣∣∣∣∣∣
≤ M

6

n∑
j=1

|γvj
(x)| ‖x− vj‖31 (14)

where V (A) is vectorization function flattening the matrix

A to a vector by putting its consecutive columns into a col-

umn vector. ∇2 is Hessian matrix.

In the case of k = 2, f is approximated as sum of its

weighted quadratic approximations at anchor points.

To achieve a good approximation, the coding (γ(x),C)
should be selected such that the RHS of (13) and (14) are

small enough.

The result derived from (13) is that, with respect to the

coding (γ(x),C), a high dimensional nonlinear function

f(x) in R
d can be approximated by linear form wTφ(x)

where w can be defined as w =
[
1
sf(vj);∇f(vj)

]n
j=1

and

the embedded vector φ(x) can be defined as

φ(x) =
[
sγvj (x); γvj (x)(x− vj)

]n
j=1

∈ R
n(1+d) (15)

where s is a nonnegative scaling factor to balance two types

of codes.

To make a good approximation of f , in following

sections, we put our interest on case where f is ap-

proximated by using up to second-order derivatives de-

fined by (14). The result derived from (14) is that

the nonlinear function f(x) can be approximated by lin-

ear form wTφ(x) where w can be defined as w =[
1
s1
f(vj);

1
s2
∇f(vj);

1
2

(
V
(∇2f(vj)

))]n
j=1

and the em-

bedded vector φ(x)-FAemb can be defined as

φ(x) =
[
s1γvj

(x); s2γvj
(x)(x− vj);

γvj
(x)V

(
(x− vj)(x− vj)

T
) ]n

j=1
∈ R

n(1+d+d2) (16)

where s1, s2 are nonnegative scaling factors to balance three

types of codes.



3.2. Learning of coordinate coding

As mentioned in previous section, to get a good ap-

proximation of f , the RHS of (14) should be small

enough5. Furthermore, from definition of coordinate cod-

ing 1.1, (γ(x),C) should ensure that the reconstruction er-

ror ‖x′ − x‖2 should be small. Putting two above criteria

together, we find (γ(x),C) which minimize the following

constrained objective function

Q(γ(x),C) = ‖x−Cγ(x)‖22 + μ

n∑
j=1

|γvj (x)| ‖x− vj‖31

st. 1T γ(x) = 1 (17)

Equivalently, given a set of training samples (descriptors)

X = [x1, . . . ,xm] ∈ R
d×m, let γij be coefficient corre-

sponding to base vj of sample xi; γi = [γi1 , . . . , γin ]
T ∈

R
n be coefficient vector of sample xi; Γ = [γ1, . . . , γm] ∈

R
n×m. We find (Γ,C) which minimize the following con-

strained objective function

Q(Γ,C) =

m∑
i=1

⎡
⎣‖xi −Cγi‖22 + μ

n∑
j=1

|γij | ‖xi − vj‖31

⎤
⎦

st. 1T γi = 1, i = 1, . . . ,m (18)

To minimize (18), we iteratively optimize it by alternatingly

optimizing with respect to C and Γ while holding the other

fixed.

For learning the coefficients Γ, the optimization problem

is equivalent to a regularized least squares problem with lin-

ear constraint. This problem can be solved by optimizing

over each sample xi individually. To find γi of each sample

xi, we use Newton’s method [4]. The gradient and Hessian

of objective function w.r.t. γi is given in Appendix A.2.

For learning the bases C, the optimization problem is

unconstrained regularized least squares. We use trust-region

method [6, 5] to solve this problem 6. The gradient and Hes-

sian of objective function w.r.t. C is given in Appendix A.2.

After learning C, given a new descriptor x, we get γ(x)
by minimizing (17) using learned C. From γ(x), we get the

embedded vector φ(x)-FAemb by using (16).

3.3. Relationship to other methods

The most related embedding methods to FAemb are

TLCC [31] and VLAT [26].

Compare to TLCC [31], our assumption on f in

lemma 3.1 is slightly different from assumption of TLCC

(lemma 2.2 [31]). Our assumption only needs that ∇kf(x)

5Because M
6

is constant, it can be ignored in the optimization process.
6Because the objective function involves L1 norm, some methods de-

signed for L1 regularization, i.e, feature-sign search algorithm [16], can

be used. However, we find that the Newton’s method (for computing Γ)

and the trust-region method (for computing C) work well in practice.

is Lipschitz continuous while TLCC assumes that all

∇jf(x) are Lipschitz continuous, j = 1, . . . , k. Our objec-

tive function (17) is also different from TLCC (4). We rely

on L1 norm of (x−vj) in the second term while TLCC uses

L2 norm. We solve the constraint on the coefficient γ in

our optimization process while TLCC does not. FAemb ap-

proximates f using up to its second order derivatives while

TLCC approximates f only using its first order derivatives.

FAemb can also be seen as the generalization of

VLAT [26]. Similar to the relationship of TLCC and VLAD

presented in section 1.2, if we add constraint (6) to γ(x)
then the objective function (18) will become

Q1(Γ,C) =

m∑
i=1

[
‖xi − v∗‖22 + μ ‖xi − v∗‖31

]

st. 1T γi = 1, i = 1, . . . ,m

‖γi‖0 = 1, i = 1, . . . ,m (19)

where v∗ is anchor point corresponding to nonzero element

of γi.
If we relax L1 norm in the second term of Q1(Γ,C) into

L2 norm, then we can use K-means algorithm for minimiz-

ing (19). After learning C by using K-means, given an input

descriptor x, we have

x ≈ v∗ = argmin
v∈C

‖x− v‖2 (20)

Now, consider (16), if we choose s1 = 0, s2 = 0 and

we remove zero elements attached with them, φ(x) =

[0, . . . , 0,
(
V
(
(x− v∗)(x− v∗)T

))T
, 0, . . . , 0]T ∈ R

nd2

will become VLAT.

In practice, to make a fair comparison between FAemb

and VLAT, the embedded vectors producing by two meth-

ods should have same dimension. To ensure this, we choose

s1, s2 in (16) equal to 0. It is worth noting that in (16), as

matrix (x− vj)(x− vj)
T is symmetric, only the diagonal

and upper part are kept while flattening it into vector. The

size of VLAT and FAemb is then
nd(d+1)

2 .

3.4. Whitening and aggregating embedded vectors
to single vector

3.4.1 Whitening

In [14], authors showed that by applying the whitening pro-

cessing, the discriminating of embedded vectors can be im-

proved, hence improving the retrieval results.

In particular, given φ(x) ∈ R
D, we achieve whitened

embedded vectors φw(x) by

φw(x) = diag
(
λ
− 1

2
1 , . . . , λ

− 1
2

D

)
PTφ(x) (21)

where λi is ith largest eigenvalue. P ∈ R
D×D is ma-

trix formed by the largest eigenvectors associated with the



largest eigenvalues of the covariance matrix computed from

learning embedded vectors φ(x).
[14] further suggested that by discarding some first com-

ponents associated with the largest eigenvalues of φw(x),
the localization of whitened embedded vectors will be im-

proved. In practice, we also apply this truncation operation.

The detail of this truncation operation is presented in sec-

tion 4.

3.4.2 Aggregating

Let X = {x} be set of local descriptors describing the

image. Sum-pooling [15] and max-pooling [30, 3] are

two common methods for aggregating set of whitened

embedded vectors φw(x) of the image to a single vec-

tor. Sum-pooling lacks discriminability because the ag-

gregated vector is more influenced by frequently-occurring

uninformative descriptors than rarely-occurring informa-

tive ones. Max-pooling equalizes the influence of fre-

quent and rare descriptors. However, classical max-pooling

approaches can only be applied to BoW or sparse cod-

ing features. Recently, [14] introduced a new aggregating

method named democratic aggregation applied to image re-

trieval problem. This method bears similarity to general-

ized max-pooling [19] applied to image classification prob-

lem. Democratic aggregation can be applied to general fea-

tures such as VLAD, Temb, Fisher vector. [14] showed that

democratic aggregation achieves better performance than

sum-pooling. The main idea of democratic aggregation is

to find a weight for each φw(x) such that ∀xi ∈ X

λi (φw(xi))
T

∑
xj∈X

λjφw(xj) = 1 (22)

Generally, the process to produce the single vector from

set of local descriptors describing the image is as follows.

First, we map each x ∈ X → φ(x) and whitening φ(x),
producing φw(x). We then use democratic aggregation to

aggregate vectors φw(x) to the single vector ψ by

ψ(X ) =
∑
xi∈X

λiφw(xi) (23)

4. Experiments
This section presents results of our FAemb embedding

method. In section 4.3, we compare FAemb to other three

methods: VLAD [13], Temb [14] and VLAT [26]. We reim-

plement VLAD and VLAT in our framework. For Temb,

we use the source code provided by [14]. To make a fair

comparison, the whitening and the aggregating presented in

section 3.4 are applied for all four embedding methods. As

suggestion in [14], for Temb and VLAD methods, we dis-

card d first components of φw(x). The final dimension of

φw(x) is therefore D = (n−1)×d. For VLAT and FAemb

methods, we discard
d×(d+1)

2 first components of φw(x).

The final dimension of φw(x) is therefor D = (n−1)d(d+1)
2 .

In section 4.4, we compare our framework with image

retrieval benchmarks.

The value of μ in (18) is selected by empirical experi-

ments and is fixed to 10−3 for all FAemb results reported

bellow.

4.1. Dataset and evaluation protocol

INRIA holidays [11] consists of 1491 high resolution im-

ages containing personal holiday photos with 500 queries.

The search quality is measured by mean average precision

(mAP) over 500 queries, with the query removed from the

ranked list. As standardly done in the literature, for all the

learning stages, we use the independent dataset Flickr60k

provided with Holidays.

Oxford buildings (Oxford5k) [24] consists of 5062 im-

ages of buildings and 55 query images corresponding to 11

distinct buildings in Oxford. The search quality is mea-

sured by mAP computed over the 55 queries. Images are

annotated as either relevant, not relevant, or junk, which

indicates that it is unclear whether a user would consider

the image as relevant or not. We follow same configuration

in [7, 14, 12] where the junk images are removed from the

ranking before computing the mAP. As standardly done in

the literature, for all the learning stages, we use the Paris6k

dataset [25].

4.2. Implementation notes

Local descriptors are detected using the Hessian-affine

detector [18] and described by the SIFT local descrip-

tor [17]. We used RootSIFT variant [1] in all our experi-

ments.

For VLAT and FAemb, at beginning, all SIFT descriptors

are reduced from 128 to 45 dimensions using PCA. This

makes the dimension of VLAT and FAemb comparable to

dimension of compared embedding methods.

Power-law normalization. The problem of burtiness vi-

sual elements is first introduced in [10]: numerous de-

scriptors almost similar within the same image. This phe-

nomenon strongly affects the measure of similarity between

two images. To reduce the effect of burtiness, we simi-

larly do as previous works [12, 14]: applying power-law

normalization [23] to the final image representation ψ and

subsequently L2 normalize it. The applying of power-

law normalization to each component a of ψ is done by

a := |a|αsign(a), where 0 ≤ α ≤ 1 is a constant. To

ensure a fair comparison, for each embedding method, we

run experiments with α = {1, 0.9, ..., 0.1, 0} and report the

best mAP.



Table 1. The comparison between the implementation of VLAD

and VLAT in this paper and their improved versions [13, 20] on

Holidays dataset. D is final dimension of aggregated vectors. Ref-

erence results are obtained from corresponding papers.

method D mAP

VLAD [13] 16,384 58.7

VLAD (this paper) 8,064 67.4

VLAD (this paper) 16,256 68.3

VLATimproved [20] 9,000 70.0

VLAT (this paper) 7,245 70.9

VLAT (this paper) 15,525 72.7
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Figure 1. Impact of number of anchor points on the Holidays

dataset for different embedding methods: VLAD, Temb, VLAT

and our FAemb. Given n, the dimension of VLAD and Temb is

128 × (n − 1); the dimension of VLAT and FAemb is 45×46
2

×
(n− 1).

4.3. Impact of parameters and comparison of meth-
ods

It is worth noting that even with a lower dimension,

the implementation of VLAD and VLAT in our framework

(RootSIFT descriptors, VLAD/VLAT embedding, whiten-

ing, democratic aggregation and power-law normalization)

achieves better retrieval results than their improved versions

reported by the authors [13, 20]. The comparison on Holi-

days dataset is shown in Table 1.

Impact of parameters: the main parameter here is num-

ber of anchor points n. The analysis for this parameter is

shown in Figure 1 and Figure 2 for Holidays and Oxford5k

datasets, respectively. We can see that the mAP increases

with the increasing of n for all four methods. For Temb,

VLAT and FAemb, the improvement tends to be smaller for

larger n. For VLAT and FAemb, when n > 32, the im-

provement in mAP is not worth the computation overhead.

Comparison of methods: we find that the following ob-

servations are consistent on both Holidays and Oxford5k
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40

45

50

55

60

65

70

75

number of anchor points (n)

m
A

P
 o

n 
O

xf
or

d5
k

VLAD
Temb
VLAT
FAemb

Figure 2. Impact of number of anchor points on the Oxford5k

dataset for different embedding methods: VLAD, Temb, VLAT

and our FAemb. Given n, the dimension of VLAD and Temb is

128 × (n − 1); the dimension of VLAT and FAemb is 45×46
2

×
(n− 1).

datasets.

• For same n, FAemb and VLAT have same dimension.

However, FAemb improves the mAP over VLAT by a

fair margin. When n = 8, the improvement is +1.8%
and +3.9% on Holidays and Oxford5k, respectively.

When n = 16, 32, the improvement is about +3% on

both datasets.

• When the dimension is comparable, FAemb signif-

icantly improves the mAP over VLAD and Temb.

For examples, comparing FAemb at (n = 16, D =
15, 525) with VLAD/Temb at (n = 128, D =
16, 256), the gain of FAemb over VLAD/Temb is

+7.5%/+2% on Holidays and +8.1%/+5% on Ox-

ford5k.

4.4. Comparison with the state of the art

In this section, we compare our framework with bench-

marks having similar representation, i.e., they represent

an image by a single vector. The main differences be-

tween compared frameworks are shown in Table 2. Ex-

cepting VLATimproved [20], other compared methods and

ours consist of power-law normalization step and use Eu-

clidean distance when comparing the aggregated vectors.

VLATimproved [20] doesn’t have power-law normalization

and it uses Mahalanobis distance when comparing the ag-

gregated vectors. VLADLCS [7] and VLATimproved [20]

don’t have whitening step on final embedded vector (φ(x))
but they first apply PCA on Voronoi cells separately. The

sub-embedded vectors on Voronoi cells are then concate-

nated to form final embedded vector.

Our framework, by itself, outperforms the state of the

art by introducing new effective embedding method, and by

combining most of effective ingredients.



Table 2. The difference between compared frameworks. The

frameworks are named by embedding methods used. RSIFT

means RootSIFT. Do whitening means if whitening is applied on

embedded vectors.
Frame Local Do Aggr.

work desc. whitening? method

BoW [13] SIFT No Sum

VLAD [13] SIFT No Sum

Fisher [13] SIFT No Sum

VLADLCS [7] RSIFT No Sum

VLADintra [2] RSIFT No Sum

VLATimproved [20] SIFT No Sum

Temb [14] RSIFT Yes Democratic

Ours (FAemb) RSIFT Yes Democratic

Table 3. Comparison with the state of the art on Holidays and Ox-

ford5k datasets. The frameworks are named by embedding meth-

ods used. n is number of anchor points. D is dimension of embed-

ded vectors. Reference results are obtained from corresponding

papers.

Frame n D mAP

work Hol. Ox5k

VLAD [13] 256 16,384 58.7 -

Fisher [13] 256 16,384 62.5 -

VLADLCS [7] 64 8,192 65.8 51.7

VLADintra [2] 64 8,192 56.5 44.8

VLADintra [2] 256 32,536 65.3 55.8

VLATimproved [20] 64 9,000 70.0 -

Temb [14] 64 8,064 72.2 61.2

Temb [14] 128 16,256 73.8 62.7

Our framework

FAemb 8 7,245 72.7 63.6

FAemb 16 15,525 75.8 67.7

Table 3 shows that our framework outperforms the com-

pared frameworks by a large margin on both datasets. The

gain over recent improved VLAD [2] having a high (32,536)

dimension is +10.5% on Holidays and +11.9% on Ox-

ford5k. Comparing with VLATimproved [20] which is the

latest version of VLAT, the gain is +5.8% on Holidays.

Even with a lower dimension, we (D = 7, 245) outperform

VLATimproved (D = 9, 000) +2.7%. Comparing with the

latest embedding method (Temb) [14], we also achieve a

gain +2% on Holidays and +5% on Oxford5k.

In Temb embedding [14], to suppress the influence of

co-occurrences descriptors that corrupts the similarity mea-

sure [9], they applied (before power-law normalization) ro-

tation postprocessing introduced in [27] on aggregated vec-

tors. For instance, they rotate data with a PCA rotation ma-

trix learned on aggregated vectors from learning set. This

rotation postprocessing is a complementary operation and

it boosts the performance. In this section, we also show

results when this operation is applied on our FAemb. To

Table 4. Comparison between Temb [14] and FAemb on Holidays

and Oxford5k datasets when rotation postprocessing is applied on

the aggregated vector. n is number of anchor points. D is dimen-

sion of embedded vectors. Reference results are obtained from

corresponding paper.

n D mAP

Method Hol. Ox5k

Temb + RN [14] 64 8,064 77.1 67.5

Temb + RN [14] 128 16,256 76.8 66.5

FAemb + RN 8 7,245 76.2 66.7

FAemb + RN 16 15,525 78.7 70.9

make a fair comparison with results of Temb [14], we use

the same number of learning images as [14]. They are 10k

images from Flickr60k for Holidays and 6k images from

Paris6k for Oxford5k. The results with the applying of this

rotation are noted as +RN, and shown in Table 4.

We can see that the applying of the rotation normal-

ization to Temb and FAemb gives a large improvement in

performance. The mAP of FAemb+RN at D = 7, 245
is slightly lower than Temb+RN at D = 8, 064 on both

datasets. However, we note a larger variance: the best

results of FAemb+RN are higher than the best results of

Temb+RN, especially on Oxford5k. For instance, the gain

is +1.6% on Holidays and +3.4% on Oxford5k.

5. Conclusion

By departing from the goal of linear approximation of

a nonlinear function in high dimensional space, this paper

proposes a new powerful embedding method for image re-

trieval problem. The proposed embedding method-FAemb

can be seen as the generalization of several well-known em-

bedding methods such as VLAD, TLCC, VLAT. The new

presentation compares favorably with state-of-the-art em-

bedding methods for image retrieval, such as VLAD, VLAT,

Fisher kernel, Temb, even with a shorter presentation.

A. Appendix

A.1. Proof of Lemma 3.1

Because ∇kf(x) is Lipschitz continuous with constant

M > 0, we have
∥∥∇k+1f(x)

∥∥
2
≤ M . So for |α| = k + 1,

we have |∂αf(x)| ≤ ∥∥∇k+1f(x)
∥∥
2
≤ M .



We have∣∣∣∣∣∣f(x)−
n∑

j=1

γvj
(x)

∑
|α|≤k

∂αf(vj)

α!
(x− vj)

α

∣∣∣∣∣∣

=

∣∣∣∣∣∣
n∑

j=1

γvj
(x)

⎛
⎝f(x)−

∑
|α|≤k

∂αf(vj)

α!
(x− vj)

α

⎞
⎠
∣∣∣∣∣∣

≤
n∑

j=1

∣∣∣∣∣∣γvj
(x)

⎛
⎝f(x)−

∑
|α|≤k

∂αf(vj)

α!
(x− vj)

α

⎞
⎠
∣∣∣∣∣∣

=
n∑

j=1

∣∣γvj (x)
∣∣ ∣∣Rvj ,k(x− vj)

∣∣

≤ M

(k + 1)!

n∑
j=1

∣∣γvj (x)
∣∣ ‖x− vj‖k+1

1 .

where the last inequation comes from corollary 2.3.

A.2. Gradient and Hessian w.r.t. γi,C of objective
function Q(Γ,C) 7

We have the objective function

Q(Γ,C) =

m∑
i=1

⎡
⎣‖xi −Cγi‖22 + μ

n∑
j=1

|γij | ‖xi − vj‖31

⎤
⎦

A.2.1 Gradient and Hessian w.r.t. γi

Let a =
[
‖xi − v1‖31 , ‖xi − v2‖31 , . . . , ‖xi − vn‖31

]T
, we

have

∇Q(γi) = 2CT (Cγi − xi) + μ sign(γi)
 a(24)

∇2Q(γi) = 2CTC (25)

where sign(γi) = [sign(γi1), sign(γi2), . . . , sign(γin)]
T

and 
 denotes Hadamard product.

A.2.2 Derivative and Hessian w.r.t. C

Let R =
∑m

i=1 ‖xi −Cγi‖22 = ‖X−CΓ‖22, we have

∇R(C) = 2(CΓ−X)ΓT (26)

Let L =
∑n

j=1

∑m
i=1 |γij | ‖xi − vj‖31 and let dj =

∇L(vj) = 3
∑m

i=1 |γij | ‖vj − xi‖21 sign(vj − xi), we

have

∇L(C) = [d1, . . . ,dj , . . . ,dn] (27)

7Theoretically, the partial derivatives ∂(Q)/∂γik and ∂(Q)/∂vjk do

not exist at some points. We found, however, the Newton’s method and the

trust-region method with the provided derivatives work well in practice.

Finally, we get

∇Q(C) = ∇R(C) + μ∇L(C) (28)

Let uj =
∑m

i=1 γ
2
ij

: sum of square of coefficients cor-

responding to base vj of all data points x; let Ajj =
2ujId×d ∈ R

d×d, j = 1, . . . , n, we have

∇2R(C) =

⎛
⎜⎜⎜⎝

A11 0d×d . . . 0d×d

0d×d A22 . . . 0d×d

...
...

. . . 0d×d

0d×d 0d×d . . . Ann

⎞
⎟⎟⎟⎠ (29)

where 0d×d is matrix having size of d×d and zero elements.

Let Bjj = ∇2L(vj) ∈ R
d×d be Hessian of L w.r.t. base

vj , j = 1, . . . , n, we have

Bjj =

⎛
⎜⎜⎜⎜⎜⎝

∂2L
∂vj1

∂vj1

∂2L
∂vj1

∂vj2
. . . ∂2L

∂vj1
∂vjd

∂2L
∂vj2

∂vj1

∂2L
∂vj2

∂vj2
. . . ∂2L

∂vj2
∂vjd

...
...

. . .
...

∂2L
∂vjd

∂vj1

∂2L
∂vjd

∂vj2
. . . ∂2L

∂vjd
∂vjd

⎞
⎟⎟⎟⎟⎟⎠

(30)

For k = 1, . . . , d; h = 1, . . . , d; if k = h then

∂2L

∂vjk∂vjh

= 6

m∑
i=1

|γij | ‖vj − xi‖1 (sign(vjk − xik))
2

If k �= h then

∂2L

∂vjk∂vjh

= 6

m∑
i=1

|γij | ‖vj − xi‖1 sign(vjk − xik)sign(vjh − xih)

We have

∇2L(C) =

⎛
⎜⎜⎜⎝

B11 0d×d . . . 0d×d

0d×d B22 . . . 0d×d

...
...

. . . 0d×d

0d×d 0d×d . . . Bnn

⎞
⎟⎟⎟⎠ (31)

Finally, we get

∇2Q(C) = ∇2R(C) + μ∇2L(C) (32)
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