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Abstract

This paper introduces the concept of shape signals, i.e.,
series of shapes which have a natural temporal or spatial
ordering, as well as a variational formulation for the reg-
ularization of these signals. The proposed formulation can
be seen as the shape-valued generalization of the Rudin-
Osher-Fatemi (ROF) functional for intensity images. We
derive a variant of the classical finite-dimensional represen-
tation of Kendall, but our framework is generic in the sense
that it can be combined with any shape space. This repre-
sentation allows for the explicit computation of geodesics
and thus facilitates the efficient numerical treatment of the
variational formulation by means of the cyclic proximal
point algorithm. Similar to the ROF-functional, we demon-
strate experimentally that `1-type penalties both for data
fidelity term and regularizer perform best in regularizing
shape signals. Finally, we show applications of our method
to shape signals obtained from synthetic, photometric, and
medical data sets.

1. Introduction

In this paper we wish to introduce the concept of shape
signals, i.e., collections of shapes which appear in a spatial
or temporal context. An obvious example is object tracking
in video sequences where all shapes have a natural tempo-
ral ordering, cf. Fig. 1. Another example is organ segmen-
tation from tomographic imaging modalities such as com-
puted tomography or magnetic resonance imaging, where a
three-dimensional organ can be segmented by obtaining its
two-dimensional outlines from all containing slices. In both
scenarios it is possible to arrange the obtained shapes in a
one dimensional grid with (often) equidistant spacing. The
resulting shape signal is a mapping from a discrete index,
which corresponds to a time stamp or a slice number for
instance, to some shape space.

Figure 1: Regularization of Shape Signals: Objects seg-
mented from video data enjoy a natural temporal ordering
and thus form a shape signal. First row: Three frames
of the ”parachute” sequence from [28] segmented with the
method proposed by [18]. Second row: Regularized shapes
obtained with our method. Third and fourth row: Shape
signal of the original segmentations (third row) and regu-
larized shape signal (fourth row). Only a few shapes of this
sequence are shown for better visibility. Shapes correspond-
ing to the selected frames are highlighted in red.

1.1. Motivation

The idea of introducing shape signals is inspired by the
observation of Rahman et al. [19], who noticed that many
signals in science and engineering are actually manifold-
valued signals as well as some recent efforts of total vari-
ation (TV) regularization of such data, cf. Lellmann et al.
[14] and Weinmann et al. [29]. A typical example is pose
tracking data, e.g., acquired with an optical tracking sys-
tem, which can be represented as a series of rigid transfor-
mation matrices acquired at equally spaced points in time.
While these approaches focus, however, on rather low di-
mensional manifolds, e.g. SE(3) which is useful for reg-
ularizing pose data, we would like to go beyond these ap-
plications and consider shapes and shape spaces which are
high-dimensional by nature – typical polygonal shape rep-
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resentations used in this paper comprise hundreds of bound-
ary points. In general, there a two main approaches for ob-
taining a suitable shape representation or shape space:

1. The continuous approach: A shape can for instance
be considered as an element of the manifold of simple
closed smooth and unparametrized curves in R2 or as
an element of the orbifold of immersions from S1 to
R2 modulo all diffeomorphisms of S1, cf. Michor and
Mumford [17] or Bauer et al. [2].

2. The discrete approach: A shape can be interpreted as
a simple and closed n-gon in R2 or the complex plane
C, cf. Kendall [13].

In this paper, we focus on the discrete approach – in par-
ticular the one of Kendall [13] – for mainly two reasons:
Firstly, algorithms for processing manifold-valued data, re-
quire the implementation of the exponential as well as the
inverse exponential mapping of the respective manifold, cf.
Sec. 3. These mappings can be implemented very effi-
ciently in the case of Kendall shapes. Secondly, Kendall
shapes are only invariant w.r.t. translations, rotations, and
global scalings. Although a lot of research has been carried
out in regard to shape representations which are invariant
to large classes of transformations, e.g., affine transforma-
tions, we will demonstrate in Sec. 5.2 that ensuring too
many invariance properties is not always desired in the con-
text of shape regularization. The observation that too many
invariances can be disadvantageous is not at all obvious and
it even motivated us to propose so-called oriented Kendall
shapes which are only invariant w.r.t. translations and scal-
ings, cf. Sec. 4.3.

2. Related Work
We discuss related work concerning TV regularization

for manifold-valued data and comment on the connections
to two other important fields of research: active contours
and continuous shape spaces.

2.1. TV Regularization for Manifold-valued Data

From a theoretical point of view, TV minimization for
manifold-valued data has been considered by Giaquinta
and Mucci [9, 10]. Algorithms for TV regularization for
manifold-valued data have been developed by Lellmann et
al. [14] and by Weinmann et al. [29]. Applications consid-
ered in [14] are the one and two-dimensional sphere as well
as the three-dimensional group of rotations. The algorithm
in [14] is based on rewriting the problem as a labeling prob-
lem with the label space consisting of a discretization of the
manifold. Unfortunately, the label space grows rapidly with
the dimension of the manifold which makes application to
higher dimensional manifolds, such as shape spaces, hard.
In contrast to this, the algorithms described by Weinmann

et al. [29], i.e., the cyclic and the parallel proximal point
algorithm, do not require such a discretization. Further-
more, the computational times do not increase more than
linearly with the dimension of the manifold. Application
areas in [29] also include the six-dimensional space of dif-
fusion tensor data. It should be noted that there are also
some works on fitting curves on manifolds which share the
same goal but essentially consider `2-regularized scenarios,
e.g., [8, 21, 24, 23].

2.2. Active Contours

The idea of active-contour-based tracking has already
been described in the seminal work of Kass et al. [12]. It
is based on the assumption that the shape of the tracked
object varies only gently between two consecutive frames.
Thus, the segmentation from one frame can be used as an
initialization for the next frame, which greatly benefits the
non-convexity of active contours. Since the original work
of Kass et al. a lot of improvements have been proposed
which help to make this method more robust w.r.t. large
deformations, occlusions, background clutter, etc. As it
is beyond the scope of this paper to discuss all of them
we refer the interested reader to the exhaustive overview
of Cremers et al. [7]. However, we would like to men-
tion the recent works on Sobolev-type active contours, cf.
Charpiat et al. [6] and Sundaramoorthi et al. [26, 27, 25],
which have in common that they either implicitly or explic-
itly rely on shape metrics, i.e., some notion of distance be-
tween shapes, in order to constrain the segmentation. As
a consequence, we wish to emphasize that the proposed
method assumes that a shape signal has already been ob-
tained and it can thus be combined with any method for
segmentation-based tracking or video segmentation. Fur-
thermore, even if active-contour-based segmentation meth-
ods are augmented by sophisticated shape metrics, the reg-
ularity of the obtained segmentation is not comparable to
the one obtained by our approach. The most obvious rea-
son for this fact is that segmentation-based tracking is an
unidirectional process where previous segmentations can-
not be regularized by subsequent ones. We will actually see
in Sec. 5.4 that our method nicely complements Sobolev-
type active contours by further regularizing their results.

There are of course many more approaches for
segmentation-based tracking and video segmentation, es-
pecially those which are based on graphical models. The
reason why we only consider approaches related to active
contours as related is that this area of research is closely re-
lated to the one of shape spaces and shape metrics which
are an essential prerequisite for the proposed framework.

2.3. Continuous Shape Spaces and Metrics

Shape spaces and shape metrics have a long history in
computer vision as well as medical image analysis. Es-



pecially in the area of continuous approaches, e.g. met-
rics for the space of immersions from S1 to R2 modulo
all diffeomorphisms of S1, a tremendous progress has been
achieved in the last decade. Noteworthy examples are the
paper of Michor and Mumford on the deficiency of the L2

metric [16], the one of Younes et al. on explicit geodesics
[30], the one of Srivastava et al. on the square root velocity
transform [22], and finally the one of Bauer et al. [1] on
reparametrization invariant metrics. An exhaustive discus-
sion of all works in this area is beyond the scope of this work
and we thus refer the interested reader to the excellent recent
overviews of Michor and Mumford [17] as well as Bauer et
al. [2]. However, we would like to emphasize that the pro-
posed framework can be combined with any shape space
as long as there exists the possibly of computing geodesics
between to shapes.

3. Regularization of Shape Signals
In this section we will describe a general framework for

regularizing shape signals, which is similar to the one pro-
posed by Rudin, Osher, and Fatemi in [20] as well as the
one considered by Weinmann et al. [29] and Lellmann et
al. [14]. It is important to notice that this formulation does
not depend on the particular choice of the shape space.

3.1. Notation

Let M denote a suitable Riemannian shape manifold,
which does not need to be specified for the moment. For an
element a ∈ M we denote the tangent space at a by TaM.
We further denote the exponential map at a by

expa :

{
TaM →M,

v 7→ expa(v)
(1)

and the inverse exponential map at a by

loga :

{
M → TaM,

b 7→ v = loga(b)
(2)

where loga(b) is the tangent vector in TaM such that

expa(loga(b)) = b. (3)

A natural distance between two points a,b ∈M is given by
the length of the geodesic joining a and b. This is precisely
the length of the tangent vector loga(b):

d(a,b) = ‖loga(b)‖a , (4)

where ‖ · ‖a is the length induced by the Riemannian metric
in the tangent space of a. The index a indicates that the
metric may depend on a, which is the case for Sobolev-type
metrics for instance, cf. [6, 27, 26, 25, 1]. In general, it

is hard to find explicit formulas for computing geodesics
in case of such metrics. However, we use an embedded
representation, cf. Sec. 4, which helps us to circumvent
related problems.

3.2. Problem Formulation

A shape(-valued) signal with k ∈ N entries is a vector
f = (f1, . . . , fk) ∈ Mk. We assume that f is given, e.g.,
as a result of a segmentation algorithm, and we wish to find
another signal x such that the functional

E(x) = D(x, f) + αR(x), α > 0, (5)

is minimal. While D(x, f) is a data fidelity term which pe-
nalizes the deviation from the original signal f , R(x) is a
regularizer penalizing large variations or jumps in x. As a
data fidelity term, we consider

D(x, f) =

k∑
i=1

(h ◦ d)(xi, fi), (6)

where h is one of the following functions: h(s) = s which
leads to an `1-type penalization, h(s) = s2/2 which leads
to an `2-type penalization, and

h(s) =

{
s2, s < 1/

√
2,√

2s− 1/2, otherwise,
(7)

which yields the manifold-valued equivalent of the well-
known Huber-norm [11] – a differentiable compromise be-
tween the `1-norm and the `2-norm. Similar to D we con-
sider the regularizer

R(x) =

k−1∑
i=1

(h ◦ d)(xi,xi+1). (8)

As d(xi,xi+1) can be considered as a manifold-valued for-
ward difference, R can be interpreted as a first order ap-
proximation of the classical Tikhonov regularizer, in case
of h(s) = s2/2, or the total variation, in case of h(s) = s,
respectively. In case of (7), R can be regarded as a shape-
valued differentiable approximation of the total variation
regularizer, which can be used to avoid the staircasing prob-
lem associated with total variation denoising, cf. Chambolle
and Pock [5].

3.3. Numerical Solution

Minimizing the functional in (5) can be achieved by a
cyclic proximal point algorithm, cf. Alg. 1. As demon-
strated by Weinmann et al. in [29], this algorithm is par-
ticularly suited for manifold-valued total variation regular-
ized problems, because all proximal mappings can be im-
plemented via computing points on geodesics, i.e.,

[a,b]t = expa(t loga(b)), (9)



Algorithm 1: Cyclic proximal point algorithm for
solving the functional (5).

input : Signal f , parameter α, number of steps l
output: Signal x (solution of (5))

x← f ;

for j ← 1 to l do

//compute rel. parameter;
λj ← CompLambda(j)

//proximal mapping of D;
for i← 1 to k do

t← GeoLengthData(λj ,xi,fi)
xi ← [xi, fi]t;

end

//proximal mapping of R;
for i← 1 to k − 1 do

t← GeoLengthData(λj ,α,xi,xi+1)
x̂i ← [xi,xi+1]t;
x̂i+1 ← [xi+1,xi]t;
xi ← x̂i;
xi+1 ← x̂i+1;

end

end

for a,b ∈ M and an appropriately chosen t ∈ [0, 1]. For
a detailed derivation as well as an analysis of this algorithm
we refer the reader to [29].

We would like to emphasize that this algorithm can
be instantiated for any shape space by providing im-
plementations of the corresponding exponential mapping
and its inverse. The functions GeoLengthData, and
GeoLengthReg calculate how far to move on the
geodesic under consideration; GeoLengthData does so
for the data term whereas GeoLengthReg does so for the
regularizer, cf. Tab. 1. The function CompLambda pro-
vides a square-summable (but not summable) sequence of
relaxation parameters, cf. [29]. In all our experiments we
have chosen

λj = 3j−(0.95+ 1
2 j

−0.18), j = 1, . . . , l, (10)

where l ∈ N is the number of iteration steps.

4. Shape Representations
As mentioned before, we decided to use the shape repre-

sentation introduced by Kendall [13], because the exponen-
tial as well as the inverse exponential mapping can be im-
plemented very efficiently. In the following we will briefly

GeoLengthData

`2 λ/(1 + λ)
`1 min(λ/d, 1)

Huber

{
2λ/(1 + 2λ), d < (1 + 2λ)/

√
2,

min(
√

2λ/d, 1), else.

GeoLengthReg

`2 λα/(1 + 2αλ)
`1 min(λ/d, 12 )

Huber

{
2λ/(1 + 4λ), d < (1 + 4λ)/

√
2,

min(
√

2λ/d, 12 ), else.

Table 1: Geodesic Path Lengths: Depending on the
chosen penalization the functions GeoLengthData and
GeoLengthReg return different geodesic path lengths.
The length of the geodesic, cf. (4), is denoted by d.

fix our notation for this section, review the classical rep-
resentation proposed by Kendall [13], and derive a non-
rotation invariant analogue of it. We will see in Sec. 5 that
this novel representation has some advantages over the clas-
sical representation – at least for certain applications.

4.1. Notation

We consider polygonal discretizations of simple planar
shapes, i.e., two-dimensional closed curves which do not
intersect themselves. The result of such a discretization is a
simple n-gon which can be represented by a complex vector

z = (z1, . . . , zn) ∈ Cn, (11)

where each entry zi encodes the coordinates of one bound-
ary point with its real and imaginary part. We will assume
that this representation is already normalized w.r.t. transla-
tion, i.e.

n∑
i=1

zi = 0 ∈ C. (12)

In order to position the regularized shapes correctly, this
mean value (translation vector) has to be stored for all
shapes in the signal before the signal can be regularized us-
ing the presented framework.

It is also possible to define a real-valued representation
of z via identifying Cn with R2n, i.e.,

x = (x11, x
2
1, x

1
2, x

2
2, . . . , x

1
n, x

2
n) ∈ R2n, (13)

where
x1i = <(zi) and x2i = =(zi). (14)

Similar to the complex case, we will assume that x is al-
ready normalized w.r.t. translation.



4.2. Classical Kendall Shapes

We will briefly recall the original representation of
Kendall [13]. For a concise description of this representa-
tion we recommend the recent paper of Fletcher on geodesic
regression [8], which also forms the basis for the following
derivations.

Kendall employs the complex shape representation in a
particularly elegant way. The first step is to notice that by
normalizing z w.r.t. to translation we restrict all shapes to
the (n− 1)-dimensional subspace

Vn−1 = {z ∈ Cn :

n∑
i=1

zi = 0} ⊂ Cn, (15)

which can itself be identified with Cn−1. Roughly speak-
ing, by normalizing w.r.t. translation we are removing one
complex degree of freedom. Next, we notice that a shape z ∈
Vn−1 can be scaled by a factor s > 0 and rotated by an angle
θ ∈ [0, 2π) by multiplying all complex components zi with
the complex number w = s exp(iθ) = s cos(θ) + is sin(θ).
Consequently, all shapes z which are equivalent w.r.t. trans-
lation, rotation, and scaling lie on the complex line

Lz = {w · z : w ∈ C\{0}}. (16)

In other words, Lz is the equivalence class of all shapes
which are equivalent w.r.t. rigid transformations and scal-
ings. The set of all these equivalence classes can now be
identified with the complex projective space CPn−2 or,
more intuitively, the complex unit sphere Sn−2

C (with an-
tipodal points identified). This means that by enforcing ro-
tation and scale invariance we are removing another com-
plex degree of freedom. As a consequence, the exponential
mapping and the inverse exponential mapping are given by
the respective mappings of Sn−2

C , i.e.,

expz(v) = cos(φ) · z +
‖z‖ sin(φ)

φ
· v, φ = ‖v‖ (17)

and

logz(y) = φ · y −Πz(y)

‖y −Πz(y)‖
, φ = arccos(

|〈z, y〉|
‖z‖ ‖y‖

), (18)

where Πz(y) = z · 〈z, y〉 / ‖z‖2 denotes the projection of
y onto z. It is important to notice that 〈·, ·〉 denotes the
complex scalar product, i.e.,

〈z, y〉 =

n∑
i=1

ziyi, (19)

where · denotes the complex conjugation, and ‖ · ‖ is the
norm induced by the complex scalar product.

(a) (b) (c)

Figure 2: Pure Rotational Perturbation: Perturbed shape
signal (a), regularized signal using the classical Kendall
shape space (b), and regularized signal using the oriented
Kendall shape space (c).

4.3. Oriented Kendall Shapes

Based on the considerations from Sec. 4.2, we derive a
shape representation which is not rotationally invariant. We
term this representation oriented Kendall shapes. At first,
we notice that by normalizing x w.r.t. translation, cf. (13),
we are removing two real degrees of freedom. Thus, the
shape representation is restricted to the real subspace

V2n−2 = {x ∈ R2n :

2n∑
i=1

xi = 0} ⊂ R2n. (20)

Next, we notice that a shape x ∈ V2n−2 can be scaled by
multiplying all real components xi with a real number s 6=
0. Consequently, all shapes x which are equivalent w.r.t.
translation and scaling lie on the real line

Lx = {s · x : s ∈ R\{0}}. (21)

In other words, Lx is the equivalence class of all shapes
which are equivalent w.r.t. translations and scalings. The set
of all these equivalence classes can now be identified with
the real projective space RP 2n−3 or, more intuitively, the
real unit sphere S2n−3

R (again with antipodal points iden-
tified). This means that by enforcing scale invariance we
are removing another real degree of freedom. As a conse-
quence, the exponential mapping and the inverse exponen-
tial mapping are given by the respective mappings of Sn−3

R ,
i.e., formulas (17) and (18) but this time with the real-valued
scalar product 〈x, y〉 as well as its induced norm. To put it in
a nutshell: By simply exchanging the scalar product for the
computation of the exponential and the inverse exponential
mappings we can switch between a rotationally invariant
and a non-rotationally invariant representation. Moreover,
all mappings can be implemented very efficiently as they
only require basic linear algebra subroutines (BLAS).

5. Experiments and Discussion
In order to demonstrate the potential of our method we

performed experiments using synthetic shape signals as
well as shape signals obtained from real imaging data.



D: Huber, R: `2 D: `1, R: `2 D: `2, R: `2

D: Huber, R: Huber D: `1, R: Huber D: `2, R: Huber

D: Huber, R: `1 D: `1, R: `1 D: `2, R: `1

Figure 3: Comparison of Different Shape Spaces and Penalties: The red shape was perturbed by a rotation and barely
visible deformation of one coordinate. All experiments with the classical Kendall shape space are on the left of each pair, i.e.,
columns 1, 3, 5, and all experiments with the proposed shape space are shown on the right of each pair, i.e., columns 2, 4, and
6. Note that the proposed shape space in conjunction with an `1 penalty for the regularizer performs best in reconstructing
the original shape signal.

5.1. Experimental Setup and Parameter Choice

All experiments have been performed on a Mac Book
Pro Retina (2013) with an Intel Core i7-4850HQ CPU (2,30
GHz), 16GB of RAM, and Windows 7. The algorithm was
implemented in C++, compiled with the Visual Studio 2012
compiler, and controlled via MATLAB mex-functions. If
not specified differently, we used 1000 iterations per ex-
periment. The maximum processing time for all of the
presented experiments was significantly below 2 seconds
demonstrating the performance of our method. Thus, our
algorithm can easily be used in an interactive scenario. We
found that the parameter n was easy to adjust and in general
we preferred a conservative strategy of choosing rather too
many than too few discretization points – typical values for
n where between 100 and 360.

5.2. Synthetic Experiments

We performed a series of synthetic experiments in order
to demonstrate the strengths and weaknesses of the classi-
cal as well the oriented Kendall shapes in the context of
our framework. Therefore, we generated an artificial shape
signal consisting of 20 copies of the same shape. We set

α = 5.0 and discretized all shapes with 100 equally spaced
boundary points. Next we perturbed the 10-th shape and
regularized the signal with different parameter choices. As
expected, the classical Kendall shape space is ”blind” w.r.t.
a pure rotational perturbation which is shown in Fig. 2.
In this experiment we used `1 penalties, but the classical
Kendall shape space would not behave differently in case of
another penalty. In contrast to this, the original signal can
be recovered by the proposed shape space. Next, we per-
turbed the 10-th shape not only by a rotation, but also by a
tiny and barely visible deformation of less than 2% of the
first coordinate. In Fig. 3 all results of this experiment are
displayed.

From these results, we draw the following conclusions.
Firstly, although the deformational perturbation is barely
visible and changes the shape rather insignificantly, the met-
ric of the classical Kendall shape space regards the per-
turbed shape as being different to the other ones. As a con-
sequence, our algorithm falsely modifies the neighboring
shapes. Secondly, also the metric of the proposed shape
space regards the perturbed shape as being different. How-
ever, the regularized shapes come significantly closer to the
original signal in case of the oriented shape space. Thirdly,



Figure 4: Video Segmentation Example: We segmented 48 frames of the ”monkey” sequence from the SegTrack database
of Tsai et al. [28]. First row: Five frames with the segmentations obtained with the method of Papazoglou and Ferrari [18].
Second row: The same frames with segmentations regularized with our algorithm. Third row: Shape signal consisting of
the original segmentations, where only every third shape is displayed for better visibility. The shapes corresponding to the
frames in the upper two rows are highlighted in red. Fourth row: Regularized shape signal with the same shapes highlighted.

the total variation regularization performs best and almost
independently of the data term at reconstructing the origi-
nal signal. One might for sure argue that in case of a purely
rigid object motions the original Kendall shape space might
yield better results, because it does not try to correct a ro-
tation by a deformation as it is done by the proposed shape
space. However, the experiment in Fig. 3 shows the algo-
rithm for obtaining the shape signal has to be very accurate.
Moreover, the rigid body motion has to be perfectly paral-
lel to the image plane and the intrinsic camera calibration
needs to be very accurate, too. We strongly believe that
these assumptions do hardly apply in practice. As a conse-
quence, we recommend to use the proposed shape space in
connection with a total variation regularization for the regu-
larization of shape signals, in particular if they are obtained
from projective imaging modalities such as video cameras.

5.3. Video Segmentation

A natural application of our method is the processing of
shape signals obtained from video segmentation algorithms,
especially in case of low resolution and low quality video
data. Thus, we applied the recently proposed video seg-
mentation algorithm of Papazoglou and Ferrari [18] to the
”monkey”’ sequence, cf. Fig. 4, of the SegTrack database1

of Tsai et al. [28]. We selected this sequence, because it
is of low quality, suffers from clearly visible compression
artifacts, and the motion of the segmented monkey is very
complex. We used the algorithm of Papazoglou and Ferrari
with the standard preferences and in combination with the

1cpl.cc.gatech.edu/projects/SegTrack/

method of Brox and Malik [4] for optical flow estimation as
well as the Turbopixels of Levinshtein et al. [15] for super-
pixel generation. Then, we extracted shape contours with
200 equally spaced boundary points per segmented frame
and processed this signal with our algorithm. We used an
`1 penalty both for the data term and the regularizer and
chose a moderate regularization, i.e., α = 1.0. Processing
48 frames of this sequence took 0.53 seconds.

It can be observed that the segmentation boundaries are
significantly regularized without deviating too much from
the original segmentation. In case of very fast motions the
low frame rate of the video is sometimes causing problems,
because neighboring shapes can be very different. This
leads to a slight over-regularization which can be observed
in the second and third frame in the second row of Fig. 4
(frames 19 and 25 in the original video sequence). How-
ever, frames four and five in the second of Fig. 4 (frames
40 and 58 in the original video sequence) clearly reveal that
our method has in general no problem with concavities of
the object boundary. Furthermore, we performed a sensitiv-
ity analysis of the proposed method w.r.t. to perturbations of
the input shape signals of the ’monkey’ sequence, cf. Tab.
2. We performed 1500 runs with Gaussian noise N(0, σ)
for varying levels of σ on the input shape coordinates of the
’monkey’ sequence and evaluated the results w.r.t. the av-
erage surface distance (ASD) between the result obtained
without noise and the one computed with noise added accu-
mulated for the whole signal. These experiments show that
our method a very robust w.r.t. perturbations of the initial
shape data. Furthermore, we performed another experiment



(a) original (b) regularized (c) surface distance (voxel) (d) slice 10 (e) slice 57

Figure 5: Geometry Processing Example: We applied our algorithm to a segmentation of the lumen of the abdominal part
of a human aorta. The model consists of 68 CTA slices segmented with the method of Baust et al. [3]. The original model is
shown in (a) with every second shape highlighted in blue. The regularized signal is shown in (b) with every second contour
highlighted in yellow. Our method successfully removes little cusps and concavities of the original contours, where we
colorized the original segmentation with the signed surface distance (in voxel) to the regularized model (c). Two exemplary
contours are shown in (d) and (e), where the little arrow indicates that our method is capable of removing small spurious
segmentation artifacts due to neighboring calcifications.

using the same sequence and found that α is relatively easy
to tune, because the dependency of the result (in terms of
ASD) on the choice of α is 0.00, 0.01, 2.09, 8.66, and 15.49
pixel for α = 0.01, α = 0.1, α = 1, α = 5, and α = 10,
respectively.

5.4. Geometry Processing

Besides processing signals obtained from video segmen-
tation our method is also suitable for geometry processing
applications. A typical scenario is the slice-wise segmenta-
tion of organs, e.g., vasculature acquired with computed to-
mography angiography (CTA). In order to demonstrate the
applicability to such cases, we consider the segmentation
of the abdominal part of the aorta from computed tomogra-
phy angiography, cf. Fig. 5. The contrasted lumen of the
aorta, cf. Fig. 5 (d) and (c), was segmented with the method
of Baust et al. [3]. The segmentation boundaries were dis-
cretized with 360 equally spaced points and our algorithm
regularized the whole signal consisting of 68 shapes in 1.35
seconds, where we chose α = 15.0 as well as `1 penal-
ties for data term and regularizer. As it depicted in Fig. 5
(a) and (b), our algorithm successfully regularizes the seg-
mentation of the aortic lumen. Thereby, our algorithm is
particularly useful in removing little cusps and concavities
which is shown by Fig. 5 (c) where we colorized the orig-
inal segmentation with the signed surface distance between
the original and the regularized signal. These cusps corre-
spond to erroneously segmented calcifications in the aortic
wall, cf. Fig. 5 (e). Since our algorithm does, however,
not alter the segmentation in an unreasonable way, which
is shown in Fig. 5 (d) and (e), it is perfectly suited for
processing geometric models which shall later be used in
biomechanical simulations.

α σ = 0.5 σ = 1 σ = 2 σ = 5 σ = 10

0.01 0.6 1.3 2.5 6.3 12.5

0.1 0.6 1.3 2.5 6.3 12.5

1 0.4 0.8 1.5 3.5 7.3

5 0.2 0.4 1.0 3.1 7.6

10 0.2 0.3 0.7 2.1 5.3

Table 2: Sensitivity Analysis: The proposed method is very
robust w.r.t. perturbations of the input contours, cf. Sec.5.3.
All values (except for α) are in pixel.

6. Conclusion
In this paper we introduced the concept of shape sig-

nals, i.e., collections of shapes which enjoy a temporal or
spatial ordering. We also presented an algorithm for regu-
larizing such shape signals. Moreover, we derived a non-
rotationally invariant analogue of the shape space proposed
by Kendall [13] which is better suited for the considered
scenario of shape signal regularization. Finally, we demon-
strated the advantages of the proposed approach, particu-
larly in the case of total variation regularization, using syn-
thetic and real world data.
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