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Abstract

We propose an efficient and general purpose energy
optimization method for binary variable energies used
in various low-level vision tasks. Our method can be
used for broad classes of higher-order and pairwise non-
submodular functions. We first revisit a submodular-
supermodular procedure (SSP) [19], which is previously
studied for higher-order energy optimization. We then
present our method as generalization of SSP, which is
further shown to generalize several state-of-the-art tech-
niques for higher-order and pairwise non-submodular func-
tions [2, 9, 25]. In the experiments, we apply our method to
image segmentation, deconvolution, and binarization, and
show improvements over state-of-the-art methods.

1. Introduction
Many low-level vision problems such as image segmen-

tation, binarization, denoising, and tracking are often for-
mulated as binary energy minimization [4, 22, 1, 25, 6]. For
example, in image segmentation, the use of Markov random
field formulations [8] and graph cuts [17, 4] has been be-
coming one of primary approaches [3, 23, 21, 25, 9, 2, 10,
11, 26, 20, 1, 22]. In this approach, the energy function is
typically formulated as

E(S) = R(S) +Q(S), (1)

where R(S) describes appearance consistencies between
resulting segments S and given information about tar-
get regions, and Q(S) enforces smoothness on segment-
boundaries. The form of R(S) is often restricted to sim-
ple linear (i.e., pixelwise unary) forms [3, 23, 21] because
graph cuts allow globally optimal inference only for unary
and submodular pairwise forms of energies [17]. However,
recent studies [25, 2, 10, 11, 26, 20, 1, 22] have shown that
the use of higher-order information (or non-linear terms)
can yield outstanding improvements over conventional pix-
elwise consistency measures.

In general, higher-order terms involve difficult optimiza-
tion problems. Recent promising approaches try reduc-

Initialization SDC-GEO pPBC [25] FTR [10]

Figure 1. Matching foreground color distribution using the pro-
posed SDC-GEO, parametric pseudo bound cuts (pPBC) [25], and
fast trust region (FTR) [10] with two types of initialization. pPBC
can only successively reduce the initial segment, while our method
allows arbitrary directions of optimization and is thus robust to ini-
tialization. (L2 distance for 643 bins of RGB histograms are used)

ing energies by iteratively minimizing either first-order ap-
proximations (gradient descent approach) [10, 11] or upper-
bounds (bound optimization approach) [25, 2, 26, 20, 1]
of non-linear functions using graph cuts. The bound op-
timization approach has some advantages over the gradi-
ent descent approach [2]: It requires no parameters (e.g.,
step-size) and never worsens the solutions during iterations.
But we must in turn derive appropriate bounds for individ-
ual functions. A notable work is auxiliary cuts (AC) [2]
by Ayed et al., where they derive general bounds for broad
classes of non-linear functionals for segmentation. How-
ever, the bounds derived in [2] are formulated to succes-
sively reduce target regions; thus the resulting segments are
restricted within initial segments. Such a property actually
limits the applications and accuracy of the method.

In order to derive more accurate and useful bounds, we
revisit a submodular-supermodular procedure (SSP) [19], a
general bound optimization scheme for supermodular func-
tions. We then propose a bound optimization method as
generalization of SSP. Unlike SSP, our method can be used
even for non-supermodular functions; and unlike AC, it al-
lows bi-directional optimization (see Fig. 1 for an illustra-
tion in segmentation) and can produce more accurate ap-
proximation bounds. We further show that our method can
be seen as generalization of AC and some state-of-the-art
method [9] for pairwise non-submodular functions.
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This paper makes the following contributions:

• we propose an optimization method for broad classes
of higher-order and pairwise non-submodular func-
tions that allows arbitrary directions of convergence
and outperforms the state-of-the-art [9, 25, 10, 2].
• our method generalizes previous optimization methods

including from early [19] to state-of-the-art [9, 25, 2,
1] methods.

1.1. Scope of the Problems

Our objective is to seek the binary variable S such that it
minimizes E(S) of Eq. (1). In this paper, we focus on three
types of energy functions. Before defining those functions,
we define the following function as the basis of all types.

Pairwise Submodular Functions.

Let si ∈ {0, 1} be a binary variable defined for pixels i ∈ Ω
in the image domain Ω, and we define S = {i|si = 1} as
a segment in the domain Ω. If R(S) in Eq. (1) is a linear
product of a function hi = h(i) : Ω→ R

R(S) = 〈h, S〉 =
∑
i∈Ω

hisi (2)

and Q(S) is the sum of pairwise functions

Q(S) =
∑

(i,j)∈Ω

mijsisj , (3)

and if all the quadratic terms are non-positive (mij ≤ 0),
then E(S) is submodular and can be globally minimized
via graph cuts [4, 17] in polynomial time.

Type-1: Higer-Order Supermodular Energies.

We consider the energies E(S) with pairwise submodular
Q(S) and the following form of R(S):

Rtype1(S) =
∑
z

Rz(S) =
∑
z

fz(〈gz, S〉) (4)

where fz(x) is convex and gz(i) : Ω → R+ is a positive
function. Hence, Rz(S) is supermodular, i.e., if it satisfies
the following inequality for any X,Y ⊆ Ω:

Rz(X) +Rz(Y ) ≤ Rz(X ∩ Y ) +Rz(X ∪ Y ). (5)

Note that R′z(S) = −Rz(S) is submodular, if Rz(S) is su-
permodular. While any submodular functions can be mini-
mized in polynomial time [24], the minimization of super-
modular functions is NP-hard.

Higher-order supermodular functions have been used,
for example, as a Lp-distance histogram constraint
R(S) =

∑
z∈Z

∣∣hz − nSz ∣∣p for co-segmentation [22, 28,

18] and tracking [13], where z ∈ Z is a bin of color or
feature histograms, hz is the given target histogram, and nSz
is the number of pixels in S that fall into the bin z. A vol-
umetric constraint R(S) = |V0 − |S||p has been also used
for medical image analysis [11, 10].

Type-2: Fractional Higer-Order Energies.

We further deal with non-supermodular functions:

Rtype2(S) =
∑
z

fz (〈gz, S〉/〈wz, S〉) (6)

such that Rz(S) = fz (〈gz, S〉/〈wz, S0〉) be-
comes a Type-1 term for fixed S0. Examples
of such functions include the KL-divergence
R(S) = −

∑
z pz log

(
nSz /|S|+ ε

)
+ const. and the

Bhattacharyya coefficient R(S) = −
∑
z

√
pznSz /|S|,

both are used for image segmentation [1, 2, 25]. Here,∑
z pz = 1 is the target distribution.

Type-3: Pairwise Non-submodular Energies.

We also consider pairwise non-submodular energies, i.e.,
Q(S) of Eq. (3) containing non-submodular or supermodu-
lar terms (i.e. mij > 0). QPBO [16] is often used for such
functions, but it leaves many variables unlabeled when the
amount of non-submodular terms is significant [9].

2. Submodular-Supermodular Procedure
Before presenting our method, we review SSP [19], an

optimization method for general supermodular functions,
and later propose our method as its generalization.

SSP is classified as a bound optimization approach,
where a tight upper bound function Ê(S|St) given an aux-
iliary variable St is derived for E(S), i.e.,

E(S) ≤ Ê(S|St) and E(St) = Ê(St|St). (7)

Then, the bound is iteratively minimized as

St+1 = arg min Ê(S|St), (t = 0, 1, 2, ...). (8)

Here, it is guaranteed that the energy does not go
up, i.e. E(St) ≥ E(St+1) holds for any t, because
E(St) = Ê(St|St) ≥ Ê(St+1|St) ≥ E(St+1).

2.1. Permutation Bounds

SSP derives tight bounds for supermodular functions
based on the superdifferential [7, 12], which is a similar
concept to the subderivative of continuous functions. Given
a supermodular functions R(S) and St ⊆ Ω, a modular (or
linear) function H(S) := 〈h, S〉+R(∅) that satisfies

H(S)−H(St) ≥ R(S)−R(St) (9)
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Figure 2. Illustration of the chain and permutation.
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Figure 4. Illustration of upper bounds for supermodular functions. The supermodular function R(S) and its bounds are visualized by blue
and red lines, respectively. The green arrows in (a) show the unary costs h(σ(j)) of a supergradient Hσ(S|St).

for any S ⊆ Ω, is called a supergradient of R at St.
We denote ∂R(St) the set of all the supergradients of R
at St, which is called the superdifferential. Notice that
if H(St) = R(St) holds, then H(S) gives a tight upper
bound to R(S). Such extreme points of ∂R(St) may be
obtained using the following theorem.

Theorem 1 (Theorem 6.11 in [7]): For any St ⊆ Ω,
a modular function H(S) = 〈h, S〉 + R(∅) is an extreme
point of ∂R(St), if and only if there exists a maximal chain

C : ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = Ω, (10)

with Sj = St for some j, such that

H(Sj)−H(Sj−1) = R(Sj)−R(Sj−1), (j=1, ..., |Ω|).
(11)

Based on this theorem, SSP [19] derives a supergradient
Hσ(S|St) ofR(S) at St by the following greedy algorithm.
Let σ(j) : {1, 2, ..., |Ω|} → Ω be a permutation of Ω that
assigns the elements in St to the first |St| positions, i.e.,
σ(j) ∈ St if and only if j ≤ |St|. A maximal chain Cσ is
then defined as Sσ0 = ∅ and Sσj = {σ(1), σ(2), ..., σ(j)},
so Sσ|St| = St. See Fig. 2 (a) for an illustration. Using this
chain Cσ , a supergradient Hσ(S|St) is obtained as

Hσ(S|St) = 〈hσ, S〉+R(∅), (12)

where each unary cost hσ(i) is given by

hσ(σ(j)) = R(Sσj )−R(Sσj−1), (j = 1, 2, .., |Ω|). (13)

Figure 4 (a) illustrates how hσ(σ(j)) are computed. Since
R(S) is supermodular, variables in earlier positions of σ are
assigned lower unary costs, i.e., more prone to be labeled
as 1 via cost-minimization. Therefore, if we knew a priori
how likely each variable is 1, the ideal permutation would
arrange variables in order of decreasing likelihood so as to
maximize the likelihood via cost minimization. Here, the
boundsHσ(S) approximateR(S) tightly at along the chain
of solutions {Sσj }. However, because Hσ(S) can largely
deviate from R(S) at other than {Sσj }, SSP is problematic
when likelihood or permutation is given inaccurate.

3. Proposed Method

In the following sections, we first present our key idea
by extending SSP [19]. We then show how to apply it to
and optimize the three types of functions in Sec. 3.2, and
describe implementation details in Sec. 3.3.

3.1. Grouped Permutation Bounds

In this section, we derive general bounds for Type-1
terms R(S) = f(〈g, S〉) by extending the SSP’s permu-
tation scheme. First, we introduce a grouped permuta-
tion π, which is made by grouping SSP’s ordered-elements
σ = {σ(1), σ(2), · · · , σ(|Ω|)} into M (M ≤ |Ω|) groups:
π(1), π(2), · · · , π(M) ⊆ Ω. Each group π(j) contains
some consecutive elements of σ: π(j) = {σ(j′), σ(j′ +
1), · · · , σ(j′ + m)}, and groups are mutually disjoint:
π(j) ∩ π(j′) = ∅ if j 6= j′. Using this grouped per-
mutation π we define a chain Cπ: Sπ0 = ∅ and Sπj =
π(1) ∪ π(2) ∪ ... ∪ π(j) as illustrated in Fig. 2 (b). Here,



we make sure that any group does not across σ(|St|) and
σ(|St| + 1), so there exists Sπj = St for some j. Then,
our bound for R(S) is defined similarly to that of SSP in
Eq. (12) as

Hπ(S|St) = 〈hπ, S〉+R(∅), (14)

where unary costs hπ(i) : Ω → R are defined for i ∈ π(j)
and j = 1, 2, ...,M as

hπ(i) = g(i)
[
R(Sπj )−R(Sπj−1)

]
/ 〈g, π(j)〉 . (15)

The essence of this formulation becomes clearer if we as-
sume g = 1 so that Hπ(S|St) becomes piecewise-mean-
approximations of SSP’s bound Hσ(S|St), which is vi-
sualized in Fig. 4 (b) using the example permutation π
shown in Fig. 2 (b). Note that our bound Hπ(S|St) be-
comes equivalent to the supergradientsHσ(S|St) of SSP, if
π(j) = {σ(j)}.

Proposition 1: The function Hπ(S|St) satisfies the con-
ditions of Eq. (7) and is thus a tight upper bound for R(S).

Proof. See our supplementary.

The spirit behind this grouping or piecewise-mean-
approximation scheme is to make fine/coarse approxima-
tion bounds when permutations σ are accurate/inaccurate.
Specifically, when the permutation of σ(j) and σ(j + 1)
is unreliable, we put them into the same group in order to
treat them equally and leave a decision (i.e., which is more
likely to be labeled as 1) to other interactions, e.g., pairwise
smoothness terms. As we will show in Sec. 3.3, our method
makes coarse-to-fine approximation bounds by iterations.

3.2. Optimization Procedure

We optimizeE(S) by iteratively minimizing its approxi-
mation function Ê(S|St−1) derived by our grouped permu-
tation bounds. Here, the minimization of Ê(S) is achieved
using a max-flow/min-cut algorithm [4].

Type-1: We derive a bound Hπ
z (S|St) for each Rz(S)

of Rtype1(S), and set Ê(S|St) =
∑
zH

π
z (S|St) + Q(S).

Here, it is guaranteed that minimization of Ê(S) does not
increase the energy E(S). Therefore, its optimization pro-
cedure is a simple iteration algorithm shown in Algorithm 1
(without lines 5 and 6).

Type-2: Similarly to [2, 25], we approximate Rtype2(S)
by partially fixing S at St as

R̃type2(S|St) =
∑
z

fz
(
〈gz, S〉/

〈
wz, S

t
〉)
. (16)

Here, R̃type2(S|St) is a Type-1 function. Therefore,
we can approximate R̃type2(S|St) using our bounds

Algorithm 1 OPTIMIZATION FOR TYPE-1,3 [TYPE-2]
1: Initialize S0

2: for t = 0, 1, 2, · · · do
3: Create a permutation π // for all Types
4: St+1 ← argmin Ê(S|St) // for Type-1,3
5: [{Sλ} ← argmin Ê(S|St) + λ(|St − |S|) for ∀λ]
6: [St+1 ← argminE(S) for S ∈ {Sλ, St}] // for Type-2
7: end for

Hπ(S|St). As long as S ⊆ St is forced, this lin-
ear function Hπ makes a tight bound for Rtype2 [2].
However, we rather do not restrict S for allowing bi-
directional optimization. In this case, the minimization of
Ê(S|St) = Hπ(S|St) +Q(S) may increase the actual en-
ergy E(S). For this we use the pseudo bound optimization
scheme of [25], where we make a family of relaxed bounds
Êλ(S) = Ê(S|St) + λ(|St| − |S|), and we exhaustively
search Sλ = argmin Êλ(S) for all λ ∈ (−∞,∞) by using
parametric maxflow [15]. Then we choose the best Sλ that
minimizes E(S). Therefore, the optimization procedure in
Algorithm 1 takes lines 5 and 6 instead of 4 for Type-2.

Type-3: We make a bound Ê(S) by approximating each
of non-submodular terms R(S) = mijsisj (mij > 0) with
a linear function hisi + hjsj + const. Its form depends on
both current values (sti, s

t
j) and the permutation π of {i, j},

and given as h(i′) =
[
R(Sπj′)−R(Sπj′−1)

]
/|π(j′)| simi-

larly to Eq. (15). We summarize the conversion in Table 1.

3.3. Implementation Details

We make permutations σ and π according to the signed
distance from the boundary of St. In [22], the Euclidean
distance was used, but we use geodesic distance [5] for
more effectively creating the permutations. Figure 3 shows
examples of both distances. We denote the geodesic dis-
tance for segments S by D(i|S, I) : Ω→ R, and D(i|S) ≤
0 for i ∈ S. See Eq. (7) of [5] and also our supplementary
for its definition. As discussed in [5],D(i|S, I) is efficiently
computed in O(|Ω|) using an approximate algorithm [27].

Using the geodesic distance, we construct the bound
Hπ(S|St) in each iteration as follows. Firstly, we compute
D(i|St) for the current segments St. Secondly, we make a
permutation σ such that D(σ(j)) ≤ D(σ(j + 1)). Finally,
we make a grouped permutation π from σ. We process σ(j)
from σ(2) to σ(|Ω|), and put σ(j) into the same group with
σ(j−1) ifD(σ(j))−D(σ(j − 1)) ≤ τ , while making sure
the group does not across σ(|St|) and σ(|St|+1). Basically,
the size of the threshold τ reflects how much the permuta-
tion σ by D(i) is reliable. We empirically use a grouping
threshold given by τ = (µ+ as)/(t+ 1)κ (t = 0, 1, 2, ...),
where µ and s are the mean and standard deviation of dis-
tance differences |D(σ(j)) − D(σ(j − 1))|. We use this
monotonically decreasing thresholds, because as iterations



Table 1. The proposed linear conversions of non-submodular termsmijsisj with comparisons to the conversions of SSP [19] and LSA [9].
Below, the subscript of mij is omitted. Notice that our linear conversion can bee seen as generalization of both SSP and LSA-AUX.

(sti, s
t
j) Ours SSP [19] LSA-AUX [9] LSA-TR [9]

(0, 0)

m
2 si + m

2 sj if π(1)={i, j}
msj if π(1)={i}
msi if π(1)={j}

msj if σ(1)= i
msi if σ(1)=j

m
2 si + m

2 sj 0

(0, 1) msi msi msi msi
(1, 0) msj msj msj msj

(1, 1)

m
2 si + m

2 sj if π(1)={i, j}
msj if π(1)={i}
msi if π(1)={j}

msj if σ(1)= i
msi if σ(1)=j

m
2 si + m

2 sj msi +msj −m

proceed the segments St are expected to be more accurate
and so permutations σ by D(i|St) becomes accordingly
more reasonable. Also, when S0 = Ω or S0 = ∅, so
D(i|St) cannot be defined, we set π(1) = Ω. This makes
the full linear approximations of R(S) drawn from R(∅) to
R(Ω), which give reasonable initial approximations.

4. Relationship with Prior Art
In this section, we discuss relationships between our

method and other previous methods [2, 25, 9].

4.1. Auxiliary Cuts (AC) [2] and pPBC [25]

The authors of [2] derived a bound for Rtype1(S) by us-
ing the Jensen’s inequality and assuming S ⊆ St. Its essen-
tial form is given as

Aα(S|St) = Bshr(S|St) + αR(St)

(
1− 〈1, S〉
〈1, St〉

)
, (17)

where α ≥ 0 is a parameter andBshr(S|St) is expressed as

Bshr(S|St) = R(∅) +
R(St)−R(∅)
〈g, St〉

〈g, S〉 . (18)

From Eq. (18), Bshr(S|St) can be seen as the linear ap-
proximations of R(S) drawn from R(∅) to R(St). See
Fig. 4 (c), where the solid red line visualizes this linear ap-
proximation bound, the infinite bound reflects the restriction
S ⊆ St, and the dotted line depicts the effect of the α-term
in Eq. (17). The use of this bound results in successively
shrinking segments: S0 ⊇ S1 ⊇ S2. pPBC [25] extends
AC by exhaustively searching the best α ∈ (−∞,∞) in
each iteration using parametric maxflow [15].

To point out a relationship to our method, we use an-
other bound Bexp(S|St) for R(S), which is similar to
Bshr(S|St) and can be derived by [2]’s derivations as

Bexp(S|St) = R(St)+
R(Ω)−R(St)

〈g,Ω \ St〉
〈
g, S \ St

〉
. (19)

Here, St is restricted to St ⊆ S, so the iterative minimiza-
tion of Bshr(S|St) successively expands the segments S.

This bound can be seen as the linear approximation ofR(S)
drawn from R(St) to R(Ω).

We now show that these bounds Bshr(S|St) and
Bexp(S|St) can be derived using our grouped permutation
bounds. When a grouped permutation is given as π(1) = St

and π(2) = S̄t with S̄t := Ω\St, our boundHπ(S|St) be-
comes the following form:

Hfull(S|St)=Bshr(S∩St|St)+Bexp(S∩S̄t|St). (20)

Notice that it no longer requires the restrictions for S (i.e.,
S ⊆ St or St ⊆ S) used in [2, 25], which are turned out to
be unnecessary by our derivation. Also notice that Hfull

does not depend on the permutation π. Although Hfull

does not accurately approximate its original function R(S),
it is still useful when permutations are inaccurate (e.g. at
first iterations). Our method is designed to behave between
AC [2] and SSP [19] and to produce coarse-to-fine approxi-
mation bounds as iterations proceed, by using the monoton-
ically decreasing grouping-threshold τ defined in Sec. 3.3.

4.2. Local Submodular Approximations (LSA) [9]

Very recently, an optimization method for pairwise non-
submodular energies called LSA [9] has been proposed and
shown to outperform other state-of-the-art methods such
as TRW-S [14] and QPBO [16]. This method approxi-
mates non-submodular pairwise terms by linear terms. In
[9], two types of approximation conversions are proposed.
LSA-TR applies a Taylor-based approximation and uses the
gradient-descent framework of FTR [10]. LSA-AUX uses a
bound-based approximation and uses the bound optimiza-
tion framework. The linear conversions of LSA-TR and
LSA-AUX are summarized in Table 1.

As you can see from the table, our linear conversion
includes the conversion of LSA-AUX. In fact, our con-
version with a full-grouping π produces the same bounds
with LSA-AUX. Furthermore, as mentioned in [9], there
are other types of bounds that can be made by the permu-
tation scheme of SSP [19]. Our method generalizes both
conversions of SSP and LSA-AUX, and adaptively chooses
either conversion for each term.



5. Experiments
For evaluation, we use four variations of our method:

SDC-GEO is the proposed method described in Sec. 3.
SDC-DIST uses the standard Euclidean distance for mak-
ing permutations σ, but the other settings are the same
with SDC-GEO. SSP-DIST is SSP [19] that follows the
implementations by Rother et al. [22]. It is basically the
same with SDC-DIST but uses no mean approximations for
bound constructions. We also use SSP-GEO, which is the
same with SSP-DIST but uses the geodesic distance. Note
that when S0 = Ω at the first iterations, we make permu-
tations σ randomly for SSP-DIST and SSP-GEO, based on
10× 10-pixels of patches as described in [22].

We also compare with three state-of-the-art methods
for higher-order energies: AC [2] uses the bound Aα of
Eq. (17). pPBC [25] uses the same bound but exhaus-
tively chooses the best α using parametric maxflow [15].
FTR [10] is the state-of-the-art of gradient-descent meth-
ods. For pairwise energies, we compare with LSA-AUX,-
TR [9] and pPBC-T,-B,-L [25] as state-of-the-art.

All the methods are implemented by C++, and run on a
system with a 3.5GHz Core i7 CPU and 16GB RAM.

5.1. Segmentation via Distribution Matching

Similarly to [25, 2, 22], we evaluate the performances
of the methods using the GrabCut dataset [23]. For pure
evaluations of optimization performances, we learn the tar-
get histograms from the ground truth1. We use a stan-
dard 16-neighbor pairwise smoothness term similar to [23]:
Q(S) = λ

∑
ij max(wij , ε)|si − sj |/|pi − pj | where pi is

pixel coordinates and wij = exp(−β|Ii − Ij |2). Here, β is
automatically estimated as β = 2E[|Ii − Ij |2] the expecta-
tion over all neighbor pairs. We use RGB-histograms.

Type-1: L2 and L1 Distance of Histograms

For Type-1 terms, we use the L2 and L1 distances between
histograms. For {λ, ε}, we use {1.0, 0.5} and {0.5, 0.5}
for the L2 and L1-distances, respectively. St is trivially
initialized as S0 ← Ω. For both SDC-GEO and SDC-DIST,
we use a grouping threshold τ = (µ+ 8s)/(t+ 1)2.5.

Tables 2 and 3 summarize the performance comparisons,
showing average misclassified pixel rates, energy values of
E(S) and R(S), running times, and individual-image com-
parisons with SDC-GEO. Among the seven methods, our
proposed method SDC-GEO outperforms the others for all
error and energy scores. In some cases, SDC-GEO com-
pletely outperforms pPBC, AC, FTR, and SSP-DIST for all
individual images. Note that the error rates of SSP-DIST
are better than the rates originally reported in [22] because

1If the target histograms are inaccurate, the minimum solutions of
E(S) are deviated from the ground truth [26], and the error rate criteria
thus does not reflect the actual performances of the optimization methods.

Table 4. Evaluations on the GrabCut dataset [23] using the Bhat-
tacharyya distance and KL divergence. We use 643 bins and the
bounding box initialization.

Method
Error (%) E(S) Time (sec)

Bhat. KL-div. Bhat. KL-div. Bhat. KL-div.
SDC 0.373 0.515 -14906 7025 19.8 12.9

pPBC [25] 0.498 0.818 -14870 7057 1.8 1.5
AC [2] 18.29 16.07 -11878 7490 0.4 0.4

FTR [10] 0.435 1.076 -14894 7049 2.9 6.4

the definition of pixel feature histograms is different2. Com-
paring the results of SDC-DIST and SSP-DIST with L2 and
643 bins, SDC-DIST finds more accurate segmentations in
spite of the higher energies. This is because in SSP-DIST
the appearance consistencies are forced regardless of how
permutations σ and corresponding bounds are inaccurate,
resulting in highly non-smooth, visibly bad local minimas.
In Fig. 5, we show example results of L2 and L1 with 64
bins. Figures 6 and 7 show the plots of the accuracy tran-
sitions using the L2 and L1-distances w.r.t. the number of
bins. As shown, SDC-GEO is robust to the difference of the
number of bins. In order to show robustness to initialization,
we compare SDC-GEO, pPBC, and FTR using two types of
initialization shown in Fig. 1. Unlike pPBC (and AC) that
can only reduce the target regions, our method is robust to
initialization and finds very accurate solutions even for such
difficult camouflage images.

Type-2: Bhattacharyya Distance and KL Divergence

We use Bhattacharyya distance and KL divergence as
Type-2. As described in Sec. 3.2, we use the pseudo bound
optimization scheme of [25] using parametric maxflow [15]
for our method SDC-GEO. We show the performance com-
parisons with pPBC, AC, and FTR in Table 4, where our
method outperforms the others in error and energy values. It
is worth noting that although SSP [19] is originally oriented
for supermodular functions, our extended method success-
fully optimizes non-supermodular functions (Type-2).

5.2. Type-3: Image Deconvolution

We make a blurred image Ĩ by a mean filter and additive
Gaussian noises: Ĩi = 1

9

∑
j∈Wi

Ij+N (0, σ2), whereWi is
a 3×3 window centered at i. We recover the original image
I by minimizing E(S) =

∑
i∈Ω(Ĩi − 1

9

∑
j∈Wi

sj)
2. In

Fig. 8, we show example results of our method, pPBC [25],
and LSA [9] for two noise levels σ = 0.15, 0.30. In Fig. 9,
we show the plots of energies, squared errors (

∑
i |si−Ii|2),

and running times. LSA-TR and pPBC-T,-L reach the lower
energies but inaccurate results. Our method and LSA-AUX
perform best in terms of both accuracy and efficiency.

2[22] uses a normalized 2D color vector and texton as a pixel feature,
since the method is intended for co-segmentation and image retrieval.



Table 2. Evaluations on the GrabCut dataset [23] using L2-distance. We show average error rates, E(S), R(S), times over 50 images. The
last column shows the number of images for which the proposed method (SDC-GEO) outperforms each method. We use 1923 and 643

bins.
Method Error (%) E(S) R(S) Time (sec) SDC-GEO vs

(L2-distance) 1923 643 1923 643 1923 643 1923 643 1923 643

ref. Ground Truth 0 0 3569 3569 0 0 - - - -
SDC-GEO 0.095 0.288 3511 3809 179 235 6.2 11.7 - -
SDC-DIST 0.134 1.123 4121 18922 577 9946 2.3 2.7 32 46
SSP-GEO 0.116 1.132 3594 6477 166 377 4.9 15.1 24 45

SSP-DIST [22] 0.312 2.575 4415 13969 295 877 2.0 4.2 32 50
pPBC [25] 1.062 2.677 19381 190332 13187 176315 36.7 24.6 49 50

AC [2] 1.214 3.542 19888 195729 13646 177947 1.0 1.0 50 50
FTR [10] 1.859 3.167 21003 153212 17669 146394 36.8 121.2 50 48

Table 3. Evaluations on the GrabCut dataset [23] using L1-distance. See Table 2 for the descriptions.
Method Error (%) E(S) R(S) Time (sec) SDC-GEO vs

(L1-distance) 1923 643 1923 643 1923 643 1923 643 1923 643

ref. Ground Truth 0 0 1785 1785 0 0 - - - -
SDC-GEO 0.033 0.205 1804 1882 54 120 5.4 9.4 - -
SDC-DIST 0.041 0.242 1813 1967 70 229 1.9 3.8 38 42
SSP-GEO 0.043 0.943 1813 2766 31 298 3.7 9.7 28 46

SSP-DIST [22] 0.075 1.341 1898 3666 50 411 1.6 2.4 34 48
pPBC [25] 0.154 0.583 2013 2632 309 997 17.4 18.9 48 48

AC [2] 0.339 1.281 2502 4336 762 2476 0.6 0.6 50 50
FTR [10] 0.147 0.366 1908 2105 277 495 46.1 100.7 46 41

Ground Truth SDC-GEO SSP-DIST [22] pPBC [25] AC [2] FTR [10]
Figure 5. L2 (top) and L1 (bottom) examples. The segments are initialized as all foreground, and 643 bins of histograms are used.
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Figure 6. Error rate transitions w.r.t. the number of bins (L2)
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Input SDC-GEO pPBC-T [25] pPBC-B [25] pPBC-L [25] LSA-AUX [10] LSA-TR [10]

Figure 8. Image deconvolution results for two images with noise levels of σ = 0.15 (top) and σ = 0.30 (bottom).
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Figure 9. Performance comparisons of image deconvolution. Convergence energies, square errors, and running times w.r.t. noise levels are
shown. The values are averaged over 30 random noise images at each point. We use τ = (µ+s)/(t+1)2.5 for our method. Notice that our
method obtains more accurate solutions in spite of their higher energies, because our course-to-fine scheme avoids bad local minimums.
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pPBC-T [25] pPBC-B [25] pPBC-L [25]
Figure 10. Results of curvature optimization at the weight of 25.
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Figure 11. Convergence energies w.r.t. curvature reg-
ularization weights. We use τ = µ/(t+ 1)2.5.

5.3. Type-3: Curvature Regularization

We apply our method to a curvature regularization model
of [6] in image binarization. We show the input image and
results by our method, pPBC [25], and LSA [9] in Fig. 10.
The plots in Fig. 11 show energies at convergence w.r.t. reg-
ularization weights. Our method always reaches the lowest
energies and is most stable among all methods.

6. Conclusions

In this paper we have revisited SSP [19], an early
approach to higher-order energy optimization, and pro-

posed our method as generalization of SSP. The key idea
of our method is piecewise mean approximation bounds,
which are designed to produce coarse-to-fine approximation
bounds during iterations. We further show that our method
has close connections to some state-of-the-art methods [2,
25, 9]. Although the proposed method shows promising im-
provements over state-of-the-art methods [25, 10, 9, 2], we
would like to further push the envelope by improving the
definition of geodesic distance and the thresholding scheme
for making grouped permutations.
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