
Classifier Adaptation at Prediction Time

Amelie Royer
ENS Rennes, France

amelie.royer@ens-rennes.fr

Christoph H. Lampert
IST Austria

chl@ist.ac.at

Abstract

Classifiers for object categorization are usually evalu-
ated by their accuracy on a set of i.i.d. test examples. This
provides us with an estimate of the expected error when ap-
plying the classifiers to a single new image. In real appli-
cation, however, classifiers are rarely only used for a sin-
gle image and then discarded. Instead, they are applied se-
quentially to many images, and these are typically not i.i.d.
samples from a fixed data distribution, but they carry de-
pendencies and their class distribution varies over time.

In this work, we argue that the phenomenon of correlated
data at prediction time is not a nuisance, but a blessing in
disguise. We describe a probabilistic method for adapting
classifiers at prediction time without having to retrain them.
We also introduce a framework for creating realistically dis-
tributed image sequences, which offers a way to benchmark
classifier adaptation methods, such as the one we propose.
Experiments on the ILSVRC2010 and ILSVRC2012 datasets
show that adapting object classification systems at predic-
tion time can significantly reduce their error rate, even with
no additional human feedback.

1. Introduction
Object recognition systems have become efficient and

reliable enough to be useful for practical, even commer-
cial, applications. For example, a system that recognizes all
20,000 ImageNet categories could be sold pre-trained to a
wide range of customers. Each customer could use the sys-
tem afterwards for his or her own application, e.g., support-
ing customers in a supermarket by recognizing products,
educating children by identifying zoo animals, or helping
robots to navigate safely in an office environment.

These scenarios have in common that the statistical dis-
tribution of the images that need to be classified differs from
the distribution of images in the dataset used to train the
classifier. One difference is a change in class probabili-
ties: for instance, in the robot example, furniture and of-
fice equipment will appear more often than their fraction in
ImageNet. Most other classes, such as exotic animals, will

Previous test examples

Current test query

The current test example depicts a
showcase in a shop but it is hard to see
in what type of shop exactly.
Previously seen test examples provide
context that suggest it should be in a
bakery, which is in fact the case.

Figure 1. Example of a sequence of test examples with label cor-
relations that help to correctly classify ambiguous images.

appear much less often or not at all. A second difference is
that the images at prediction time will not be independent of
each other. For example, when a customer in a shop takes
a photo of a broccoli, chances are high that the next image
will also be a vegetable rather than a dairy product.

Machine learning research generally considers it unde-
sirable if the data distribution changes between training
time and prediction time. The phenomenon is called a do-
main shift and is studied in the field of domain adaptation.
Typically, a domain shift leads to a reduction of classifica-
tion accuracy, and a significant part of domain adaptation
research studies the question of how such a loss in accuracy
can be prevented, or at least theoretically quantified.

In this work, we argue in favor of a different view: at
prediction time, non-uniformly sampled and correlated data
are actually beneficial. A non-uniform class distribution
has lower entropy than a uniform one, thus we have less
uncertainty about which classes to expect and which ones
not. A statistical dependence between subsequent images
in a sequence means that the past images carry information
about the next ones. This can also be used to infer informa-

1

tive priors about future data. Both effects work in our favor,
therefore we should exploit them to increase the classifica-
tion accuracy instead of just trying to prevent a decrease.

Besides the above observation we make two technical
contributions. The first contribution is a simple but effective
probabilistic method for adapting multi-class classifiers on
the fly to realistic sequences of test images. The adapted
classifiers can achieve a higher overall classification accu-
racy by avoiding unnecessary mistakes, such as predicting
exotic animals classes in an office environment. The sec-
ond contribution is a framework for benchmarking adaptive
classification systems as the one we describe. This is impor-
tant, because existing benchmarks are designed for the aca-
demic setting with identically distributed and independent
(i.i.d.) test data. Instead, we propose a set of techniques for
generating more realistic sequences of test images, either
by sampling from a hidden Markov chain in which the hid-
den state changes according to a random walk in a semantic
space, or in a data-driven way by harvesting the semantic
structure of natural language texts.

1.1. Related Work

To our knowledge, no previous work has aimed at gen-
erating realistic image sequences for benchmarking adap-
tive object recognition systems. The problem of classifica-
tion when the distribution of test examples differs from the
distribution of training examples is well known in machine
learning research, though. It is studied in the field of domain
adaptation, see for example [11, 18] for surveys.

Most work in domain adaptation studies the situation
when training a classifier, typically under the assumption
that test data are available, at least partially, already at train-
ing time. This is very different from the setting of classifier
adaptation at prediction time that we are interested in. We
assume that the classifiers were trained previously, e.g. by
a commercial service, and without knowledge of the cus-
tomer’s exact data distribution. Therefore, we are not con-
cerned with questions of changing the learning mechanism
or constructing an invariant data representation.

Interestingly, concentrating on the prediction step makes
the problem easier for us, not harder. Typically, domain
adaptation methods try to prevent a loss in accuracy due
to the domain shift. We make use of the change of dis-
tribution to actually achieve better classification accuracy.
In this aspect, our goal is similar to the objective of co-
classification [12]. However, our work is different in many
other aspects. In particular, co-classification requires all test
samples to be available as a batch, while we work in the on-
line classification setting, where samples are classified one-
by-one and adaptation happens on the fly.

Little prior work exists on the task of domain adapta-
tion at prediction time itself. One exception in computer
vision is [25], where Xu et al. use online transfer learn-

ing [26] to adapt a deformable part model to a new distribu-
tion. More related to our work is [10], where Jia and Darrell
study a problem similar to ours: they adapt a multi-class im-
age classifier to a specific subset of classes. However, their
settings differ in its assumptions: Jia and Darrell assume
i.i.d. test example with labels from an unknown subtree of a
known taxonomy. In contrast, we do not make any assump-
tions which classes are present or absent at prediction time,
and we also target dependent samples and time-varying data
distributions. Adaptation to time-varying data is the topic
of [15], in which Levinkov and Fritz describe the adapta-
tion of classifier ensembles at test time and [9], in which
Hoffman et al. introduce a method for smoothly adapting
subspaces to follow a time-varying data distribution. Our
work is in fact orthogonal to these: we target distribution
changes due to changing class proportions, while the ear-
lier works aim at adapting to changes in appearance of the
classes themselves.

2. Classifier Adaptation at Prediction Time
In this section, we formally introduce the problem set-

ting and describe a simple yet effective method to adapt
pre-trained classifiers to a new distribution.

2.1. Notation

We work in a multi-class classification setting, where the
goal is to assign outputs (class labels), y∈Y = {1, . . . ,K}
to inputs (images), x ∈ X . In contrast to the classical do-
main adaptation setting, we assume that a pre-trained multi-
class classifier is available, f : X → Y , which is probabilis-
tic, i.e. f(x) = argmaxy fy(x) for functions fy : X → R
that reflect the conditional label probabilities, P (y|x), when
P (x, y) is the data distribution at training time.

We are interested in improving the accuracy at prediction
time by adapting the predicted class scores, not in changing
the training procedure. This setting has the advantage that it
is applicable to classifiers of arbitrary parametric form, in-
cluding e.g., convolutional networks [1], random forests [6]
or one-versus-rest support vector machines [14] with Platt
scaling [19]. It is sufficient that the functions fy are avail-
able in executable form, and we also do not need access to
the original training set. This is important for real world ap-
plication, where the training set could be too large to keep
around for prediction time, or might be commercially valu-
able and not available to customers. We do, however, as-
sume that we know the class proportions at training time,
i.e. a vector ρ = (ρ1, . . . , ρK), where ρy for any y ∈ Y
denotes which fraction of the training set had label y.

2.2. Prediction task

At prediction time the classifier receives inputs
x1, x2, . . . for which it has to predict labels, y1, y2 . . . , in an
online way, i.e. for any input xt it outputs a label yt before

the next input arrives [3]. To reflect many real world sce-
narios, we do not assume the samples in the sequence to be
independent, and we allow their underlying data distribution
to be different from the data distribution at training time, or
even time-varying. The one assumption we do make is that
the distribution does not change arbitrarily, but only due to
varying class priors. This is a reasonable assumption for
object recognition tasks, because modern feature represen-
tations are invariant to many nuisance effects, so the overall
appearance of a class is rather stable [7]. In contrast, invari-
ant features do not help against the effect of certain classes
becoming more or less frequent at prediction time than they
had been at training time.

We consider three feedback scenarios: a) online predic-
tion, where after the system predicted a label, the correct
label for this example, yt, is revealed to the system, b) pre-
diction with bandit feedback, where the only feedback is
wether the decision made by the system was correct or not,
c) unsupervised prediction, where the system is given no
feedback about its performance. All three settings occur
in real-world situations. Online feedback is common when
a computer vision system acts under constant supervision.
For example, an intelligent cash register that tries to auto-
matically recognize the products a user wants to buy, but in
case of a wrong prediction a human operator stands by to
correct the mistakes. Bandit feedback is typical for interac-
tive systems in which a user is asked to provide feedback
when a mistake occurs. Users are often willing to do so,
because signalling a single bit of information per decision
can be done almost effortlessly. Finally, the unsupervised
setting is common for automatic systems without an inter-
active component, e.g. surveillance cameras.

2.3. Classifier adaptation

In this section we introduce our first contribution, a tech-
nique for on the fly classifier adaptation. First, we assume
that the distribution at prediction time, Q(x, y), is fixed but
differs from the distribution at training time, P (x, y), by a
change in class proportions from P (y) = (ρ1, . . . , ρK) =
ρ to Q(y) = (π1, . . . , πK) = π. The objects them-
selves, however, do not change their visual appearance,
i.e. P (x|y) = Q(x|y) for all y ∈ Y . If π were known,
we could immediately derive an optimal adaptation rule in
closed form, see [23] for a detailed derivation.

Definition 1. Let f(x) = argmaxy fy(x), with fy : X →
R for y ∈ Y , be a probabilistic multiclass classifier that was
trained with class proportions ρ. Then we call the classifier
g : X → Y given by

g(x) = argmax
y∈Y

gy(x) for gy(x) =
fy(x)πy
ρy

. (1)

the class-prior adaptation of f from ρ to π.

Lemma 1. If fy(x) = P (y|x), ρy = P (y) and πy = Q(y)
for all y ∈ Y , then gy(x) ∝ Q(y|x) and the class-prior
adaptation of f from ρ to π is the Bayes-optimal classifier
for Q(x, y)-distributed data.

The proof is elementary: inserting the assumptions of
Lemma 1 and the assumed relation between P and Q into
the definition of gy(x), we obtain

gy(x) =
P (y|x)Q(y)

P (y)
=
P (x|y)Q(y)

P (x)
(2)

=
Q(x|y)Q(y)

P (x)
=
Q(y|x)Q(x)

P (x)
∝ Q(y|x) (3)

Note that Lemma 1 also provides us with a formal jus-
tification for studying classifier at prediction time: as soon
as ρ 6= π the original decision rule, f , is not Bayes-optimal
anymore, thus it might make more errors than necessary.

2.4. On the fly estimation of the class proportions

In practice, the class proportions, π, are unknown, so we
cannot simply compute the class-prior adaptation and pre-
dict optimally. Instead, at any time t = 1, 2, . . . , we form
an estimate of the class proportions, π(t), using the available
data, and define the correspondingly adapted classifier:

g(t)(x) = argmax
y∈Y

g(t)
y (x) for g(t)

y (x) =
fy(x)π

(t−1)
y

ρy
.

(4)

where the index t−1 of π is due to the fact that when classi-
fying the t-th sample, we only have prior information from
the t− 1 previous examples available.

The problem of estimating a categorical distribution,
such as π, from a set of t samples, y1, . . . , yt is also a well-
studied problem. We adopt a classical Bayesian approach,
using a symmetric Dirichlet distribution as prior [16, Chap-
ter 3]. Then the optimal (posterior mean) estimate is

π(t)
y =

nt(y) + α

t+Kα
, for y ∈ Y, (5)

where nt(y) is the number of times the label y occurs in the
label sequence y1, . . . , yt, and α > 0 is the parameter of the
Dirichlet prior. In practice, we use α = 1

2 .
The Bayesian estimate (5) is preferable to the maximum

likelihood variant, π(t)
y = nt(y)/t, in this context, be-

cause it ensures that even unobserved labels receive non-
zero probabilities. Probability values of zero should be
avoided, since they prevent Equation (4) from predicting the
corresponding classes, regardless of the output of the base
classifiers fy .

The above derivation shows that all we need to optimally
adapt the classifier scores during prediction is the ability to
compute or estimate nt(y) on the fly. For this we set

nt(y) =

t∑
τ=1

δτ (y), (6)

where the definition of the update vector, δτ , depends on
the available feedback. For sequentially arriving data, we
compute nt incrementally,

nt(y) = nt−1(y) + δt(y). (7)

which takes time O(K) independent of t.
Online prediction. In the online prediction scenario, when
asked to make a prediction for an input xt, the labels
y1, . . . yt−1 are known to the system. Therefore, we can
compute the exact nt by setting

δt(y) = Jy = ytK, (8)

where J·K are the Iverson brackets, i.e. for a logical predicate
A one has JAK = 1, if A is true, and JAK = 0, otherwise.

The law of large numbers guarantees that the resulting
estimate π(t) converges to the true label proportions, π, and
therefore, the estimated classifier g(t) will converge to the
optimal g. This holds also for dependent samples under
mild conditions on their correlation [8, Chapter VII].
Prediction with bandit feedback. In the bandit setup,
the system only receives feedback whether its prediction,
g(t)(xt), was identical to the correct label, yt, or not. If the
answer is yes, we know the correct label and we can update
nt by rule (7) with δt(y) = Jy = g(t)(xt)K.

Otherwise, we only know that the classifier was mis-
taken, and that one of the remaining K−1 labels was cor-
rect, but not which one. Thus, we update the parameters of
all labels, except the incorrect one, by a uniform fractional
amount.

δt(y) =

{
0, if y = g(xt).

1
K−1 , otherwise.

(9)

In the situation of binary classifiers, K = 2, bandit feed-
back is as informative as full online feedback, and the above
updates are indeed identical to the online rule (8).
Unsupervised prediction. In unsupervised situations
there is no external feedback, so we have to trust our own
predictions as a proxy for label information. Instead of up-
dating the count of the correct label, we update the count
of each label by its expected increment, i.e. the probability
of this label being the correct one, according to the current
model Qt(y|xt) ∝ g(t)

y (xt).

δt(y) = Eȳ∼Qt(ȳ|xt)

{
Jy = ȳK

}
=

g
(t)
y (xt)∑
ȳ g

(t)
ȳ (xt)

. (10)

This procedure, in which a system learns from its
own predictions, resembles self-training in semi-supervised
learning [17], or EM-based domain adaptation [23]. The
main difference to these techniques lies in the fact that they
work with fixed test set over which they iterate multiple
times, whereas we work in the streaming setting, where the
samples to be classified occur one at a time.

In the unsupervised setting the system receives no feed-
back by which it could notice and correct its own mistakes.
Therefore, there is no guarantee that the estimated g(t) will
converge to the optimal classifier. Nevertheless, we ob-
served the procedure to work remarkably well in practice
for object categorization tasks, where the underlying state-
of-the-art classifiers are rather reliable, see Section 4.
Prediction with a time-varying distribution. When the
data distribution at prediction time is not constant but varies
over time, one cannot hope for convergence in any of the
above settings, since there is no "correct" π to converge
to. However, assuming that the distribution changes not too
rapidly, we can still form an on the fly estimate of the cur-
rent class proportions using a sliding-window process: Let
L be the window size, then we follow Equation (5) to esti-
mate π(t)(y) for the first L steps. Afterwards, we estimate
the label counts from the L most recent steps only, i.e.

π(t)
y =

nt(y) + α

L+Kα
, with nt(y) =

t∑
τ=t−L+1

δt(y), (11)

with δτ (y) given by Equation (8), (9), or (10), depending
on the available feedback. We can also again compute nt
incrementally, using the update rule

nt(y) = nt−1 + δt(y)− δt−L(y), (12)

which shows an alternative way to think of this procedure:
at every time step, we learn from the most recent data, and
we forget data that occurred too long ago. Consequently,
the estimate reflects the recent label distribution, but it re-
mains flexible enough to adapt to changes in the distribu-
tion. In practice we use a fixed value of L = 100, which is
a trade-off between having a window large enough to com-
pute accurate estimates, and yet small enough to adapt to
fast distribution variations over time.

3. A Benchmark for Classifier Adaptation
In existing image categorization benchmarks the training

and test sets have independent samples with identical data
distributions. Since this i.i.d. condition is typically not ful-
filled when one just collects images, e.g. from the Internet,
it is enforced artificially. For example, for the ImageNet
challenges, training and test sets are created by randomly
selecting a prescribed number of images for each class from
a larger annotated corpus [22].

Figure 2. Excerpts of the MDS (left) and KS (right) graphs for the ILSVRC2010 classes with WordNet distance (not all edges are drawn).

. . . when the rabbit actually took a watch out of its waistcoat-pocket and looked at it and then hurried on, Alice started to her feet, for it
flashed across her mind that she had never before seen a rabbit with either a waistcoat-pocket, or a watch to take out of it, . . .

Figure 3. Excerpt from Alice in Wonderland by Lewis Carroll with nouns italicized and ILSVRC2010 (super-)classes marked in bold.

Unfortunately, the fact that the natural dependencies
have been removed implies that existing datasets cannot di-
rectly be used to benchmark the effect of classifier adapta-
tion, as we introduced it in the previous section. The way
we overcome this problem forms a second contribution of
this work. We describe three methods for creating realis-
tic, non-i.i.d. test sets from an existing object classification
dataset, using ImageNet as a running example.

3.1. Generating Realistic Image Sequences

The main idea for re-introducing dependencies into the
test data is to change the sampling process by which the
test sets are created. Instead of sampling a fixed number of
images independently for each class, we create sequences
of dependent samples using a two-stage latent variable con-
struction: 1) we create sequences of class labels, using one
of three techniques described below, 2) for each class la-
bel in the sequence, we sample one example image of the
respective class out of the image corpus.
Sequences from semantic random walks. For the first
two generation methods, we assume that a matrix of pair-
wise similarities between classes is available. For the
ImageNet dataset, we use the least common ancestor-
distance as induced by the WordNet hierarchy, d(y, ȳ) =
height(lca(y, ȳ)), where lca denotes the least common an-
cestor and height(z) denotes the length of the longest path
from the node z to a leaf in the hierarchy [22]. Other seman-
tic distances could also be used, e.g. based on Wikipedia or
web searches [21]. We use the distance to create an embed-
ding of all classes into R2. Afterwards, starting at a random
location, we generate a label sequence by a random walk in
a k nearest neighbors graph with uniform transition proba-
bilities for staying in the current node or visiting any of its
neighbors. The difference between the two methods lies in
the way the lower-dimensional embedding is constructed.
As we will see, this has a strong impact on the random walk
characteristics.

The first method, MDS, relies on (metric) multidimen-

sional scaling [5]. It assigns a 2D coordinate tuple to each
class such that all pairwise distances are preserved as well
as possible. The result is a highly heterogeneous class graph
in which groups of similar classes form dense clusters, and
large gaps occur between group of classes that are pairwise
dissimilar, see Figure 2 (left). Consequently, a random walk
on the resulting graph tends to stay for long periods within
a cluster of semantically similar classes, even though occa-
sional transitions between clusters occur. A real world anal-
ogy to this would be the daily visual experience of a person,
which is also partitioned into rather long semantically ho-
mogeneous contexts, e.g. first at home, then at work, later
at a restaurant or a club, and finally back home.

The KS method is based on kernelized sorting [20]. It
arranges the classes on a 2D grid based on their pairwise
distance to each other. Neighboring classes in the grid
are usually semantically similar, but all neighbors have the
same distances, so there are no clusters or gaps, see Fig-
ure 2 (right). A random walk in the KS setup produces la-
bel sequences that can change rapidly between semantically
different groups. The effect is comparable, for example, to
watching a variety show, in which short segments appear in
a loosely related order.

Sequences with context switches. In the sequences de-
scribed above, the underlying label process changes in a
semantically smooth way, since the random walk happens
amongst neighbors in the projected similarity graph. This
is appropriate for static situations but it does not reflect the
full breadth of realistic events, which might also exhibit dis-
continuous changes.

We therefore add the possibility of abrupt topic changes
to our models by augmenting the Markov chains with a pos-
sibility to jump to a uniformly random label instead of mak-
ing a step in the k-NN graph. The consequence is that the
overall label sequence consists of multiple segments of vari-
able lengths. Each segment has a distribution as produced
by the MDS or KS method with random starting point, and
the segment lengths are exponentially distributed with pa-

TXT

... rabbit watch rabbit watch rabbit rabbit jar orange jar ...

MDS

... asparagus jalapeno green onion jalapeno jalapeno kidney bean pumpkin french fries...

KS

... nematode
sea

cucumber
snow

leopard leopard leopard leopard mink weasel ...

RND

... speedboat coralreef burrito lionfish envelope furcoat trifle paddle punching
bag

...

Figure 4. Excerpts of label sequences and test images for TXT, MDS, KS and RND method.

rameter 1
λ , where λ is the probability of starting a new seg-

ment at any step. We denote the mechanism of generating
sequences in this way by MDS(λ) and KS(λ).

Sequences from natural language. All generative pro-
cesses described above are useful for benchmarking adap-
tive classifiers, since they can produce sequences of arbi-
trary length and with controllable variability. However, the
sequences they produce are still artificial in the sense that
their underlying random walk is only a weak reflection of
a truly natural scenario, such as a person interacting with
his or her environment. Therefore we propose a third tech-
nique, TXT, based on actual human experience. Its under-
lying idea is to use natural texts as written representations
of realistic sequences of concepts in a natural order.

We assume that a corpus of well-formed texts is avail-
able. From each text we first discard all words that are not
nouns. This suppresses unwanted homographs (such as the
verb saw mistaken for the object a saw) without losing any
relevant words, since all object categories in our classifica-
tion tasks grammatically are nouns. We then scan the noun
sequence and keep those words that correspond to one of the
object categories in our task. Because for fine-grained clas-
sification tasks the exact category names might never occur
in natural text, we also search for super-categories of the
target classes according to the WordNet hierarchy. Figure 3
shows an example of the process. When we encounter such
a super-class (e.g. dog), we randomly sample one of its leaf
descendant, which is a target class (e.g. tibetan mastiff).

Benchmark dataset. We used the above procedures to
compile two new datasets. They differ in the underlying
class structure and image sources, which we take from ei-

ther the ILSVRC20101 or the ILSVRC20122 database.3

For each dataset we create a total of 1000 test se-
quences with different characteristics. We create 100 TXT-
sequences based on the 100 most popular English books
from Project Gutenberg4 at that time (a list is given in
the supplemental material) using the NLTK toolkit [2].
The sequences vary in length between 400 and 20000 el-
ements. The average length is 3135 for ILSVRC2010 and
3475 for ILSVRC2012. For MDS and KS each, we create
100 sequences of length 3000 using an 8-nearest neighbor
graph. We also generate 100 sequences each of MDS(λ)
and KS(λ) for each value λ ∈ {0.001, 0.01, 0.1}. Finally,
we also create 100 sequences in which the labels are sam-
pled uniformly at random. We refer to these sequences as
RND. They serve as a test set to analyze what happens if the
assumption of "realistic" sequences is violated.

Figure 4 illustrates exemplary segments of the resulting
label sequences. While they might not look truly natural to
a human reader, TXT, MDS and KS do indeed show many
typical characteristics that are not present in RND, such as
short-term repetitions of labels and the fact that labels are
often semantically related if they occur within a short time
of each other. For the TXT sequences, the alternation be-
tween watch and rabbit reflects that in the underlying En-
glish text, like in real life, two semantically unrelated ob-
jects might nevertheless co-occur and interact.

1http://www.image-net.org/challenges/LSVRC/2010/
2http://www.image-net.org/challenges/LSVRC/2012/
3We use the validation part of the dataset for this purpose, since anno-

tation for the ILSVRC 2012 test data is not publicly available.
4http://www.gutenberg.org

http://www.image-net.org/challenges/LSVRC/2010/
http://www.image-net.org/challenges/LSVRC/2012/
http://www.gutenberg.org

4. Experiments

We demonstrate the potential of adaptive classification
by reporting on experiments in a variety of situations. For
different base classifiers and adaptation strategies we study
if, and how much, adapting the classifier improves the clas-
sification error rate over the standard, non-adaptive, setting.

Base Classifiers. Clearly, whether adapting a classifier will
be successful or not depends on the underlying base clas-
sifier. To avoid a bias due to this choice, we report results
for two different base classifiers: CNN is a convolutional
network classifier based on the CCV library.5 We down-
loaded pre-trained models that achieve close to state-of-the-
art performance for ILSVRC2010 and ILSVRC2012 from
the libCCV website. SVM is a support vector machine clas-
sifier with subsequent Platt scaling [19] to produce proba-
bilistic outputs. It was trained on 4096 dimensional Fisher
vectors [24] using the JSGD toolkit.6

These classifiers have different characteristics, but they
both reflect the recent state-of-the-art in object categoriza-
tion. CNNs are based on the deep learning paradigm that
learns a feature representation and classifier jointly [1].
They achieve currently the best results on the ImageNet
datasets [13]. SVMs are based on statistical learning the-
ory and the maximum margin principle [14]. In combina-
tion with Fisher vector representations they achieve best re-
sults amongst those methods that follow the classical com-
puter vision pipeline in which feature extraction and classi-
fier learning are separate steps [4].

Feedback and Adaptation. We study three feedback sce-
narios (online, bandit and unsupervised) and compare the
classifiers without adaptation against the proposed classi-
fier adaptation strategy (adaptive) and its windowed variant
(dynamic). For all scenarios we measure the classification
quality by the top-5 error rate, as it is the standard in the
ImageNet challenges.

4.1. Results

Table 1 reports average classification error and standard
deviations for both datasets and both choices of base clas-
sifiers in the situation with online feedback. It shows that
for all situations with realistic sequences, it is better to rely
on an adaptive classifier than on the static base classifiers.
This is particularly visible for the MDS sequence, for which
the adaptation is able to cut the top-5 error by more than
half (e.g. on ILSVRC2012, the CNN error rate is reduced
from 16.1% to 5.2%, and the SVM error rate from 52.8%
to 21.0%). Note that the test images come from the original
ImageNet challenge datasets and the task is still to predict
one of the 1000 possible classes per image. Therefore, the

5http://libccv.org/doc/doc-convnet
6http://lear.inrialpes.fr/src/jsgd/

absolute error rates we report are –to some extent– compa-
rable to the challenge results.

The table shows that for TXT and MDS without con-
text switches, the static adaptation has an advantage over
the dynamic strategy. However, the difference between the
two methods is relatively small compared to the difference
not using adaptation at all. For the rapidly changing KS
and KS(λ) sequences, as well as for MDS(λ) when the
probability of context switches is high, the dynamic strat-
egy achieves clearly better results than the static one. In
fact, for the most challenging sequences, plain multinomial
adaptation can actually reduce the accuracy compared to
not adapting, whereas the dynamic variant always improves
over the non-adaptive baseline. Therefore, we recommend
to use dynamic adaptation unless it is known a priori that
the samples at prediction will have a benign distribution.

For the RND sequences there is no structure in the test
examples to adapt to. In these cases, the non-adaptive clas-
sifier is in fact optimal and achieves the lowest error rates.
However, the disadvantage of the adaptive methods is not
very large, either, especially for the dynamic variant.

Table 2 reports the analogue results for the situations
with bandit feedback and without feedback (unsupervised)
for the CCV classifier and ILSVRC2012 dataset. Further
tables can be found in the supplemental material. The re-
sults show a similar trend as above: adaptation always leads
to reduced error rates, except for the fully random RND se-
quences. It is remarkable that this holds even for the situ-
ation when no feedback is available at prediction time, i.e.
the classifier adapts itself only based on its own confidences.
We attribute this to the fact that the base classifiers we rely
on are indeed more often right than wrong, so their output
–even if not perfect– can be relied on for adaptation.

Overall, our experiments make a strong case in favor of
classifier adaptation at prediction time. In particular, the dy-
namic strategy appears as a promising compromise. It of-
fers a significant reduction of error rate at almost no compu-
tational cost, if the label distribution differs between train-
ing and prediction time, or even varies over time. If, how-
ever, at some time the data at prediction time is in fact com-
pletely random, the loss of accuracy is small enough to be
tolerable in most practical situations.

5. Conclusion
In this work we called attention to the possibility of

improving the accuracy of real world object classifiers by
adapting them on the fly to the –potentially time-varying–
data distribution at prediction time. We introduced an adap-
tation strategy for the situation when the label distributions
at test time differs from the one at training time, as it is
common for real world categorization tasks.

Our experiments showed that for non-i.i.d. test data
adaptation can significantly reduce the error rates even for

http://libccv.org/doc/doc-convnet
http://lear.inrialpes.fr/src/jsgd/

Table 1. Top-5 classification error rates without classifier adaptation (CNN or SVM), with regular adaptation (CNN+adapt, SVM+adapt)
or dynamic adaptation (CNN+dyn, SVM+dyn) in the situation with online feedback. Bold entries mark the lowest entries in each setting if
the difference is 10−3-significant according to a Wilcoxon signed rank test. See Section 4.1 for a discussion of the results.

ILSVRC2010 CNN CNN+adapt CNN+dyn
TXT 14.3 ± 1.5 9.4 ± 1.6 10.5 ± 1.5
MDS 13.9 ± 5.0 6.6 ± 5.0 7.9 ± 4.9
MDS(0.001) 14.6 ± 3.8 8.0 ± 4.1 8.3 ± 3.8
MDS(0.01) 14.2 ± 1.5 11.0 ± 1.5 9.3 ± 0.7
MDS(0.1) 14.4 ± 0.8 14.4 ± 0.7 12.6 ± 0.7
KS 14.6 ± 1.5 13.7 ± 1.4 10.9 ± 1.1
KS(0.001) 14.5 ± 1.4 13.7 ± 1.4 10.9 ± 1.1
KS(0.01) 14.4 ± 1.1 13.8 ± 1.1 11.0 ± 0.9
KS(0.1) 14.4 ± 0.7 15.0 ± 0.8 12.2 ± 0.6
RND 14.3 ± 0.7 16.1 ± 0.7 14.9 ± 0.7

ILSVRC2012 CNN CNN+adapt CNN+dyn
TXT 19.8 ± 1.9 12.8 ± 1.9 14.5 ± 1.7
MDS 16.1 ± 6.5 5.2 ± 3.0 6.6 ± 2.6
MDS(0.001) 15.6 ± 4.5 6.8 ± 2.6 7.0 ± 1.9
MDS(0.01) 15.7 ± 1.8 11.6 ± 1.5 9.1 ± 1.1
MDS(0.1) 16.2 ± 0.8 16.4 ± 0.8 14.0 ± 0.7
KS 16.4 ± 1.8 15.2 ± 1.7 11.8 ± 1.3
KS(0.001) 16.5 ± 1.8 15.4 ± 1.9 11.8 ± 1.2
KS(0.01) 16.4 ± 1.4 15.8 ± 1.4 12.0 ± 1.0
KS(0.1) 16.5 ± 0.8 17.1 ± 0.9 13.8 ± 0.8
RND 16.5 ± 0.6 18.7 ± 0.7 17.2 ± 0.6

ILSVRC2010 SVM SVM+adapt SVM+dyn
TXT 39.6 ± 2.4 29.2 ± 3.7 31.0 ± 3.5
MDS 43.2 ± 9.4 18.4 ± 9.1 22.8 ± 7.5
MDS(0.001) 43.5 ± 7.4 25.0 ± 7.3 24.5 ± 6.1
MDS(0.01) 44.3 ± 2.5 36.8 ± 3.0 29.4 ± 2.5
MDS(0.1) 44.5 ± 1.1 44.5 ± 1.2 40.2 ± 1.1
KS 44.3 ± 1.9 42.3 ± 1.8 34.9 ± 1.8
KS(0.001) 44.2 ± 2.0 42.5 ± 2.1 35.0 ± 1.7
KS(0.01) 44.0 ± 1.4 43.0 ± 1.5 35.6 ± 1.3
KS(0.1) 44.2 ± 1.2 45.1 ± 1.1 39.2 ± 1.1
RND 44.1 ± 0.8 47.3 ± 0.9 45.5 ± 0.9

ILSVRC2012 SVM SVM+adapt SVM+dyn
TXT 50.6 ± 2.9 38.0 ± 4.4 40.9 ± 4.2
MDS 52.8 ± 9.6 21.0 ± 13.4 26.3 ± 10.8
MDS(0.001) 52.4 ± 6.0 30.5 ± 10.1 28.7 ± 8.0
MDS(0.01) 52.8 ± 2.6 44.3 ± 3.2 36.1 ± 2.9
MDS(0.1) 53.0 ± 1.1 53.3 ± 1.2 47.8 ± 1.1
KS 53.1 ± 1.9 50.9 ± 1.9 41.1 ± 1.6
KS(0.001) 53.1 ± 1.6 50.8 ± 1.8 41.1 ± 1.5
KS(0.01) 52.9 ± 1.6 52.1 ± 1.7 42.1 ± 1.5
KS(0.1) 52.9 ± 1.0 54.4 ± 1.1 46.7 ± 1.0
RND 52.9 ± 0.8 57.1 ± 0.8 54.5 ± 0.8

Table 2. Top-5 classification error rates without classifier adaptation (CNN), with regular adaptation (CNN+adapt) or dynamic adaptation
(CNN+dyn) in the situation with bandit feedback (left) or no feedback (right).

(a) Bandit Feedback

ILSVRC2012 CNN CNN+adapt CNN+dyn
TXT 19.8 ± 1.9 14.1 ± 1.9 16.4 ± 1.7
MDS 16.1 ± 6.5 6.1 ± 3.4 8.3 ± 3.3
MDS(0.001) 15.6 ± 4.5 8.2 ± 3.2 9.0 ± 2.6
MDS(0.01) 15.7 ± 1.8 13.0 ± 1.7 11.1 ± 1.4
MDS(0.1) 16.2 ± 0.8 16.9 ± 0.8 15.1 ± 0.8
KS 16.4 ± 1.8 16.3 ± 1.8 13.8 ± 1.6
KS(0.001) 16.5 ± 1.8 16.5 ± 1.9 13.9 ± 1.6
KS(0.01) 16.4 ± 1.4 16.6 ± 1.5 14.1 ± 1.3
KS(0.1) 16.5 ± 0.8 17.5 ± 0.9 15.2 ± 0.8
RND 16.5 ± 0.6 18.5 ± 0.7 16.8 ± 0.6

(b) No Feedback (Unsupervised)

ILSVRC2012 CNN CNN+adapt CNN+dyn
TXT 19.8 ± 1.9 14.8 ± 1.8 16.4 ± 1.7
MDS 16.1 ± 6.5 6.8 ± 3.6 8.1 ± 2.9
MDS(0.001) 15.6 ± 4.5 9.0 ± 3.4 9.4 ± 2.7
MDS(0.01) 15.7 ± 1.8 13.6 ± 1.7 11.3 ± 1.5
MDS(0.1) 16.2 ± 0.8 16.8 ± 0.8 14.9 ± 0.8
KS 16.4 ± 1.8 16.5 ± 1.7 14.2 ± 1.5
KS(0.001) 16.5 ± 1.8 16.6 ± 1.9 14.1 ± 1.5
KS(0.01) 16.4 ± 1.4 16.7 ± 1.5 14.1 ± 1.1
KS(0.1) 16.5 ± 0.8 17.4 ± 0.8 15.2 ± 0.8
RND 16.5 ± 0.6 18.0 ± 0.7 16.9 ± 0.6

state-of-the-art classifiers, such as convolutional networks.
As a second contribution, we introduced three techniques
for creating test sets that better reflect real world classifi-
cation problems by including label correlations and context
switches. The source code as well as the test sets we cre-
ated are available at the first author’s homepage7 to provide
a reproducible setting for evaluating adaptation strategies.

7http://www.ist.ac.at/~aroyer

In future work, we plan to study adaptation methods be-
yond probabilistic classification as well as more powerful
adaptation strategies, e.g., taking into account label correla-
tions. We also plan to generalize the proposed setting to the
situation where a change in class priors and a domain shift
in the image domain are handled simultaneously.

http://www.ist.ac.at/~aroyer

Acknowledgements
This work was funded by the European Research

Council under the European Unions Seventh Framework
Programme (FP7/2007-2013)/ERC grant agreement no
308036.

References
[1] Y. Bengio. Learning deep architectures for AI. Foundations

and Trends in Machine Learning, 2(1):1–127, 2009. 2, 7
[2] S. Bird, E. Klein, and E. Loper. Natural Language Process-

ing with Python: Analyzing Text with the Natural Language
Toolkit. O’Reilly, 2009. 6

[3] N. Cesa-Bianchi and G. Lugosi. Prediction, Learning, and
Games. Cambridge, 2006. 3

[4] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman.
The devil is in the details: an evaluation of recent feature
encoding methods. In British Machine Vision Conference
(BMVC), 2011. 7

[5] T. F. Cox and M. A. A. Cox. Multidimensional Scaling.
Chapman & Hall, London, 1994. 5

[6] A. Criminisi, J. Shotton, and E. Konukoglu. Decision forests:
A unified framework for classification, regression, density
estimation, manifold learning and semi-supervised learning.
Foundations and Trends in Computer Graphics and Vision,
7(2–3):81–227, 2012. 2

[7] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang,
E. Tzeng, and T. Darrell. DeCAF: A deep convolutional acti-
vation feature for generic visual recognition. In International
Conference on Machine Learing (ICML), 2014. 3

[8] W. Feller. An introduction to probability theory and its ap-
plications. Volume 2. Wiley, New York, 1966. 4

[9] J. Hoffman, T. Darrell, and K. Saenko. Continuous mani-
fold based adaptation for evolving visual domains. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2014. 2

[10] Y. Jia and T. Darrell. Latent task adaptation with large-scale
hierarchies. In IEEE International Conference on Computer
Vision (ICCV), 2013. 2

[11] J. Jiang. A literature survey on domain adaptation of statis-
tical classifiers. http://sifaka.cs.uiuc.edu/jiang4/
domain_adaptation/survey/, 2008. 2

[12] S. Khamis and C. H. Lampert. CoConut: Co-classification
with output space regularization. In British Machine Vision
Conference (BMVC), 2014. 2

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Ima-
geNet classification with deep convolutional neural net-
works. In Conference on Neural Information Processing Sys-
tems (NIPS), 2012. 7

[14] C. H. Lampert. Kernel methods in computer vision. Foun-
dations and Trends in Computer Graphics and Vision,
4(3):193–285, 2009. 2, 7

[15] E. Levinkov and M. Fritz. Sequential Bayesian model update
under structured scene prior for semantic road scenes label-
ing. In IEEE International Conference on Computer Vision
(ICCV), 2013. 2

[16] K. P. Murphy. Machine Learning: A Probabilistic Perspec-
tive. Cambridge, 2012. 3

[17] K. Nigam and R. Ghani. Analyzing the effectiveness and
applicability of co-training. In CIKM, 2000. 4

[18] S. J. Pan and Q. Yang. A survey on transfer learning.
IEEE Transactions on Knowledge and Data Engineering,
22(10):1345–1359, 2010. 2

[19] J. Platt. Probabilistic outputs for support vector machines
and comparisons to regularized likelihood methods. In Ad-
vances in large margin classifiers. Cambridge, 1999. 2, 7

[20] N. Quadrianto, S. Le, and A. J. Smola. Kernelized sort-
ing. In Conference on Neural Information Processing Sys-
tems (NIPS), 2009. 5

[21] M. Rohrbach, M. Stark, G. Szarvas, I. Gurevych, and
B. Schiele. What helps where–and why? Semantic relat-
edness for knowledge transfer. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2010. 5

[22] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,
S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,
A. C. Berg, and L. Fei-Fei. ImageNet Large Scale Visual
Recognition Challenge. arXiv:1409.0575 [cs.CV], 2014. 4,
5

[23] M. Saerens, P. Latinne, and C. Decaestecker. Adjusting the
outputs of a classifier to new a priori probabilities: a simple
procedure. Neural Computation, 14(1):21–41, 2002. 3, 4

[24] J. Sánchez, F. Perronnin, T. Mensink, and J. Verbeek. Image
classification with the Fisher vector: Theory and practice. In-
ternational Journal of Computer Vision (IJCV), 105(3):222–
245, 2013. 7

[25] J. Xu, S. Ramos, D. Vázquez, and A. M. López. Incremen-
tal domain adaptation of deformable part-based models. In
British Machine Vision Conference (BMVC), 2014. 2

[26] P. Zhao and S. C. Hoi. OTL: A framework of online transfer
learning. In International Conference on Machine Learing
(ICML), 2010. 2

http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/
http://sifaka.cs.uiuc.edu/jiang4/domain_adaptation/survey/

