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Abstract
Current systems for scene understanding typically rep-

resent objects as 2D or 3D bounding boxes. While these
representations have proven robust in a variety of applica-
tions, they provide only coarse approximations to the true
2D and 3D extent of objects. As a result, object-object inter-
actions, such as occlusions or ground-plane contact, can be
represented only superficially. In this paper, we approach
the problem of scene understanding from the perspective of
3D shape modeling, and design a 3D scene representation
that reasons jointly about the 3D shape of multiple objects.
This representation allows to express 3D geometry and oc-
clusion on the fine detail level of individual vertices of 3D
wireframe models, and makes it possible to treat dependen-
cies between objects, such as occlusion reasoning, in a de-
terministic way. In our experiments, we demonstrate the
benefit of jointly estimating the 3D shape of multiple objects
in a scene over working with coarse boxes, on the recently
proposed KITTI dataset of realistic street scenes.

1. Introduction

In recent literature, there has been a strong movement
away from considering objects in isolation, towards rea-
soning jointly about entire scenes, aiding recognition in
tasks like scene understanding [20, 34, 19, 18] and ob-
ject tracking [10, 4] by exploiting contextual relationships
between objects and other scene entities, such as ground
planes [20, 10, 36] and vertical structures [20]. At the same
time, and inspired by the aspirations of the early days of
computer vision [26, 6, 2, 25], it has been realized that cap-
turing the 3D geometry of objects and scenes more accu-
rately can lead to more accurate estimates of object location
and pose [39, 29, 37, 13, 28]. The success of these models
is due, at least in part, to their ability to establish correspon-
dences across different viewpoints, and thus gain statistical
strength by sharing information among them. The degree of
detail of these deformable object class models ranges from
about a dozen deformable parts [29] to over thirty surface
vertices in a 3D wireframe [39].

Curiously, the enhanced level of geometric detail has
hardly found its way into scene-level reasoning. Ob-
jects are still typically represented as 2D or 3D bounding
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Figure 1. Left: Coarse 3D object bounding boxes derived from 2D
bounding box detections (not shown). Right: our fine-grained 3D
shape model fits improve 3D localization (see bird’s eye views).

boxes [20, 10, 27, 36] – to some degree because off-the-
shelf object detectors [8, 12] output only bounding boxes.

Such a coarse representation faces two main challenges:
(i) there is only an implicit connection between a 2D bound-
ing box detection and the underlying 3D geometry (by
virtue of the training examples that give rise to the detec-
tion), limiting its ability to directly localize objects in 3D.
And (ii), coarse boxes are bound to over-estimate spatial
extent in both image and 3D space, limiting their ability to
describe and leverage interactions between different scene
entities. While attempts have been made to mitigate (i) by
learning parametric models that explicitly relate 2D detec-
tions and 3D object bounding boxes [3, 16] and (ii) by im-
posing soft overlap penalties [27, 36], the underlying box-
or blob-like object geometry still constitutes a principal lim-
itation of today’s scene understanding approaches.

In this paper, we approach the scene understanding prob-
lem from a different angle: instead of building a scene
model around an off-the-shelf 2D bounding box detec-
tor, we start directly from a fine-grained 3D object class
model [39], and extend it to jointly represent scenes con-
taining multiple objects (so far, we have focused on the car
class in street scenes, see Fig. 1). The resulting scene in-
terpretation encompasses the detailed 3D shapes of all ob-
jects in the scene, establishing an explicit connection be-
tween 2D image evidence and 3D geometry through a wire-
frame model (addressing challenge (i)) and allowing to rea-
son about object-object interactions on the level of individ-
ual object vertices and faces (addressing challenge (ii)).
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Our paper makes the following contributions. First, to
our knowledge, our work is the first attempt to explore the
joint estimation of multiple objects within a scene at high
geometric resolution (individual parts/vertices of a wire-
frame model), including object-object interactions. No-
tably, this fine detail improves performance in both 3D ob-
ject localization and viewpoint estimation over a 3D bound-
ing box baseline (Fig. 1). Second, we leverage the rich
detail of the 3D scene representation for occlusion mod-
eling, combining deterministic reasoning about occlusions
by detected objects with a generative probabilistic model
of further, unknown occluders. This again yields improve-
ments in 3D localization compared to the independent esti-
mation of occlusions for each individual object. And third,
we present a systematic experimental study on the challeng-
ing KITTI street scene dataset [15]. While our detailed 3D
scene representation can not yet compete with technically
mature 2D bounding box detectors in terms of recall, it is
able to localize 44% of the detected highly occluded cars in
our test set with an accuracy of 1 meter.

2. Related Work
Recent work involving scene-level reasoning can

roughly be categorized into two major directions, based on
the nature of the underlying scene representation.
Qualitative representations. The first direction is charac-
terized by models of a qualitative nature [20, 18, 31]. Here,
the focus lies on providing rough estimates of surface lay-
out [20] and locations and relationships of the major build-
ing blocks of a scene, in the form of geometric [18] or me-
chanical support [31]. These representations deliver seman-
tically rich scene descriptions, but the underlying geometry
typically consists either of coarse blocks [18], or of unstruc-
tured and rather brittle superpixels [20, 31].
Quantitative representations. Works of the second di-
rection are more quantitative in nature. They are often
inspired by navigation-type applications like autonomous
driving [10, 3, 16, 36] or robotics [27], where precise lo-
calization of road surface, other road users etc. is impor-
tant. As a result, object geometry is represented and esti-
mated with higher accuracy than for the qualitative reason-
ing of the first direction. Nevertheless it is typically limited
to 3D boxes, often even with constant dimensions or fixed
aspect ratio per basic-level [10, 27, 36] or fine-grained ob-
ject class [32]. Detailed 3D object representations are lately
revisited in [39, 40], however this work only models ob-
ject instances independently, in 2D image space; whereas
we extend that to reconstruct true 3D scene layout, and in-
corporate two aspects of joint object modeling: common
ground plane and deterministic occlusion reasoning.

Recently, more fine-grained, geometric representations
have been successfully applied to the understanding of in-
door scenes [7, 9, 38], where a box-like room layout is
populated with furniture objects. These approaches model
objects as (arrangements of) boxes that are axis-aligned to
the room-box [9, 38], and directly align model with image-
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Figure 2. Scene particles (coarse 3D geometry and fine-grained
shape, Sect. 3.3). Deterministic occlusion mask computation
(Sect. 3.1) by ray casting and intersection (blue).

edges. In contrast, our model is flexible in object azimuth
angle and leverages individual part detectors as well as pow-
erful poselet-style part configurations as image evidence.
Occlusion modeling. Lately, partial occlusion has received
increased attention in object class detection. Occlusions are
considered on various levels of granularity, e.g. on the level
of HOG [8] cells [35, 33, 14], object parts [17, 28, 40], or
silhouettes [21]. With the exception of [30], which pro-
poses to train separate detectors for multiple objects occur-
ring with similar occlusion patterns, common to these ap-
proaches is that their occlusion modeling takes into account
only a single object, namely the one that is occluded, but
does not consider the remainder of the scene. As a result,
these approaches have to rely on (the absence of) low-level
image cues to predict occlusions, which are often noisy
and unreliable. In contrast, we leverage a joint inference
procedure over all objects in the scene, that takes into ac-
count interactions between different objects, such that find-
ing object-object occlusion patterns becomes a determinis-
tic procedure (for the known class(es)).

3. 3D Scene Model
We first describe our 3D scene model (Sec. 3.1), consist-

ing of a common ground plane, a set of 3D deformable ob-
jects, and an explicit occlusion mask for each object. What
distinguishes the model from previous work [10, 27, 36] is a
much more expressive solution space that allows one to rea-
son about the locations, shapes and interactions of objects,
at the level of individual vertices and faces. We then express
the likelihood of a particular scene hypothesis in that space
as a combination of per-object likelihoods, computed with
an existing per-object model (Sec. 3.2), and last describe
our sample-based inference procedure (Sec. 3.3).

3.1. Hypothesis Space

A scene in our model consists of (i) a single 3D ground
plane; (ii) a variable number of instances of a part-based,
deformable object class model, which all stand on that
ground plane; and (iii) the occlusion states of all parts
in each instance. Like many other outdoor scene mod-
els [10, 27, 36] we assume known camera intrinsics for a



given test image, such that one can reason in 3D metric
space rather than in the 2D image plane.
Object shape. Individual object instances are represented
by adapting the pseudo-3D shape model proposed in [40]
for metric 3D space. An object instance is modeled as a
deformable 3D wireframe hβ . An active shape model gov-
erns the shape variation, i.e. the locations of the wireframe
vertices (“parts”) are determined by a small number of co-
efficients s for the strongest principal components of the de-
formation. The faces spanned by the vertices determine the
visible (and occluding) object surfaces. At test time, shape
inference amounts to estimating the coefficients s. As in
[39], we learn both shape and appearance models from 3D
CAD data of the object class of interest. Note however that
in our case CAD models are scaled to their real-world di-
mensions, for reasoning in a metric scene space.
Common ground plane. All objects are assumed to rest
on a common ground plane, as often done for street scenes.
While this may seem a heavy restriction, it roughly holds
in most cases and drastically reduces the search space for
possible object locations (2 degrees of freedom for trans-
lation and 1 for rotation, instead of 3+3). Moreover, the
consensus for a common ground plane stabilizes 3D ob-
ject localization, as shown in our experiments (Sec. 4.3).
The ground plane itself has 2 degrees of freedom, θgp =
(θpitch, θroll), pitch and roll angles relative to the cam-
era coordinate frame. The height qy of the camera above
ground is assumed known and fixed.
Explicit occlusion model. Each 3D wireframe vertex has
an associated binary variable that flags it as occluded or
visible. In this manner one can uniformly treat occlusions
caused by (i) other parts of the object (self occlusion) (ii)
another object in the same scene (deterministic occlusion),
or (iii) unmodeled occluders or missing image evidence.

In terms of parameterization, we follow [23, 40], and
represent the joint occlusion states of multiple vertices by
a discrete set of 2D occlusion masks (visualized in blue in
Figs. 1, 2, 4, 5), which constitutes a non-parametric approx-
imation of the prior distribution over possible occlusion pat-
terns. The set of masks is denoted {ai} (with a0 being the
empty mask which leaves the object fully visible), and en-
compasses likely, re-occurring occlusion patterns such as an
object being occluded from one side (Fig. 3(b), best viewed
magnified), truncated by the image border (Fig. 4(d), bot-
tom), or occluded in the middle by a post or tree (Fig. 3(c)).
The occlusion state of part j is given by an indicator func-
tion oj(θgp, qaz, s, a), with θgp the ground plane parame-
ters, qaz the object azimuth, s the object shape, and a the
occlusion mask.

Since all object hypotheses reside in the same 3D co-
ordinate system, mutual occlusions can be derived deter-
ministically from their depth ordering (Fig. 2, top): we cast
rays from the camera center to each wireframe vertex of
all other objects, and record intersections with faces of any
other object as an appropriate occlusion mask. Each ob-
ject instance hβ = (q, s, a) comprises 2D translation and

azimuth q = (qx, qz, qaz) on the ground plane, shape pa-
rameters s, and occlusion mask a. Accordingly, we write
Γ
(
{h1,h2, . . . ,hn}\hβ ,hβ ,θgp

)
, i.e. the operator Γ re-

turns the index of the occlusion mask for hβ as a function
of the other objects in a given scene estimate.

3.2. Probabilistic Formulation

All evidence in our model comes from object part de-
tection, and the prior for allowable occlusions is given by
per-object occlusion masks (Sect. 3.1).
Object likelihood. The likelihood of an object being
present at a particular location in the scene is measured
by responses of a bank of (viewpoint-independent) sliding-
window part detectors, evaluated at projected image coordi-
nates of the corresponding 3D wireframe vertices. Specif-
ically, we use a multi-class random forest trained on dense
shape-context descriptors [1]. The likelihood L(hβ ,θgp)
for an object hβ is the sum over the responses (log-
likelihoods) of all visible parts, or a constant likelihood for
occluded parts [23, 40]:

L(hβ ,θgp)=max
ς

[ ∑m
j=1

(
Lv + Lo

)∑m
j=1 oj(θgp, qaz, s, a0)

]
. (1)

The denominator normalizes for the varying number of self-
occluded parts at different viewpoints. Lv is the evidence
Sj(ς,xj) for part j if it is visible, found by looking up the
detection score at image location xj and scale ς , normalized
with the background score Sb(ς,xj). Lo assigns a fixed
likelihood c to an occluded part:

Lv = oj(θgp, qaz, s, a) log
Sj(ς,xj)

Sb(ς,xj)
, (2)

Lo =
(
oj(θgp, qaz, s, a0)− oj(θgp, qaz, s, a)

)
c . (3)

Scene-level likelihood. To score an entire scene we com-
bine object hypotheses and ground plane into a scene hy-
pothesis ψ = {qy,θgp,h1, ...,hn}. The likelihood of a
complete scene is then the sum over all object likelihoods,
such that the objective for scene interpretation becomes:

ψ̂ = arg maxψ

[
n∑
β=1

L(hβ ,θgp)

]
. (4)

Note, the domain Dom
(
L
(
hβ ,θgp)

)
must be limited such

that the occluder mask aβ of an object hypothesis hβ is de-
pendent on relative poses of all the objects in the scene: an
object hypothesis hβ can only be assigned occlusion masks
ai which respect object-object occlusions—i.e. at least all
the vertices covered by Γ

(
{h1,h2, . . . ,hn}\hβ ,hβ ,θgp)

)
must be covered, even if a different mask would give a
higher objective value. Also note that the ground plane in
our current implementation is a hard constraint—objects off
the ground are impossible in our parameterization.



3.3. Inference

The objective (4) is high-dimensional, non-convex, and
not smooth (due to the binary occlusion states). Note that
deterministic occlusion reasoning potentially introduces de-
pendencies between all pairs of objects, and the com-
mon ground plane effectively ties all other variables to the
ground plane parameters θgp. In order to still do approxi-
mate inference and reach strong local maxima of the likeli-
hood function, we have designed an inference scheme that
proceeds in stages, lifting an initial 2D guess (Initialization)
about object locations to a coarse 3D model (Coarse 3D ge-
ometry), and refining that coarse model into a final collec-
tion of consistent 3D shapes (Final scene-level inference).
Initialization. Like many other complex systems with non-
convex objective functions, ours relies on a good initializa-
tion that harvests as much information as possible from the
available image evidence. We obtain this initialization with
a large number of dedicated, viewpoint-dependent detectors
for re-occurring configurations of wireframe vertices, sim-
ilar in spirit to poselets [5, 40]. We train a bank of single-
component DPM [12] detectors, with separate detectors for
full objects as well as different degrees of partial occlusion
(up to ≈ 80%) in order to ensure high recall and a large
number of object hypotheses to chose from. Each of these
detectors predicts both a (full-object) 2D bounding box and
a viewpoint, discretized to 8 azimuth directions. We fix
the number of object instances detected at this stage (us-
ing thresholding on the detection scores), and do not change
this number during inference.
Coarse 3D geometry. Since we reason in a fixed, camera-
centered 3D coordinate frame, the initial detections can be
lifted to 3D space, by casting rays through 2D bounding
box centers and instantiating objects on these rays, such
that their reprojections are consistent with 2D boxes, and
reside on a common ground plane. We perform grid search
over ground plane parameters, object locations and view-
points, jointly for all initial detections: a 3D bounding box
with the mean dimensions of our 3D shape model is pro-
jected into the image for a small range of viewpoints (close
to the initialization viewpoint) and over a range of ground
planes. We keep track of all 3D hypotheses whose projected
centroids and scales are (within some tolerance) consistent
with the 2D bounding boxes. We point out that we lift to ac-
tual metric 3D scene coordinates, unlike some other works,
e.g. [40], that work in (x, y, scale)-space.

The resulting 3D scene hypotheses (ground plane + com-
patible pose of each detected car) in turn are the starting
point for the final inference stage. Rather than commit-
ting to a single best scene hypothesis, we keep a number of
promising hypotheses and maintain that set of “scene parti-
cles” for further inference, in the spirit of [22]. All occlu-
sion masks are initialized to a0.
Final scene-level inference. The final inference procedure
is based on block coordinate descent to decouple the shape
and viewpoint variables from the occlusion masks, com-

Given: Scene particle ψ
′
: initial objects hβ = (qβ , sβ , aβ),

β = 1 . . . n; fixed θgp; aβ = a0 (all objects fully visible)
for fixed number of iterations do

1. for β = 1 . . . n do
draw samples {qβj , s

β
j }
j=1..m from a Gaussian

N (qβ , sβ ; Σβ) centered at current values;
update hβ = argmaxj L

(
hβ(qβj , s

β
j , a

β),θgp
)

end
2. for β = 1 . . . n do

update occlusion mask (exhaustive search)
aβ = argmaxj L

(
hβ(qβ , sβ , aj),θgp

)
end
3. Recompute sampling variance Σβ of Gaussians [24]

end

Algorithm 1: Inference run for each scene particle.

bined with ideas from smoothing-based optimization [24].
As the set of scene particles already covers the sensible
range of ground planes, the ground plane parameters of the
individual particles are kept fixed and not further optimized.
This stabilizes the optimization. Each particle is iteratively
refined in two steps: first, the shape and viewpoint parame-
ters of all objects are updated, by testing many random per-
turbations around the current values and keeping the best
one. The random perturbations follow a normal distribution
that is adapted in a data-driven fashion (“smoothing-based
optimization” [24]). Then, object occlusions are recom-
puted and occlusions by unmodeled objects are updated, by
exhaustive search over the set of possible masks. For each
scene particle these two update steps are iterated, and the
particle with the highest objective value ψ forms our MAP
estimate. Alg. 1 summarizes the optimization scheme.

4. Experiments
In the following, we evaluate the ability of our fine-

grained 3D scene representation to recover 3D object lo-
cation and pose in challenging street scenes from a public
data set [15], given a single image of the scene of interest
and known camera intrinsics. Note that this task is a lot
more demanding than 2D image space localization, since it
involves monocular estimation of the depth w.r.t. the cam-
era as well as continuous metric viewpoint estimation. The
evaluation is divided into three parts: first, we verify that
the first stage of our pipeline, object pre-detection, is on par
with the state-of-the-art in terms of 2D bounding box lo-
calization (Sect. 4.2). Second, we evaluate how accurately
different variants of our model can localize objects in 3D
and estimate their viewpoints, outperforming correspond-
ing 3D bounding box-based baselines by significant mar-
gins (Sect. 4.3). And third, we explore the relation between
3D performance and 2D image space prediction of the indi-
vidual object parts in our 3D model (Sect. 4.4).

4.1. Dataset

We use the KITTI 3D object detection and orientation
estimation benchmark dataset [15] as a testbed for our ap-



proach, since it provides challenging images of realistic
street scenes with varying levels of occlusion and clutter,
but nevertheless controlled enough conditions for thorough
evaluation. It consists of around 7500 training and 7500 test
images of street scenes captured from a moving vehicle and
comes with labeled 2D and 3D object bounding boxes and
viewpoints (generated with the help of a laser scanner).
Test set. To investigate the effect of fine-grained 3D scene
modeling, we chose a subset of the original training set, for
which we manually annotate part positions and part occlu-
sions for all cars in the images. We need images with mul-
tiple cars that are large enough to identify their parts. Given
the large annotation effort, we select every 5th image from
the training set with at least two cars with height greater
than 75 pixels, resulting in 260 images with 982 cars, of
which 672 are partially occluded. This ensures that, while
being biased towards more complex scenes, we still sample
a representative portion of the dataset.1

Training set. To train the DPM detectors for initialization
(c.f . Sect. 3.3), we utilize a labeled dataset of 1000 car im-
ages downloaded from the internet, and 150 images from
the KITTI dataset (none of which are part of the test set).

4.2. Object Pre-Detection

As a sanity check, we first verify that our 2D pre-
detection matches the state-of-the-art. To that end we evalu-
ate a standard 2D bounding box detection task according to
PASCAL VOC criteria [11] (50% intersection-over-union
between predicted and ground truth bounding boxes). As
normally done we restrict the evaluation to objects of a cer-
tain minimum size and visibility. Specifically, we only con-
sider cars > 50 pixels in height which are at least 20%
visible. The minimum size is slightly stricter than the 40
pixels that [15] use for the dataset (since we need to ensure
enough support for the part detectors), whereas the occlu-
sion threshold is much more lenient than their 80% (since
we are specifically interested in occluded objects).
Results. We compare our bank of single component DPM
detectors to the original deformable part model (DPM [12]),
both trained on the same training set (Sec. 4.1). Precision-
recall curves are shown in Fig. 3(b). We observe that our
detector bank (green curve, 57.8% AP) in fact performs
slightly better than original DPM [12] (red curve, 57.3%
AP). In addition it delivers coarse viewpoint estimates and
rough part locations that we can leverage (Sec. 3.3).

4.3. 3D Evaluation

Having verified that our pre-detection stage is competi-
tive and provides reasonable object candidates in the 2D im-
age plane, we now move on to the more challenging task of
estimating the 3D location and pose of objects from monoc-
ular images with known camera intrinsics. As we will show,
the fine-grained representation leads to significant perfor-

1The data, ground truth labels, and code are made available at
http://www.igp.ethz.ch/photogrammetry/downloads.

(a)

total: 982 inliers after 3D localization VP estimation err.
detected: 517 inference <1m <2m <10◦ median
(i) FG+SO 94% 26% 47% 66% 6◦

(ii) FG+SO+DO 93% 25% 47% 65% 5◦
(iii) FG+SO+GP 94% 40% 65% 66% 5◦
(iv) FG+SO+DO+GP 96% 44% 67% 65% 6◦

(v) Zia et. al [40] 96% — — — —
(vi) COARSE — 21% 45% 38% 13◦

(vii) COARSE+GP — 35% 66% 51% 10◦

(b)

total: 672 inliers after 3D localization VP estimation err.
detected: 234 inference <1m <2m <10◦ median
(i) FG+SO 94% 23% 44% 62% 6◦

(ii) FG+SO+DO 93% 24% 44% 62% 6◦

(iii) FG+SO+GP 94% 39% 62% 62% 5◦
(iv) FG+SO+DO+GP 96% 44% 63% 65% 5◦
(v) Zia et. al [40] 96% — — — —
(vi) COARSE — 21% 49% 41% 13◦

(vii) COARSE+GP — 28% 60% 51% 10◦

Table 1. 3D localization & viewpoint estimation accuracy: (a) full
dataset, (b) occluded cars only. Best values per column in bold.

mance improvements over a standard baseline that consid-
ers only 3D bounding boxes, on both tasks.

4.3.1 3D Object Localization

In order to isolate the contributions of individual compo-
nents of the scene model, we evaluate and compare the
following methods in all following experiments (Tab. 1):
(i) FG+SO: the basic version of our fine-grained 3D object
model with search for occluders, however without ground
plane and deterministic occlusion reasoning; this amounts
to independent modeling of the objects in a common, metric
3D scene coordinate system. (ii) FG+SO+DO: same as (i)
but with deterministic occlusion reasoning between objects.
(iii) FG+SO+GP: same as (i) but with common ground
plane. (iv) FG+SO+DO+GP: same as (i), but with both de-
terministic occlusion reasoning and ground plane. (v) the
pseudo-3D shape model of [40], with probabilistic occlu-
sion reasoning; this uses essentially the same object model
as (i), but fits it in 2D (x, y, scale)-space rather explicitly
recovering a 3D scene interpretation. We also compare
our representation to two different baselines, (vi) COARSE:
a scene model consisting of 3D bounding boxes rather
than detailed cars, corresponding to a fine grid search over
pose parameters using the mean car shape, that project to
the 2D bounding box from initialization (Sec. 3.3); and
(vii) COARSE+GP: like (vi) but with a common ground
plane for the bounding boxes.
Protocol. We measure 3D localization performance by the
fraction of detected objects that are correctly localized on
the ground plane up to deviations of 1, and 2 meters. These
thresholds may seem rather strict for the viewing geometry
of KITTI, but in our view larger tolerances make little sense
for cars with dimensions ≈ 4.0× 1.6 meters.

In line with existing studies on pose estimation, we base
the analysis on true positive (TP) initializations that meet
the PASCAL VOC criterion for 2D bounding box overlap
and whose coarse viewpoint estimate lies within 45◦ of the
ground truth, thus excluding failures of pre-detection. We

http://www.igp.ethz.ch/photogrammetry/downloads


perform the analysis for two settings (Tab. 1): (a) over our
full testset (517 of 982 TPs), and (b) only over those cars
that are partially occluded (234 of 672 TPs).
Results. In Tab. 1, we first observe that in terms of localiza-
tion our full system (FG+SO+DO+GP) is the top performer
in both settings and with both thresholds, localizing objects
with 1 m accuracy in 44% of the cases and with 2 m accu-
racy in 63–67% of the cases.

Second, the basic fine-grained model FG+SO outper-
forms COARSE by 2–5 percent points (pp) corresponding
to a relative improvement of 6–22% at 1 m accuracy, and on
the full dataset also at 2 m accuracy (albeit by a more mod-
erate 5%). The same applies when adding ground plane:
FG+SO+GP outperforms COARSE+GP by 5–11 pp (14–
38%) at 1 m accuracy. In other words, cars are not 3D
boxes. Modeling their detailed shape and pose yields bet-
ter scene descriptions, with and without ground plane con-
straint. The results at 2 m are less clear-cut. It appears that
from badly localized initializations just inside the 2 m ra-
dius, the final inference sometimes drifts into incorrect local
minima outside of 2 m.

Third, FG+SO+DO+GP brings further improvement. At
1 m it outperforms the next best coarse model COARSE+GP
by a remarkable 9–16pp (25–55%). Notably, the gain is
largest at high accuracy and on occluded objects. Fig. 4
confirms these results qualitatively: the bird’s eye views
(cols. c & e) show clearly improved agreement between the
models estimates (red) and the ground truth (green).

And fourth, adding the ground plane always boosts
the performance for both the FG+SO and COARSE mod-
els, strongly supporting the case for joint 3D scene rea-
soning: at 1 m accuracy the gains are 14 pp (FG+SO vs.
FG+SO+GP), 19 pp (FG+SO+DO vs. FG+SO+DO+GP),
and 14 pp (COARSE vs. COARSE+GP) on the full data
set (for qualitative results see Fig. 5). For the fine-
grained models this trend persists under occlusion (in fact
the gains are slightly larger for occluded cars), whereas
the coarse model benefits a lot less from the ground
plane with occlusion: 16 pp (FG+SO vs. FG+SO+GP),
20 pp (FG+SO+DO vs. FG+SO+DO+GP), but only 7 pp
(COARSE vs. COARSE+GP).

Finally, deterministic occlusion reasoning when cou-
pled with ground plane considerably improves performance
(FG+SO+GP vs. FG+SO+DO+GP): at 1 m accuracy the
gains are 4–5pp (9–12%). Not surprisingly, determinis-
tic occlusion reasoning only helps when the location esti-
mates are already reasonably good (i.e. when ground plane
assumption is used); otherwise part occlusions are already
captured well by the latent occlusion variables of the basic
model. This explains the negligible difference in localiza-
tion accuracy for FG+SO+DO as compared to FG+SO.

Note that in some images the base detector finds only
one car. In that case the scene model cannot bring any im-
provement, but also does not deteriorate the result.

We obtain even richer 3D “reconstructions” by replac-
ing wireframes with nearest database 3D CAD models

Fig. 3(b-c), accurately recognizing hatchbacks (b1, b4, c2),
sedans (b2, c1) and approximating the van (b3) by a station
wagon.

4.3.2 Viewpoint Estimation

Beyond 3D location, 3D scene interpretation also requires
the viewpoint of every object, or equivalently its orienta-
tion in metric 3D space. Many object classes are elongated,
thus their orientation is valuable at different levels, ranging
from low-level tasks such as detecting occlusions and colli-
sions to high-level ones like enforcing long-range regulari-
ties (e.g. cars parked at the roadside are usually parallel).
Protocol. We measure viewpoint estimation accuracy in
two ways: as the percentage of detected objects for which
the angular error is below 10◦, and as the medianangular er-
ror between estimated and ground truth azimuth angle, av-
eraged over detected objects.
Results. In Tab. 1, we first observe that the full sys-
tem FG+SO+DO+GP outperforms the best coarse model
COARSE+GP by significant margins of 14 pp on both the
full dataset and on occluded objects, decreasing the median
error by 4–5◦. The qualitative results in Fig. 4 again confirm
this. Second, all FG+SO models as well as [40] deliver quite
reliable viewpoint estimates with only minor differences in
performance (≤ 3 pp, or 1◦). And third, the ground plane
helps considerably for the COARSE models, improving by
10–13 pp, decreasing the median error by 3◦.

Estimates of 3D orientation are not provided by Zia et.
al [40], however the viewpoint estimates in 2D image space
(apparent azimuth of the object as seen in the image) are
given. In comparison our full system FG+SO+DO+GP im-
proves viewpoint estimates by 6–13 pp while decreasing
the median error by 2–3◦ advocating detailed 3D reasoning
even for 2D viewpoint estimation.

4.4. 2D Evaluation

While the objective of this work is to enable accurate
localization and pose estimation in 3D (Sec. 4.3), we also
present an analysis of 2D performance (part localization
and occlusion prediction in the image plane), since such 2D
measures are sometimes used in the context of monocular
3D modeling. An interesting finding is that significantly
better 3D localization (Sec. 4.3.1) due to scene-level con-
straints does not translate to better localization of repro-
jected parts in the image plane. Rather, the correlation is
weak and if anything slightly negative. In other words,
whenever possible 3D reasoning should be evaluated in 3D
space, rather than in 2D projection.

To quantify the localization accuracy of object parts in
the 2D image plane we count how many of the 36 parts that
make up our deformable car model match manual annota-
tions in the images. Effectively, we thus evaluate goodness-
of-fit of the estimated deformable model’s reprojection.2

2Note, there is no 3D counterpart to this part-level evaluation, since we
see no way to obtain sufficiently accurate 3D part annotations.



full occ.
(i) FG+SO 68.0% 69.5%
(ii) FG+SO+DO 68.7% 70.4%
(iii) FG+SO+GP 67.9% 67.7%
(iv) FG+SO+DO+GP 67.3% 69.4%
(v) Zia et. al [40] 66.5% 70.1%
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Figure 3. (a) Part localization accuracy (top), 2D pre-detection (bottom). (b-c) Example detections and corresponding 3D reconstructions.

Protocol. We follow the evaluation protocol commonly ap-
plied for human body pose estimation and report the aver-
age percentage of correctly localized parts (PCP), using a
relative threshold adjusted to the size of the reprojected car
(20 pixels for a car of size 500 × 170 pixels, i.e. ≈ 4% of
the total length, as in [40]).
Results. In Fig. 3(a), we observe relatively small differ-
ences in performance across different model variants. Inter-
estingly, there is a slight tendency for 3D models without
ground plane assumption to perform better: for the full test
set as well as for occluded set, FG+SO and FG+SO+DO
outperform FG+SO+GP and FG+SO+DO+GP. Although
the trend is weak and needs to be investigated further, it
does at first glance seem surprising, as it is negatively cor-
related with 3D performance (Sec. 4.3). Taking into ac-
count the strongly non-linear relation between 2D and 3D
errors, especially in depth direction along the camera axis,
the result in fact confirms intuition: more flexible models
have greater freedom to (over-)fit image evidence of in-
dividual cars. But sacrificing legitimate scene-level con-
straints comes at a cost, since they can no longer stabilize
the more brittle monocular 3D reasoning.

We also note in passing that part occlusions are consis-
tently predicted well by all models, with ≈ 87% correct
predictions on full dataset, and ≈ 81% on occluded cars.

5. Conclusion

We have approached the 3D scene understanding prob-
lem from the perspective of deformable shape modeling,
jointly fitting shapes of multiple objects linked by a com-
mon scene geometry (ground plane). Our results suggest
that detailed representations of object shape are highly ben-
eficial for 3D scene reasoning, and fit well with scene-level
constraints between objects. By itself, fitting a detailed, de-
formable 3D model of cars resulted in improvements of 6–
22% in object localization accuracy, over a baseline which
just lifts objects’ bounding boxes into the 3D scene. En-
forcing a common ground plane for all 3D bounding boxes
improved localization by 33–66%. When both aspects are
combined into a joint model over multiple cars on a com-
mon ground plane, each with its own detailed 3D shape and
pose, we get a striking 104–108% improvement in 3D lo-
calization compared to just lifting 2D detections, as well as
a reduction of the orientation error from 13◦ to 5◦. We also

find that the increased accuracy in 3D scene coordinates
is not reflected in improved 2D localization of the shape
model’s parts, supporting our claim that 3D scene under-
standing should be carried out (and evaluated) in an explicit
3D representation.

An obvious limitation of the present system, to be ad-
dressed in future work, is that it only includes a single object
category, and applies to the simple (albeit important) case of
scenes with a dominant ground plane. In terms of technical
approach it is desirable to develop a better and more effi-
cient inference algorithm for the joint scene model. Finally,
the bottleneck where most of the recall is lost is the 2D pre-
detection stage. Hence, either better 2D object detectors
are needed, or 3D scene estimation must be extended to run
directly on entire images without initialization, which will
require greatly increased robustness and efficiency.
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