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Figure 1. Taking SfM points and camera poses as inputs, we first decompose the points into segments, and then re-optimize each individual
segment and its corresponding local cameras. This significantly improves the reconstruction quality for fine geometry details.

Abstract

Global bundle adjustment usually converges to a non-
zero residual and produces sub-optimal camera poses
for local areas, which leads to loss of details for high-
resolution reconstruction. Instead of trying harder to opti-
mize everything globally, we argue that we should live with
the non-zero residual and adapt the camera poses to local
areas. To this end, we propose a segment-based approach
to readjust the camera poses locally and improve the recon-
struction for fine geometry details. The key idea is to parti-
tion the globally optimized structure from motion points into
well-conditioned segments for re-optimization, reconstruct
their geometry individually, and fuse everything back into
a consistent global model. This significantly reduces se-
vere propagated errors and estimation biases caused by the
initial global adjustment. The results on several datasets
demonstrate that this approach can significantly improve
the reconstruction accuracy, while maintaining the consis-
tency of the 3D structure between segments.

1. Introduction
Typically multi-view 3D reconstruction pipeline requires

Structure from Motion (SfM) to solve for the camera poses
using bundle adjustment [26], in which all the 3D struc-
tures and cameras are simultaneously optimized to obtain a
Maximum Likelihood Estimation. This solution is theoret-

2Tian Fang is the corresponding author.

ically optimal [26] in terms of minimal variance. However,
in practice, the residual error is never minimized to zero.
Therefore, such a global adjustment does not guarantee an
optimal estimation for local areas, which is critical for high-
resolution 3D reconstruction.

In particular, the input images are usually taken under
different conditions of lighting, scale, surface reflection,
and weather, using various cameras and lens with differ-
ent focus, sensor noise and distortion, which may not be
modeled perfectly during bundle adjustment. Perturbations
among images are therefore no longer uniform. The over-
simplified assumption on globally uniform perturbations
can lead to loss of reconstruction details. Second, because
of the inter-connectivity between all the camera and point
parameters in bundle adjustment, the global estimation will
distribute a local error over all estimated parameters, which
biases the estimation of other parameters locally. In the ex-
treme case, the mismatched point features in a local region
may contaminate the detailed geometry of other correctly
matched region. Furthermore, uneven viewpoint distribu-
tions and non-uniformly spaced 3D points and point corre-
spondences also result in local and biased estimations.

Instead of trying hard to globally adjust space structures
and camera poses all together, in this paper, we embrace
the fact that non-uniformed perturbations can never be op-
timized perfectly on a global scale. We propose a segment-
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Figure 2. The pipeline of our approach. (a) shows the initial SfM points. (b) shows the SfM points after preprocessing. We note that 3D
points marked by red dashed circles in (a) are filtered. (c) shows the result of 3D point segmentation. Note that the segment marked by
a black dashed circle is an invalid segment because of insufficient 3D points. (d) shows the dense reconstruction result using the method
described in [19]. (e) shows the comparison between mesh models with and without readjustment (RA).

based bundle adjustment approach that divides sparse SfM
points into smaller and well-conditioned segments for re-
optimization, which are still able to be fused back into a
consistent global model. The key to this approach is the in-
troduction of local cameras, which are inherited from glob-
ally optimized cameras (global cameras) and locally re-
optimized in their corresponding segments (see Figure 1).
Since local cameras are re-optimized in well-conditioned
segments with evenly spaced 3D points and uniform per-
turbations, and we only choose the segments of high accu-
racy for re-optimization, estimation biases and severe errors
propagated from other portions of the reconstruction can be
eliminated, and detailed geometry is recovered.

The contributions of our approach are three-fold. First,
we introduce a local readjustment mechanism that prevents
any errors of poorly conditioned regions from being propa-
gated to other regions. Second, we propose a carefully de-
signed segmentation algorithm to make the local segments
well-conditioned for re-optimization. Finally, we propose
a boundary fusion method that ensures the re-optimization
gives consistent and remarkably improved results.

1.1. Related Work
Many great works have been done to improve the ac-

curacy of geometry in multi-view 3D reconstruction. The
first type of approach is to optimize camera calibrations,
which is related to our work. By adjusting the 3D position
of the markers, the inaccuracy of a calibration chart can be
compensated [18]. In [16] and [29], the silhouette informa-
tion is utilized instead. Furukawa et al. [9] present a novel
method for accurate camera calibrations using top-down in-
formation from rough camera parameter estimations and
the output of Patch-based Multi-view Stereo Software [10]
to search for additional image correspondences. Similarly,
Goldlücke et al. [14] and Aubry et al. [2] refer to super-
resolution textures or meshes for variational camera geom-
etry refinement. In [27], estimates of depth and visibility
in a series of selected cameras are optimized iteratively.
However, these methods are not ideally suited to general
or large-scale scenes due to their dependency on scene in-
formation or the outputs of multi-view stereo systems.

Some depth-map based methods control the accuracy
of geometry in multi-view stereo by appropriately merging
and cleaning up the depth maps. Goesele et al. propose a

method [13] that selects images with the most compatible
resolution to handle variations in the sampling resolutions
of images. Bailer et al. [3] extend this approach to handle
huge unstructured datasets. Gallup et al. [11] use an image
pyramid to select an appropriate baseline and resolution to
preserve depth accuracy. Campbell et al. [4] use a discrete
label MRF optimization to remove the outliers from the
depth-maps and improve the quality of depth-maps used for
multi-view stereo, while such approaches commonly han-
dle the accuracy variation by selecting appropriate images
prior to reconstruction. We instead introduce local cameras
for local fitting of different groups of SfM points to handle
the variation in point accuracy.

Another type of approach is to directly optimize the
dense reconstructed points or meshes. Furukawa et al. [8]
use quality and visibility filters to filter out low resolu-
tion geometry and merge multi-view stereo reconstruction.
In [10], reconstructed meshes are refined by both photomet-
ric consistency and regularization constraints. The authors
of [28] capture small details by a mesh-based variational re-
finement. These techniques control the accuracy of the ge-
ometry posterior to dense reconstruction and may be used
in conjunction with our proposed method.

As the key idea of our approach, divide-and-conquer
methods are commonly used to handle scalability problems
in bundle adjustment. Steedly et al. [24] introduce a spectral
partitioning approach, which divides the entire large bundle
problem of sequential images into small pieces for easier
operation while preserving the low error modes of the orig-
inal system. Ni et al. [21] propose an out-of-core bundle ad-
justment algorithm, which decouples the original problems
into sub-maps with their own local coordinate systems. This
work is similar to ours but it has not directly addressed the
problem of initialization for the sub-maps. In [22], sub-
problems within a relative coordinate system are tackled
rather than a problem in a consistent global coordinate sys-
tem. Instead of at the image level operated by most other
works, the authors of [7] and [12] recover 3D structure hi-
erarchically and apply divide-and-conquer at the variable
level. In summary, these algorithms generally aim at mak-
ing large-scale bundle problems manageable and have not
directly addressed the problem of severe error propagation
and estimation biases.



2. Overview
The readjustment approach consists of several stages.

First, we use SfM points and their corresponding cam-
eras as well-conditioned initialization and filter out the 3D
points with low accuracy or abnormal distributions (Section
2.1). Next, 3D points are divided into well-conditioned seg-
ments (Section 3) and those with high accuracy and enough
3D points can be further re-optimized using segment-based
bundle adjustment (Section 4). Finally, 3D points and their
corresponding local cameras can be used for dense recon-
struction in each segment separately and a boundary fusion
method is used to merge 3D points reconstructed from dif-
ferent camera clusters into a consistent model (Section 4).

2.1. Preprocessing

Let P = {Pi} be a set of 3D points and C = {Cj} their
corresponding cameras. Assume that {Pi} and {Cj} have
been globally optimized by existing bundle adjustment al-
gorithms (called global bundle adjustment). Global bundle
adjustment is crucial for our approach in two ways. First, it
provides well-conditioned initial values for segment-based
bundle adjustment, since local cameras regard the globally
optimized camera parameters as their initial values. With-
out well-conditioned initialization, segment-based bundle
adjustment may lead to great inconsistencies in 3D struc-
ture and local cameras between adjacent segments. Second,
for invalid segments, which are either too small or of low
accuracy, globally optimized 3D structure and camera pa-
rameters are regarded as their local parameters.

When a bundle problem is divided into smaller sub-
problems, propagated errors may cause more severe pertur-
bations in local re-optimization systems than in global sys-
tems. Therefore, we should filter out the 3D points of ex-
tremely low accuracy. To quantitatively evaluate 3D point
accuracy, we use the uncertainty covariance of the 3D point
position. Here, we choose the normal covariance introduced
in [20] and a fast computation method [19] to compute the
covariance matrix. We should note that all mentions of 3D
point accuracy u(Pi) for a given 3D point Pi are expressed
as the trace of its covariance matrix, tr(CovPi), in this
paper. Therefore, we regard these: u(P ′) > αE(u(Pi))
(α = 2.2 in all our experiments), as 3D points of low ac-
curacy and tend to filter them out. In the following sec-
tions, E(X) is the mathematical expectation for xi ∈ X
and Ek(X) is the mathematical expectation for xi ∈ Xk

and Xk ⊂ X . Furthermore, we also remove some isolated
3D points for more reliable 3D point segmentation.

3. Segmentation for Readjustment
3.1. Segmentation Constraints

The motivation of our 3D point segmentation algorithm
is to divide SfM points into well-conditioned segments

(a) Initial SfM points    (b) Recursion 1 

   (d) Recursion 4 (c) Recursion 2 

Figure 3. Demonstration of 3D point segmentation algorithm. (a)
shows the initial SfM points after preprocessing. (b) and (c) show
the results after the first and second recursion of segmentation,
respectively. (d) shows the final segmentation result.

for re-optimization. Based on our observations, ”well-
conditioned” segments {Sk} generally satisfy the following
three constraints: (1) 3D points in each segment have sim-
ilar accuracy (accuracy constraint); (2) 3D points are uni-
formly and continuously distributed in a segment (density
constraint); and (3) the number of 3D points in one segment
is enough to fully constrain local cameras (size constraint).

Accuracy Constraint. Intuitively, groups of 3D points
with large perturbations tend to perturb ones with small per-
turbations in bundle problems. Therefore, we should con-
strain the upper-bound of variance of point parameter un-
certainties within a segment: ∀k,Ek(‖u(Pi) − uk‖2) ≤
λuE(‖u(Pi) − u‖2), where u(Pi) = tr(CovPi), uk =
Ek(u(Pi)) for Pi ∈ Sk, and u = E(u(Pi)).

Density Constraint. To avoid local and biased estima-
tions, 3D points in the same segment should have uniform
distributions. Therefore, in the same segment, the variance
of point density should satisfy: ∀k,Ek(‖d(Pi) − dk‖2) ≤
λdE(‖d(Pi) − d‖2), where d(Pi) = 1/V (k) is the local
density around Pi, V (k) is the volume of the bounding
ball of its k-nearest points (k = 10), dk = Ek(d(Pi)) for
Pi ∈ Sk, and d = E(d(Pi)).

Size Constraint. On the one hand, small sized seg-
ments generally have more uniform point distributions and
perturbations. While on the other hand, small sized seg-
ments are vulnerable to severe errors and outliers (though
very few after preprocessing) and sometimes cannot fully
constrain local cameras. To avoid potential degeneracies in
segment-based bundle adjustment, the number of 3D points
in each segment, |Sk|, must satisfy the following constraint:
∀k, |Sk| > λs. Moreover, to guarantee the reliability of
segment-based bundle adjustment, we hope the number of
3D points in a segment is as large as possible while satisfy-
ing the accuracy and density constraints.



In summary, we regard the following three constraints as
the termination conditions of our segmentation algorithm:

∀k,Ek(‖u(Pi)− uk‖2) ≤ λuE(‖u(Pi)− u‖2),

∀k,Ek(‖d(Pi)− dk‖2) ≤ λdE(‖d(Pi)− d‖2),
∀k, |Sk| > λs,

where λu = 0.45, λd = 0.8, and λs = 1000 in this paper.
These three parameters determine the number of segments
and empirically generate satisfactory segmentation results.
As stated in the experimental section, since the acceptable
number of segments has a wide range, the final results are
not that sensitive to these parameters.

3.2. Segmentation Process

We regard this segmentation as a weighted graph label-
ing problem and use joint affinity measures to construct the
3D graph. As an approximate solution, we recursively use
the Normalized Cuts algorithm until the accuracy and den-
sity constraints are satisfied or the size constraint is violated.
Indeed, our approach is not globally optimal, but we ob-
serve in our experiments that our method works satisfacto-
rily (See Figure 4 for the 3D point segmentation algorithm).

Graph Construction. The set of edges, which define
the affinity, are constructed using the k-Nearest Neighbor
(k-NN) technique according to the 3D Euclidean distance,
and k is set to 5 by default. The edge weight between two
3D points Pi and Pj is defined as

a(Pi, Pj) = au(Pi, Pj) · ad(Pi, Pj) · ae(Pi, Pj),

where au(Pi, Pj) is the accuracy affinity, ad(Pi, Pj) the
density affinity, and ae(Pi, Pj) the Euclidean distance affin-
ity.

First, 3D points with similar accuracy tend to be-
long to the same group and we use the accuracy affin-
ity encoding the difference in accuracy as au(Pi, Pj) =

exp(−‖u(Pi)−u(Pj)‖2
2σu

2 ), where u(Pi) = tr(CovPi) and
σ2
u = E(‖u(Pi) − u(Pj)‖2). In addition to point accu-

racy, the uniform distribution of points is also crucial for
the parameter re-optimization of 3D points. We incorpo-
rate the difference between point densities into the affin-
ity and define ad(Pi, Pj) = exp(−‖d(Pi)−d(Pj)‖2

2σd
2 ), where

d(Pi) is the point density of Pi, and σ2
d = E(‖d(Pi) −

d(Pj)‖2). To guarantee continuous point distribution,
closer points in space generally have a higher probability
of belonging to the same group. We naturally take the
3D Euclidean distance as an affinity measure ae(Pi, Pj) =

exp(−‖e(Pi)−e(Pj)‖2
2σe

2 ), where e(Pi) is the coordinate of 3D
point Pi, and σ2

e = E(‖e(Pi)− e(Pj)‖2).

Segment Division. Next, we recursively use Normal-
ized Cuts to partition the 3D points to satisfy the accuracy

Input: SfM points {Pi} after preprocessing, accuracy threshold λu,
density threshold λd, and size threshold λs.
Initialize 3D point segments: S0 ← {Pi} and S0 is unmarked;
For each unmarked 3D point segment Sk

If Sk satisfies accuracy, density and size constraints (λu, λd, λs)
If Sk passes the segmentation evaluation (θ)

Mark Sk as valid;
Else

Mark Sk as invalid;
Else if Sk dose not satisfy size constraint (λs)

Mark Sk as invalid;
Else

Divide Sk into two unmarked segments: Sk1
and Sk2

;
Output: 3D point segments {Sk}.

Figure 4. 3D point segmentation algorithm.

and density constraints. In the meantime, if a segmented
part violates the size constraint, the subdivision of this seg-
ment stops. In summary, the division of a segment repeats
until the accuracy and density constraints are satisfied or
the size constraint is violated. We note that our segmen-
tation approach tends to easily and rapidly satisfy the con-
straints while achieving acceptable segmentation results in
most cases. Although an iterative algorithm can be intro-
duced for optimization, it is computationally expensive for
large scale 3D points and its convergence cannot be theoret-
ically guaranteed.

Finally, one important issue is that adjacent segments
should have small overlap to guarantee that the finally re-
constructed 3D points in each isolated segment can be well
fused together without obvious discontinuity. Technically
speaking, we expand each segment by taking over several
3D points of its adjacent segments (10% overlap works sat-
isfactorily in our implementation).

Segmentation Evaluation. Now, we should evaluate the
final segments and find those of high accuracy and satisfy-
ing the size constraint (valid segments) for re-optimization
in segment-based bundle adjustment. First, the segments vi-
olating the size constraint in the previous step are obviously
invalid. As for the segments satisfying the size constraint,
re-optimizing these with low accuracy does not remarkably
improve the final results, and they are also regarded as in-
valid. Mathematically, segments of low accuracy generally
have large average uncertainty covariance of point positions
and we can conclude: the segment Sk is invalid if uk > θu,
where uk = Ek(u(Pi)) for Pi ∈ Sk, u = E(u(Pi)),
u(Pi) = tr(CovPi), and θ = 1.2 in our implementation.

Finally, the invalid segments do not perform further op-
timization and we regard the globally optimized camera pa-
rameters as their local parameters. In each of the valid seg-
ments, segment-based bundle adjustment is performed to
re-optimize the 3D structure and local camera parameters
separately.



Dataset Real datasets without ground truth Real datasets with ground truth Synthetic datasets
Station Casa Milla Street Louvre Castle f-P11 H-P8 e-P10 c-P19 H-P25 c-P30 Depot Block Tower

# of images 39 61 68 26 53 101 120 11 8 10 19 25 30 40 80 120
Image resolution 21M 21M 21M 21M 5.3M 10.5M 21M 6.3M 6.3M 6.3M 6.3M 6.3M 6.3M 21M 21M 21M

# of SfM points Input 18662 31730 57699 16931 35163 103291 49210 51620 81267 13064 7703 9746 15236 20991 23651 29671 67421 149874
After filtering 17945 28590 51119 16003 33537 97769 48931 51499 78174 12954 7678 9645 14987 20612 22763 28315 64877 147531

# of segments 9 22 26 10 19 34 30 29 46 6 3 5 8 14 16 21 37 52
# of valid segments 8 20 25 9 18 32 27 27 43 6 3 5 8 13 16 20 35 48

Running time [secs]
Global BA 51.2 97.4 160.6 41.1 181.7 678.7 359.6 232.2 248.0 32.4 21.7 29.7 42.6 59.0 88.1 126.4 198.2 471.0

Segmentation 5.0 10.6 16.6 3.7 9.5 49.5 67.6 82.3 89.8 3.2 1.7 2.3 4.6 6.4 9.3 9.7 18.4 52.2
Segment BA 7.8 6.9 11.2 3.4 6.3 18.0 9.9 12.5 15.2 3.9 3.7 2.0 6.6 8.3 8.2 5.5 13.4 26.1

f-P11: fountain-P11 H-P8: Herz-Jesu-P25 e-P10: entry-P10 c-P19: castle-P19 H-P25: Herz-Jesu-P25 c-P30: castle-P30

Table 1. General statistics of the datasets and algorithms. Notations: The postfixes of the Louvre 26, Louvre 53, and Louvre 101 datasets
correspond to the number of images in the datasets and those of the Castle 5M, Castle 10M, and Castle 21M datasets correspond to the
resolution of images in the datasets. The epipolar error is the average distance between the data points and corresponding epipolar lines.

4. Readjusted Reconstruction
Segment-Based Bundle Adjustment. Now, each point

segment Sk corresponds to a set of local cameras {Ckj },
where for ∀Ckj related to certain Sk, ∃P ⊂ Sk satisfying that
P are visible in Ckj . In valid segments, we first use global
camera parameters to initialize local camera parameters,
and then bundle adjustment is performed for each valid seg-
ment. Since 3D points and their corresponding local cam-
eras in each segment are optimized separately, they achieve
the optimum in corresponding well-conditioned segments
and compensate remarkably for any estimation biases and
severe propagated errors of global bundle adjustment.

Dense Reconstruction. Next, we regard the 3D struc-
ture and the corresponding local cameras of each segment
as an autonomous unit for dense reconstruction, which can
obviously be processed in parallel. Intuitively, most ex-
isting multi-view stereo algorithms can be used to recon-
struct dense 3D points, including the greedy expansion ap-
proach [10, 19], and the variational multi-view stereovi-
sion [28].

Boundary Fusion. Since dense 3D points are prop-
agated in each segment independently, the overlapping
regions between adjacent segments are reconstructed by
slightly inconsistent local cameras from different segments.
Inspired by [6, 8], we propose to use an efficient filter to fuse
reconstructed points and improve the reconstruction quality
of the overlapping region. More concretely, to guarantee a
uniform distribution of high quality 3D points in the over-
lapping region, our filter tends to preserve those of high ac-
curacy and low density. Quantitatively, we give each 3D
point Pi a weight w(Pi) as:

w(Pi) = wa(Pi) · wc(Pi),

where wa(Pi) is the accuracy term and wc(Pi) is the com-
pleteness term. Here, we use the function f(Pi, Ci) in-
troduced in [8], which takes baselines and pixel sampling
rates into account to measure the accuracy of 3D point Pi
achieved by its visible images Ci, as wa(Pi), and wc(Pi) is
the inverse of the local density around Pi. In our implemen-
tation, we repeatedly discard the 3D point with the lowest

weight until the density of the overlapping region equals the
average density of its corresponding segments.

5. Experimental Results
5.1. Implementation

Our approach has been implemented in C++ on a PC
with Quad-Core Intel 3.10GHz processor for all our experi-
ments. All the datasets have been calibrated by the standard
automated SfM approach as described in [15]. The input
of our approach can either be sparse 3D points produced by
a SfM system (e.g. Bundler [23]) or sparse samples of the
quasi-dense reconstruction (e.g. [6, 19]). Both the global
and segment-based bundle adjustment are handled by Ceres
Solver [1], and Normalized Cuts by Graclus [5].

5.2. Datasets

Table 1 provides some general statistics of the datasets
and algorithms. Note that, to fully demonstrate the sat-
isfactory performance of our approach, we have tested
our method on three types of datasets: real datasets with
ground truth, real datasets without ground truth, and syn-
thetic datasets.

Obviously, the real datasets with ground truth use ground
truth data to quantify the absolute 3D accuracy and demon-
strate any improvements in camera geometry. Here, we use
the well-known dense multi-view stereo benchmark [25].

Since current real datasets with ground truth are gener-
ally limited to small-scale reconstruction scenes, we also
use some real datasets without ground truth but greater
numbers of images of higher resolution to qualitatively vali-
date the improvement in 3D accuracy. To explore the effects
of the dataset scales, measured by the number of images
and image resolution, on the improvement in 3D accuracy,
we randomly select two subsets of the sequential images
from the Louvre dataset and make up three datasets: the
Louvre 26, Louvre 53 and Louvre 101 datasets, and down-
sample the pixels of the original images in the Castle dataset
resulting in three datasets: the Castle 5M, Castle 10M, and
Castle 20M datasets.

Finally, we use three synthetic datasets, Depot, Block
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Figure 5. Relative error histograms and cumulative relative error
curves of the real datasets with ground truth and the synthetic
datasets. The measurements clearly confirm the improvement in
absolute 3D accuracy after readjustment. Moreover, as the scales
of the datasets increase, the improvement in absolute 3D accuracy
correspondingly becomes more obvious.

and Tower, for further quantitative confirmation. We have
also tested the performance of our method using different
types and levels of artificial perturbations.

5.3. Evaluation

Since our method intends to re-optimize camera geome-
try after SfM and before dense reconstruction, it is indepen-
dent of the dense reconstruction method, and highly appli-
cable to almost any of them. That means the improvements
of camera geometry will certainly benefit the subsequent
dense reconstruction, no matter what dense reconstruction
method we use. In this paper, we use the revised quasi-
dense approach [19], as an example to demonstrate the good
performance of our readjustment method.

Real datasets with ground truth. Figure 5 shows the
histograms built over the relative errors and curves upon the
cumulative relative errors on the castle-P19, Herz-Jesu-P25,
and castle-P30 datasets. Although the images in [25] are all
captured in a well-conditioned environment, and the scales
of the datasets are comparatively small, meaning these cur-
rent existing real datasets with ground truth are not the ideal
target for our readjustment approach, the measurements on
all datasets still clearly demonstrate obvious improvements

Dataset Station Casa Street Louvre Castle
26 53 101 5.3M 10.5M 21M

Epipolar
error
[pixels]

Before RA 0.99 1.06 1.03 0.85 0.89 1.25 0.69 0.90 0.97
After RA 0.63 0.64 0.59 0.54 0.53 0.48 0.37 0.47 0.49
Reduction 36.4% 39.6% 42.7% 36.5% 40.4% 61.6% 46.4% 47.8% 49.5%

Table 2. The epipolar error of the real datasets without ground truth
before and after readjustment.

in absolute 3D accuracy after readjustment.
Real datasets without ground truth.
Due to each of these datasets containing greater num-

bers of images with higher resolution, the improvements are
more remarkable on these datasets. Without ground truth
3D data, we use the epipolar error as an alternative [9, 15] to
give quantitative evaluations for the accuracy of local cam-
era parameters. From Table 2, we note that the reduction
rate of the epipolar error after readjustment ranges from
36.4% in the Station dataset to 61.6% in the Louvre 101
dataset. We also demonstrate that as the number and res-
olution of images increase, the improvement in the accu-
racy of local camera parameters become more remarkable.
More concretely, the accuracy of local camera parameters
increases more remarkably in the Louvre 101 dataset than
the Louvre 53 and Louvre 26 datasets. Likewise, the Cas-
tle 21M dataset shows greater improvements in accuracy
than the Castle 10M and Castle 5M datasets.

Figure 1 and Figure 6 shows some results using the
method described in [19] to reconstruct dense patches and
the method described in [17] to convert them into 3D mesh
models. Obviously, our proposed method can effectively re-
cover the delicate geometric structure, especially for large-
scale high-resolution datasets, in which severe error propa-
gation and estimation biases are inevitable.

Synthetic datasets. Finally, the relative error histograms
and cumulative relative error curves of the synthetic datasets
are also shown in Figure 5. One important observation
is that the improvement in absolute 3D accuracy on the
smaller scale datasets, namely Herz-Jesu-P8, entry-P10,
and castle-P19 are inferior to the improvement on datasets
of a larger scale, namely Tower, Depot, Block datasets,
which coincides with the experimental results on the real
datasets without ground truth.

An interesting experiment is to perform the evaluation
on the large synthetic datasets with ground truth, where
additional perturbations are artificially introduced to quan-
tify the improvement in absolute 3D accuracy using our
method against different types and levels of noise (shown
in Table 3). For uniform errors, we artificially add Gaus-
sian noise to the parameters of all cameras, and for con-
centrated errors, we add Gaussian noise to the parameters
of two specific cameras so that the average reprojection
error after global bundle adjustment reaches different lev-
els in terms of pixels. From Table 3, we can see that our
method improves the absolute 3D accuracy on both types
of errors, while the improvement in the datasets with con-
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Figure 6. The comparison between mesh models with and without readjustment. A set of patches reconstructed by the method described
in [19] and mesh models based on these patches are used to assess the accuracy of 3D structure and camera parameters. The images
on the left are 3D point segmentation results and black dashed circles mark the invalid segments (because of insufficient 3D points or
low accuracy). We note from the mesh models that severe errors and outliers are attenuated and detailed geometry is recovered by the
readjustment (RA) approach.

Error type Uniform error Concentrated error
Error level 1 pixel 2 pixels5 pixels20 pixels 1 pixel 2 pixels5 pixels20 pixels

Relative
error
[sigma]

Without RA 3.642 7.134 18.611 34.147 3.412 6.934 16.134 32.201
With RA 3.026 5.864 16.762 33.487 2.762 4.960 9.880 14.791

Reduction 16.91% 17.80% 9.94% 1.93% 19.05% 28.47% 38.76% 44.75%

Table 3. The average relative error of the Block dataset with and
without readjustment where different types and levels of perturba-
tions are manually introduced.

centrated errors is more remarkable, which means the lo-
cal readjustment mechanism can effectively prevent any er-
rors of poorly conditioned regions from being propagated to
other regions.

Segmentation numbers and constraints. Another ex-
periment is to test the relationship between the mean and
standard deviations of epipolar errors and the number of
segments. We select the Castle 101 dataset as an exam-
ple (Figure 7). We observe that as the number of segments
increases, both the mean and standard deviations of epipo-
lar errors first decrease and then increase. Therefore, over-
segmentation may sometimes even lead to degeneracies in
the 3D structure and camera parameters. However, one im-
portant observation is that the acceptable number of seg-
ments is in a large range. For example, in the Castle 101

dataset, the mean epipolar error is below 0.6 pixel when
the number of segments ranges from approximately 10 to
50. We also note from Table 1 that the number of invalid
segments in every dataset is very small. Therefore, our seg-
mentation algorithm can readily converge into an acceptable
segmentation result.

Figure 7 also uses a table to demonstrate the importance
of the constraints of our segmentation algorithm. Note that
when a constraint is not taken into consideration, its corre-
sponding affinity measure in the 3D graph of the segmenta-
tion algorithm is also ignored. We observe that a segmen-
tation method with both accuracy and density constraints
performs the best. Therefore, both accuracy and density
constraints can help generate well-conditioned segments for
segment-based bundle adjustment.

Segment fusion analysis. As shown in Figure 8, we note
that although the reconstructed region is at the junction of
three segments, the inconsistencies in the geometry are neg-
ligible in the dense reconstruction result after readjustment
and boundary fusion. We can also conclude from the table
in Figure 8 that the relative error in the boundary region af-
ter fusion is almost the same as the global ones, sometimes
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Constraint S+D+A S+D S+A S Origin
Mean epipolar error [pixels] 0.49 0.69 0.54 0.74 0.97

Standard deviations of epipolar error [pixels] 0.60 0.72 0.67 0.73 0.96
S: size constraint D: density constraint A: accuracy constraint.

Figure 7. Top: The mean and standard deviations of epipolar er-
rors for different choices of the number of segments in the read-
justment approach for the Castle 101 dataset. Bottom: The mean
and standard deviations of epipolar errors for different choices of
constraints in 3D point segmentation for the Castle 101 dataset.

even smaller.
Running time. Finally, we consider the running time of

our system (see Table 1). We note that 3D point segmen-
tation dominates the running time of our whole system, but
only takes less than two minutes at most (the Castle 21M
dataset). This is because we use [5], which eliminates the
need for eigenvector computation, to optimize Normalized
Cuts and that our inputs are sparse 3D points rather than
dense ones. Moreover, since our inputs have been glob-
ally optimized, segment-based bundle adjustment converges
quickly. Therefore, our approach is highly computationally
efficient and a parallel implementation will further speed up
this process.

6. Conclusion
In this paper, we propose a re-optimization method that

partitions globally optimized sparse SfM points into well-
conditioned segments for re-optimization, which can be
fused back into a consistent model. The key to our approach
is the introduction of local cameras. Our method, which is
complementary to existing bundle adjustment algorithms,
can remarkably improve the accuracy of 3D structure and
camera geometry in addition to recovering detailed geome-
try especially for large-scale datasets.
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