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Abstract

Spectral clustering requires robust and meaningful affin-
ity graphs as input in order to form clusters with desired
structures that can well support human intuition. To con-
struct such affinity graphs is non-trivial due to the ambi-
guity and uncertainty inherent in the raw data. In con-
trast to most existing clustering methods that typically em-
ploy all available features to construct affinity matrices with
the Euclidean distance, which is often not an accurate rep-
resentation of the underlying data structures, we propose
a novel unsupervised approach to generating more robust
affinity graphs via identifying and exploiting discriminative
features for improving spectral clustering. Specifically, our
model is capable of capturing and combining subtle sim-
ilarity information distributed over discriminative feature
subspaces for more accurately revealing the latent data dis-
tribution and thereby leading to improved data clustering,
especially with heterogeneous data sources. We demon-
strate the efficacy of the proposed approach on challenging
image and video datasets.

1. Introduction
Spectral clustering is a popular clustering method [14,

15, 24, 25], which exploits the eigen-structure of a data
affinity graph to partition data into disjoint subsets of simi-
lar samples. The performance of spectral clustering heavily
relies on the goodness of the data affinity graph as it defines
an approximation to the pairwise distances between data
samples. In most contemporary techniques, the data affin-
ity graph, e.g. a kNN graph, is constructed from a pairwise
similarity matrix measured between samples. The notion
of data similarity is often intimately tied to a specific met-
ric function, typically the �2-norm (or the Euclidean metric)
measured considering the whole feature space, with a Gaus-
sian kernel to enforce locality.

Defining pairwise similarity for effective spectral clus-
tering is fundamentally challenging [10] given complex
data that are often of high dimension, heterogeneous, while

no prior knowledge or supervision is available. Trusting
all available features blindly for measuring pairwise simi-
larities and constructing data graphs is susceptible to unre-
liable and/or noisy features, particularly so for real-world
visual data, e.g. images and videos where signals can be in-
trinsically inaccurate and unstable owing to uncontrollable
sources of variation, changes in illumination, context, oc-
clusion and background clutters [7]. Moreover, confining
the notion of similarity to the �2-norm metric implicitly
imposes unrealistic assumption on complex data structures
that do not necessarily possess the Euclidean behaviour.

Our goal is to infer robust pairwise similarity between
samples so as to construct more meaningful affinity graphs
for improved spectral clustering. To this end, we formulate
a unified and generalised data similarity inference frame-
work based on the unsupervised clustering random for-
est with three innovations. (1) Instead of considering the
complete feature space as a whole, the proposed model is
designed to avoid less informative features by measuring
between-sample proximity via discriminative feature sub-
spaces, yielding similarity graphs that better express the
underlying semantic structure in data. (2) We relax the
Euclidean assumption for data similarity inference by fol-
lowing the information-theoretic definition of data similar-
ity presented in [11], which states that different similarities
can be induced from a given sample pair if distinct proposi-
tions are taken or different questions are asked about data
commonalities. Motivated by the same idea, our model
derives pairwise similarities of arbitrary sample pairs from
an exhaustive set of comparative tests, using different fea-
ture variables with distinct inherent semantics as criteria.
Such subtle similarities distributed over discriminative fea-
ture subspaces are combined automatically and effectively
for producing robust pairwise affinity matrices. (3) The
pairwise affinity matrix generated by the proposed model
automatically possesses the local neighbourhood. Thus, no
additional Gaussian kernel is needed to enforce locality.

We demonstrate the effectiveness of the proposed ap-
proach on both image and video datasets. Specifically,
we show the advantages of using the proposed affinity
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graph learning model for clustering challenging visual data
when compared against both the baseline and the state-of-
the-art methods including the Euclidean-distance-based k
nearest neighbour (kNN) [23], Dominant Neighbourhoods
(DN) [16], Consensus of kNN (cons-kNN) [18], as well as
non-metric based unsupervised manifold forests [4, 17, 26].

2. Related Work
A large body of work has been conducted on spec-

tral clustering with focus on different aspects and applica-
tions [20, 15, 14, 25, 5, 24, 8, 19]. In general, existing ap-
proaches to improving spectral clustering performance can
be classified into two paradigms: (1) How to improve data
grouping when the method of generating a data affinity ma-
trix is fixed [20, 15, 24]. For example, Xiang and Gong [24]
propose to identify informative and relevant eigenvectors of
a data affinity matrix; (2) How to construct robust affinity
graphs so as to improve the clustering results using stan-
dard spectral clustering algorithms [25, 23, 16, 18]. Our
approach is related to the second paradigm.

Approaches to adapting to the local data structures for
improving the robustness of affinity graphs have been pro-
posed [25, 23]. Particular focus has been spent on learn-
ing an adaptive scaling factor σ for the Gaussian ker-
nel (also known as radial basis function or heat kernel)
exp

(
−dist2(xi,xj)

σ2

)
, when computing the similarity be-

tween samples xi and xj . These methods, however, are still
susceptible to the presence of noisy and irrelevant features.

To mitigate the above issue, Pavan and Pelillo [16] pro-
pose a graph-theoretic algorithm for forming tight neigh-
bourhoods via selecting the maximal cliques (or maximis-
ing average pairwise affinity), with the hope of construct-
ing graphs with fewer false affinity edges between sam-
ples. More recently, a kNN based graph generation method
is proposed in [18] where the consensus information from
multiple kNNs is used for discarding noisy edges and iden-
tifying strong local neighbourhoods. In contrast to all the
aforementioned methods that blindly trust all available vari-
ables, the proposed graph inference method exploits dis-
criminative and informative features for measuring more ro-
bust data pairwise similarities. The resulting affinity matrix
is thus more robust against noisy real-world visual data.

Random forest-based affinity graph construction has
been attempted in [21, 4, 26]. The intuition is that tree leaf
nodes contain discriminative data partitions, which could
be exploited for generating robust affinity graphs. We show
that the above approaches are special cases of our affinity
inference method. Specifically, we propose a generalised
model, which is not only capable of learning discriminative
feature subspaces for robust affinity graph construction as
in previous methods, but also able to further exploit the hi-
erarchical structure of random forest to better capture subtle
and weak data proximity.

3. Robust Affinity Graph Construction

The proposed affinity graph construction approach is
built upon clustering random forests, which are an unsu-
pervised form of random forests. A clustering forest is an
ensemble of Tclust binary decision trees learned indepen-
dently from each other, each with a training set Xt ⊂ X
drawn randomly from the whole training dataset X =
{xi}Ni=1,xi ∈ R

d, where N denotes the sample number
in X and d the feature dimension of data sample. The pro-
posed model has a few important merits:

1. Our model is purely unsupervised without requiring
any ground truth annotations, since it is based on clus-
tering forests rather the more popular supervised clas-
sification or regression random forests [2, 4].

2. By virtue of the random subspace feature selection
during training forests, the pairwise affinity matrix
generated by our model is less susceptible to corrup-
tion of noisy and irrelevant features.

3. Each decision tree in the forest hierarchically en-
codes an exhaustive set of comparative tests or split
functions, which implicitly define different notions of
between-sample similarities. Our model is capable of
extracting and combining these subtle similarities at
distributed discriminative subspaces for learning ro-
bust pairwise affinity matrices.

Below, we first briefly describe how to train individual deci-
sion trees of a clustering forest, with particular focus on its
discriminative feature selection (Sec. 3.1). We then discuss
how to derive robust pairwise similarities from the trained
forest (Sec. 3.2).

3.1. Clustering Decision Tree Training

Each decision tree of a clustering forest contains a set
of internal (or split) and leaf (or terminal) nodes organised
in a hierarchical fashion. Every internal node is associated
with a question or split function, which attempts to partition
the arriving training data into left or right child nodes. By
adopting the pseudo two-class algorithm [2, 13], the train-
ing of a clustering forest can be accomplished using a sim-
ilar strategy of learning a classification forest. Specifically,
the learning of a clustering/classification forest involves the
optimisation of a binary split function in every split node.
The binary split function is defined as

h(x,ϑ) =

{
0, if xϑ1

< ϑ2,
1, otherwise. (1)

This split function is parameterised by two parameters ϑ =
(ϑ1, ϑ2): (i) a feature dimension ϑ1 ∈ {1, . . . , d}, and (ii)
a feature threshold ϑ2 ∈ R. All arrival samples S of a split
node s will be channelled to either the left l or right r child
nodes, according to the output of Eqn. (1).
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Figure 1. The pipeline of data clustering, with focus on the hierarchical neighbourhoods along a tree path in a clustering tree, which are formed by selecting
and employing discriminative features. We exploit the hierarchical tree structures and neighbourhoods for robust data pairwise similarity inference.

The optimal split parameter ϑ∗ is chosen via

ϑ∗ = argmax
Θ

ΔI, (2)

where Θ =
{
ϑi

}mtry(|S|−1)

i=1
represents a parameter set over

mtry randomly selected features. The cardinality of a set is
given by | · |. Typically, a greedy search strategy is exploited
to identify ϑ∗. The information gain ΔI is formulated as

ΔI = Is − |L|
|S| Il −

|R|
|S| Ir, (3)

where L and R denote the sets of data routed into l and r,
and L ∪ R = S. The information criterion I can be either
the entropy or the Gini impurity [3]. In this study, we use
the Gini impurity due to its simplicity and efficiency.

By doing so, an internal node s selects the most discrim-
inative (i.e. maximising the information gain) feature from
mtry candidates as its split variable and exploits it to parti-
tion the training data S. This process is repeated throughout
the whole tree training stage until some stopping criterion
is satisfied, e.g. the number of training samples S arriving
at a node is equal to or smaller than a threshold φ. Af-
ter the node splitting process stops, leaf nodes are formed.
Importantly, each internal node is attached to an identified
discriminative feature as its split variable.

3.2. Structure-Aware Robust Affinity Inference

The above training procedure allows us to partition data
with very complex distributions at the discovered discrimi-
native feature subspaces. Each split function (Eqn. (1)) en-
codes a different notion of between-sample similarity, de-
fined by its split variable and threshold.

To quantify data similarities for generating a robust pair-
wise affinity matrix, we propose a structure-aware affinity
inference model (ClustRF-Strct) based on clustering ran-
dom forest. The model takes into account the whole tree
hierarchical structures, i.e. a tree path from the root until
leaf nodes traversed by data samples x (Fig. 1-(a)). Specif-
ically, given the t-th clustering tree, we channel a sample
pair (xi,xj) from the root node γ until reaching their re-
spective leaf nodes �i and �j . Subsequently, two tree paths

composed by the root node γ, internal and leaf nodes can be
generated:

Pi = {γ, si1, . . . , siκ, . . . , �i}, (4)
Pj = {γ, sj1, . . . , sjκ, . . . , �j}, (5)

with siκ and sjκ denoting the κ-th internal nodes traveled by
xi and xj , respectively.

Intuitively, a sample pair (xi,xj) is considered dissimi-
lar if they are split at the very beginning, e.g. from the root
node γ. On the other hand, if the samples travel together
passing the same set of internal nodes till the identical leaf
node, i.e. Pi = Pj , their similarity is high. Beyond the two
extreme cases above, there exist intermediate similarities:
let λ the length of which Pi and Pj overlaps (Fig. 1-(a)),
i.e. ⎧⎨

⎩
siκ = sjκ if κ = {1, . . . , λ},
siκ �= sjκ if κ = {λ+ 1, . . . },
�i �= �j .

(6)

Clearly, a larger value in λ signifies more split tests both
samples (xi,xj) have gone through together, implying
higher similarity shared between them. A lower value in
λ suggests subtle and weak similarity between xi and xj .
To capture different strengths of data similarities, we derive
a principled and generalised tree structure aware data pair-
wise similarity inference method, ClustRF-Strct, as

ati,j =

∑λ
κ=1 wκ∑M
κ=1 wκ

, (7)

where M = max(|Pi|, |Pj |) − 1, and wκ is the weight
assigned to the corresponding tree node (i.e. either sκ or
�) on the longer tree path. Note that the root node γ is
not considered in computing the similarity since all samples
share the same root node. The pairwise similarity ati,j de-
fines the individual elements of a tree-level affinity matrix
At ∈ R

N×N . To combine consensus from multiple deci-
sion trees in the forest, we generate the final smooth affinity
matrix A ∈ R

N×N as

A =
1

Tclust

∑Tclust

t=1
At. (8)



ClustRF-Strct is regarded as a generic affinity inference
model since distinct strategies of defining node weights
wi can produce different affinity graph construction meth-
ods/instantiations, as we will describe below.

3.2.1 Variant I - The Binary Affinity Model

We show that the methods proposed in [4, 17, 26] are spe-
cial cases of the proposed ClustRF-Strct. All these methods
share the same mechanism in estimating a pairwise similar-
ity matrix using a clustering random forest. We name these
methods collectively as the binary affinity inference model
(ClustRF-Bi), since they derive pairwise affinity based only
on whether or not (binary) two samples fall into the same
leaf node of a tree.

Prior to discussing their relationship to our approach, we
review the underlying mechanism of ClustRF-Bi in mea-
suring pairwise similarity between data samples given a
learned clustering forest. Recall that each individual tree
of a forest partitions the training samples at its leaves �(x):
R

d → L ⊂ N, where � represents a leaf node index and L

refers to the set of all leaves in a given tree. For each tree,
the ClusterRF-Bi model first computes a tree-level N × N
affinity matrix At with elements defined as

ati,j = exp−distt(xi,xj), with (9)

distt(xi,xj) =

{
0, if �(xi) = �(xj),
+∞, otherwise. (10)

With Eqn. (9), the ClustRF-Bi assigns the maximal sim-
ilarity ati,j = 1 to a sample pair (xi, xj) if Pi = Pj

(i.e. completely overlapping), and the minimum similarity
ati,j = 0 to them otherwise, regardless of any partial overlap
in their tree paths. This formulation is equivalent to setting
wκ = 0 for every internal node, wκ = 1 for all leaf nodes
in Eqn. (7). Hence, this mechanism is a special case of our
ClustRF-Strct. A potential problem with ClustRF-Bi is that
it may lose the weak and subtle proximity of sample pairs
proportional to the degree of path overlap. We will show in
our experiments in Sec. 5 that considering only completely
overlapping path pairs, i.e. Pi\Pj = ∅, as in ClustRF-Bi,
is not sufficient for producing satisfactory data clusters.

3.2.2 Variant II - The Uniform Structure Model

To address the limitation of ClustRF-Bi in losing weak
similarity between data samples, we propose to consider
the non-completely-overlapping path pairs as well while
measuring tree-level data similarities using the proposed
ClustRF-Strct model. In particular, we treat all tree nodes as
uniformly important by setting wκ = 1 in Eqn. (7). There-
fore, Eqn. (7) can be rewritten as

ati,j =
λ

max(|Pi|, |Pj |)− 1
. (11)

We call this model as ClustRF-Strct-Unfm. With Eqn. (11),
all partially overlapped path pairs also contribute to the sim-
ilarity estimation between samples. As shown in the exper-
iments (Sec. 5), this new formulation captures weak data
similarities encoded in the tree structures, and thus is capa-
ble of better revealing the underlying data structure than the
conventional ClustRF-Bi model.

3.2.3 Variant III - The Adaptive Structure Model

The ClustRF-Strct-Unfm is capable of capturing subtle and
weak data proximity through exploiting the path sharing
mechanism of sample pairs in the hierarchical structure of
the forest. Nevertheless, the uniform node weighting im-
plies an implicit assumption that all tree nodes (e.g. sκ or
�) are equally important in defining similarity. In reality
this may not be true, particularly with data of complex dis-
tributions, since different nodes reside at distinct layers of
the tree hierarchy with dissimilar properties, e.g. the size
and structure of the arrival training samples. To characterise
such node (or data subset) properties, we propose an adap-
tive structure-aware affinity inference (ClustRF-Strct-Adpt).

The ClustRF-Strct-Adpt model exploits the hierarchical
neighbourhood formed in each clustering tree (see Fig. 1-
(a)). Our notion of hierarchical neighbourhood generalises
the idea presented in [12]. Specifically, [12] only regards
samples sharing the same tree terminal node as neighbours.
We extend the neighbourhood notion to the whole tree hi-
erarchy. Imagine a situation where a target sample xt tra-
verses in a tree hierarchy from the root node until some ar-
bitrary internal node sκ. Some other samples Sκ \ xt have
also gone through the same tree path and fall onto the same
internal node sκ with xt. These samples form a neighbour-
hood with xt on node sκ in the tree hierarchy.

Samples that form a hierarchical neighbourhood have
passed through the same set of split functions (Eqn. (1)) as-
sociated with each tree node. Intuitively, the deeper the hi-
erarchical neighbourhood is formed, the higher the similar-
ity shared among the samples in the same neighbourhood,
since those samples have survived and are still connected
after identical discriminative split tests (Eqn. (1)). Moti-
vated by this observation, we assign each tree node sκ with
a scale-adaptive weight (Eqn. (7)) as

wκ =
1

|Sκ| . (12)

Consequently, we assign larger weights to deeper tree
nodes, since |Sκ| > |Sκ+1|. As such, ClustRF-Strct-Adpt
estimates similarity between a sample pair (xi,xj) via

ati,j =

∑λ
κ=1

(
1

|Sκ|
)

∑
m

(
1

|Sb̂
m|

)
+ 1

|Λb̂|

, (13)



Table 1. Datasets for experiments, with examples in Figure 2.

Dataset # Clusters # Features # Samples
Image Segmentation [1] 7 19 2310

CMU-PIE [22] 10 1024 1000
USAA [6] 8 14000 1466
ERCe [26] 6 2672 600

where
b̂ = argmax

b∈{i,j}
|Pb|, (14)

i.e. the cumulated neighbourhood size of the longer tree
path is utilised as the normalisation factor, and Λb̂ denotes
the set of data samples reaching into the leaf node �b̂. Sim-
ilar to Eqn. (11), a maximum similarity is assigned to sam-
ple pairs that share the same leaf node. Nevertheless, the
tree node similarity weight is no longer distributed linearly
along the forest hierarchy as in Eqn. (11), but in a non-linear
way adaptive to the size of hierarchical neighbourhood.

4. Experimental Setting
Datasets – A wide range of visual datasets are utilised
for evaluating the proposed model: (1) Image Segmenta-
tion [1]: a scene image dataset from the UCI repository,
including 7 types of different outdoor scenes: Brickface,
Sky, Foliage, Cement, Window, Path, and Grass. The ob-
jective is to partition image patches into the above seven
types. (2) CMU-PIE [22]: a face image dataset drawn from
CMU-PIE. It comprises 10 different persons selected in ran-
dom, each with 100 images of near frontal poses and var-
ious expressions and lighting conditions (Fig. 2-(a)). We
aim to group together all the face images from the same
person on this dataset. (3) USAA [6]: a YouTube video
dataset. This dataset features common social group activi-
ties where unconstrained space of objects, events and inter-
actions makes them intrinsically complex and challenging
to detect (Fig. 2-(b)). The goal is to cluster these video
clips into 8 groups each with coherent semantics, e.g. the
same social activity. (4) ERCe [26]: a visual surveillance
video dataset. The dataset is challenging because of various
types of physical events characterised by large changes in
the environmental setup, participants, and crowdedness, as
well as intricate activity patterns. This dataset consists of
600 video clips from 6 campus events, each with 100 sam-
ples (Fig. 2-(c)). Our purpose is to classify the ERCe video
clips into the six events.
Features – For Image Segmentation, USAA, and ERCe,
we use the same features as provided by [1], [6] and [26].
Specifically, for Image Segmentation, we use the low-level
visual features from image patches, e.g. colour, pixel in-
tensity. These appearance features may be unreliable and
noisy, especially given outdoor scenes. As to USAA, the
resulting high-dimensional (14000-D) feature vectors are
drawn from three heterogeneous modalities, namely static

(a) CMU-PIE [22]: each row corresponds to one person.

(1) (2) (3) (4)

(5) (6) (7) (8)

(b) USAA [6]: (1) Birthday Party, (2) Graduation, (3) Music Performance,
(4) Non-music Performance, (5) Parade, (6) Wedding Ceremony, (7) Wed-
ding Dance, (8) Wedding Reception.

(1) (2) (3)

(4) (5) (6)

(c) ERCe [26]: (1) Student Orientation, (2) Cleaning, (3) Career Fair, (4)
Group Study, (5) Gun Forum, (6) Scholarship Competition.

Figure 2. Examples from CMU-PIE [22], USAA [6], ERCe [26] datasets.

appearance, motion and auditory. The data samples from
ERCe are also of high-dimensional (2672-D), involving het-
erogeneous feature types, e.g. colour histogram (RGB and
HSV), optical flow, local texture, holistic image appearance,
object detection. With CMU-PIE, we first normalise and
crop the face images into 32× 32 in spatial resolution, and
their raw pixel values are then employed as the represen-
tation. Such a representation is affected by large differ-
ences in illumination, facial expression, and head pose. All
data features are scaled to the range of [−1, 1]. To initially
remove less-informative features on the high-dimensional
datasets, e.g. CMU-PIE, USAA and ERCe, we perform
PCA on them and the first 30 dominant components are
used as the final representation. The same sets of feature
data are used across all methods for fair comparison.
Baselines – We compare the proposed affinity graph learn-
ing model ClustRF-Strct with:

1. k Nearest Neighbours (kNN) [23]: the most tradi-
tional affinity graph construction method using the Eu-
clidean distance on the input feature space. To con-
vert an Euclidean distance matrix D into an affinity
graph A, we compute each element in A as ai,j =



Ground Truth kNN DN cons−kNN

Ground Truth ClustRF−Bi ClustRF−Strct−Unfm ClustRF−Strct−Adpt

(a) Image Segmentation [1]

Ground Truth kNN DN cons−kNN

Ground Truth ClustRF−Bi ClustRF−Strct−Unfm ClustRF−Strct−Adpt

(b) CMU-PIE [22]

Figure 3. Qualitative comparison of the affinity graphs generated by different methods. Better to view by Zoom-In.

exp(−dist2i,j/σ
2
i,j) with σij the adaptive kernel size

that is computed as the mean distance of M -nearest
neighborhoods as in [23]. We will evaluate the sensi-
tivity of M on the clustering performance in Sec. 5.

2. Dominant Neighbourhoods (DN) [16]: a tight affin-
ity graph learning approach. To reduce the amount
of potentially noisy edges in a given Euclidean affin-
ity graph, the DN model attempts to identify sparse
and compact neighbourhoods through selecting only
the maximal cliques in the input graph.

3. Consensus of kNN (cons-kNN) [18]: the state-of-the-
art affinity graph construction method. For selecting
strong local neighbourhoods, the consensus informa-
tion collected from various neighbourhoods in a pro-
vided kNN graph is exploited by this algorithm for
producing a more robust affinity graph.

4. ClustRF-Bi [4, 17, 26]: the clustering random for-
est binary affinity model (Sec. 3.2.1). This method
exploits discriminative features identified during the
training of clustering forests to construct data affinity
graphs. The resulting affinity graphs can thus be less-
sensitive to noisy features, compared to the Euclidean-
metric-based methods, e.g. kNN, DN and cons-kNN.

Evaluation metrics – We use the widely adopted adjusted
Rand Index (ARI) [9] as the evaluation metric, with the
range of [−1, 1]. ARI measures the agreement between the
clustering results and the ground truth in a pairwise fashion,
with higher values indicating better clustering quality. For
all experiments involving clustering forest based models,
i.e. ClustRF-Bi, ClustRF-Strct-Unfm, and ClustRF-Strct-
Adpt, we report the ARI values averaged over 5 trials.

Implementation details – The number of trees Tclust in a
clustering forest is set to 1000. We observed stable results
given a larger forest size. This observation agrees with [4].
We set mtry (see Eqn. (2)) to

√
d with d the feature dimen-

sionality of the input data and employ a linear data separa-
tion [4] as the split function (see Eqn. (1)). The value of φ
is obtained through cross-validation on each dataset.

ClustRF−Bi (301) ClustRF−Strct−Unfm (563) ClustRF−Strct−Adpt (427)

Figure 4. Comparison on cluster forest based models: the pairwise affinity
between different face images from the same person (CMU-PIE [22]). The
numbers in the parentheses are the summation of all pairwise similarities
induced by the corresponding method. Larger is better.

5. Evaluations

5.1. Evaluation of Affinity Graph

We first examine the data affinity graphs, which could
qualitatively reflect how effective a neighbourhood graph
construction method is. Figure 3 depicts some example
affinity matrices generated by all comparative models.

It can be observed that ClustRF-Strct-Unfm and
ClustRF-Strct-Adpt produce affinity matrices with more
distinct block structure and less false edges compared with
others. This suggests the superiority of the proposed mod-
els in learning the underlying semantic structures in data,
potentially leading to more compact and separable clus-
ters. A number of noisy pairwise edges are found in the
affinity graphs yielded by ClustRF-Strct-Unfm than those
by ClustRF-Strct-Adpt. This is a consequence of not con-
sidering the goodness of hierarchical neighbourhoods in
ClustRF-Strct-Unfm (Sec. 3.2.2), leading to less accurate
induced data similarities in comparison to ClustRF-Strct-
Adpt. This observation shows the effectiveness of the pro-
posed adaptive weighting mechanism in suppressing noisy
or inaccurate features on learning data sample proximity.

We now examine and discuss the characteristics of affin-
ity matrices constructed by other baselines. It is observed
from Fig. 4 that compared to the ClustRF-Strct models,
ClustRF-Bi has the tendency to underestimate the similar-
ity of sample pairs that actually originate from the same
clusters. This is owing to that ClustRF-Bi only assumes
data similarity on the completely overlapped tree path pairs,



Table 2. Sensitivity of M : the clustering results of different methods given varying values of M in terms of AUC, with M the parameter used for computing the adaptive
Gaussian kernel size during the process of converting a Euclidean distance matrix into an affinity graph (see Sec. 4).

Dataset Image Segmentation [1] CMU-PIE [22] USAA [6] ERCe [26]
M 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100 20 40 60 80 100

kNN [23] 34.8 36.2 37.6 37.8 37.9 4.4 4.4 4.9 4.8 4.7 3.5 3.1 3.3 3.6 3.6 45.9 48.1 52.1 52.7 51.8
DN [16] 38.3 29.1 34.7 37.2 37.2 3.0 2.3 2.4 3.0 3.5 2.6 2.3 2.5 2.0 1.7 51.0 52.1 49.9 18.3 25.6

cons-kNN [18] 34.9 36.8 35.8 36.8 35.9 4.0 4.4 4.3 4.3 4.2 3.8 3.8 3.8 3.8 3.9 49.2 52.1 52.0 52.0 55.7
ClustRF-Bi [4, 17, 26] 39.5 19.8 4.5 56.1

ClustRF-Strct-Unfm 40.7 22.9 4.7 59.3
ClustRF-Strct-Adpt 41.8 20.5 5.7 60.4

and thus loses subtle and weak data proximity (Sec. 3.2.1).
Given intrinsically ambiguous datasets with unreliable fea-
tures, incomplete overlapping path pairs can often occur as
samples of the same categories may only share similarity
in some feature subspaces. In such cases, ClustRF-Bi shall
perform poorly as compared to our ClustRF-Strct models,
as we shall show next.

With kNN, DN, and cons-kNN, affinity graphs with in-
distinct block structure are observed, with a mix of large
quantity of faulty edges. In contrast to ClustRF-Bi that
is ‘overly reluctant’ in assigning data proximity to sam-
ple pairs, the Euclidean distance based methods go to the
other extreme by blindly believing all available features and
therefore tend to introduce false data proximity.

5.2. Evaluation of Clustering Performance

In this experiment, we quantitatively evaluate data clus-
tering performance of different graph construction methods
by applying the spectral clustering algorithm [25] on their
affinity graphs as discussed in Sec. 5.1.

It is observed from Fig. 5 and Table 2 ClustRF-Strct-
Unfm and ClustRF-Strct-Adpt outperform baseline meth-
ods, e.g. by as much as >125% and >120% relative im-
provement against kNN, >190% and >180% against DN,
>130% and >125% against the state-of-the-art cons-kNN,
>5% and >10% against the discriminative-feature-based
model ClustRF-Bi in terms of the area under the ARI curve
averaged over all the datasets. This is in line with the obser-
vations in Fig. 3. Importantly, we find that ClustRF-Strct-
Unfm and ClustRF-Strct-Adpt significantly outperform the
Euclidean distance based methods on CMU-PIE. This can
be due to the capability of our model of capturing and aggre-
gating subtle data proximity distributed over discriminative
feature subspaces, thus suitable to handle ambiguous and
unreliable features caused by variation in illumination, face
expression or pose on the CMU-PIE data. A large improve-
ment margin is also observed on the USAA dataset with
data collected from heterogeneous sources. All these evi-
dences suggest the superior capability of our model in deal-
ing with high-dimensional data and heterogeneous sources
for generating robust affinity graphs.

As shown in Fig. 5, ClustRF-Strct-Unfm is more likely
to suffer when the size of neighbourhood k increases, whilst
ClustRF-Strct-Adpt behaves more stably. The tendency is
likely to be caused by the relatively noisier affinity ma-

trix induced by ClustRF-Strct-Unfm, as we observed in
Sec. 5.1. The results further justify the importance of con-
sidering neighbourhood-scale-adaptive weighting on tree
nodes (Sec. 3.2) for suppressing data noise.

The Euclidean-distance-based models produce the poor-
est results over all the datasets. Inaccurate and noisy
features are potential causes. For example, the face im-
ages from the CMU-PIE dataset are intrinsically ambigu-
ous owing to large variations in illumination and expres-
sions (Fig. 2-(a)). The extracted features are therefore un-
reliable. Similar situations are observed on other datasets.
The cons-kNN model attempts to circumvent this problem
via searching for consensus from multiple kNNs. Never-
theless this is proved challenging, particularly when a large
quantity of potential noisy edges exist in the given kNN due
to the unreliable input data, leading to possibly inconsistent
neighbour votes from multiple kNNs. DN is likely to suffer
from the same problem as the maximal cliques in the given
affinity graph is no longer trustworthy. This interpretation
is further supported by the fact that for all kNN, cons-kNN
and DN, the clustering performance changes dramatically
with the varying settings of neighbourhood size k, e.g. on
Image Segmentation and ERCe. That is, a large amount of
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Figure 5. ARI curve: comparison between different methods on the spec-
tral clustering performance given different scales of neighbourhood k. The
neighbourhood size M used on computing the adaptive Gaussian kernel
size is fixed to 20.



inaccurate edges in the affinity graphs lead to the require-
ment of a more careful neighbourhood size selection, so as
to trade-off between the true and false data similarities.

By exploiting discriminative features, the ClustRF-Bi
model suffers less from noisy data, and produces better re-
sults than the Euclidean-distance-based methods. However,
it is inferior to the proposed ClustRF-Strct variants, since
it is not capable of capturing subtle data pairwise similarity
encoded in partially overlapped path pairs.
Sensitivity of M – Here we evaluate the sensitivity of M on
kNN, DN and cons-kNN. The parameter M is employed
to estimate the adaptive Gaussian kernel size for convert-
ing a Euclidean distance matrix into a similarity graph [23]
(Sec. 4). Note that ClustRF-Bi, ClustRF-Strct-Unfm and
ClustRF-Strct-Adpt are free from M since they directly de-
rive affinity graphs from the learned forests, rather than
from distance matrices which require a Gaussian kernel to
enforce locality. It is evident from Table 2 that for all the
Euclidean-distance-based affinity graph learning models, a
careful selection of adaptive Gaussian kernel size can pro-
duce better clustering results. However, their best results
are still worse than those by clustering forest based mod-
els, due to the limitation in handling intrinsically noisy and
irrelevant feature data. Importantly, the proposed ClustRF-
Strct model gains superior performance to other baselines
in all cases.

6. Conclusion
We have presented a novel generalised and unsupervised

approach to constructing more robust and meaningful data
affinity graphs for improving spectral clustering, particu-
larly with data of high dimension and from heterogeneous
sources. Instead of blindly trusting all available variables,
we adopt an information-theoretic definition on data simi-
larity and derive affinity graphs through capturing and com-
bining subtle and weak data pairwise proximity distributed
in discriminative feature subspaces identified during the
training stage of clustering forests. Furthermore, the affinity
graphs constructed by our model naturally possess the local
neighbourhood, with no need of Gaussian kernel. Exten-
sive experiments on clustering challenging visual datasets
have demonstrated the superiority of the proposed affinity
inference model over the state-of-the-art models. Beyond
spectral clustering, our model can also benefit other appli-
cations, e.g. manifold ranking.
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