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Abstract

Topic modeling based on latent Dirichlet allocation
(LDA) has been a framework of choice to deal with mul-
timodal data, such as in image annotation tasks. Recently,
a new type of topic model called the Document Neural Au-
toregressive Distribution Estimator (DocNADE) was pro-
posed and demonstrated state-of-the-art performance for
text document modeling. In this work, we show how to suc-
cessfully apply and extend this model to multimodal data,
such as simultaneous image classification and annotation.
Specifically, we propose SupDocNADE, a supervised exten-
sion of DocNADE, that increases the discriminative power
of the hidden topic features by incorporating label infor-
mation into the training objective of the model and show
how to employ SupDocNADE to learn a joint representa-
tion from image visual words, annotation words and class
label information. We also describe how to leverage infor-
mation about the spatial position of the visual words for
SupDocNADE to achieve better performance in a simple,
yet effective manner. We test our model on the LabelMe and
UIUC-Sports datasets and show that it compares favorably
to other topic models such as the supervised variant of LDA
and a Spatial Matching Pyramid (SPM) approach.

1. Introduction
Multimodal data modeling, which combines information

from different sources, is increasingly attracting attention
in computer vision [1, 2, 3, 4, 5, 6, 7]. One of the leading
approaches is based on topic modelling, the most popular
model being latent Dirichlet allocation or LDA [8]. LDA is
a generative model for documents that originates from the
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Figure 1. Illustration of SupDocNADE for multimodal image
data. Visual words, annotation words and class label y are mod-
eled as p(v, y) = p(y|v)

∏
i p(vi|v1, . . . , vi−1). All condition-

als p(y|v) and p(vi|v1, . . . , vi−1) are modeled using neural net-
works with shared weights. Each predictive word conditional
p(vi|v1, . . . , vi−1) (noted v̂i for brevity) follows a tree decompo-
sition where each leaf is a possible word. At test time, the annota-
tion words are not used (illustrated with a dotted box) to compute
the image’s topic feature representation.

natural language processing community, but has had great
success in computer vision [8, 9]. LDA models a document
as a multinomial distribution over topics, where a topic is
itself a multinomial distribution over words. While the
distribution over topics is specific for each document, the
topic-dependent distributions over words are shared across
all documents. Topic models can thus extract a meaningful,
semantic representation from a document by inferring its la-
tent distribution over topics from the words it contains. In
the context of computer vision, LDA can be used by first ex-
tracting so-called “visual words” from images, convert the
images into visual word documents and training an LDA
topic model on the bags of visual words.

To deal with multimodal data, some variants of LDA
have been proposed recently [2, 5, 4, 9]. For instance, Cor-
respondence LDA (Corr-LDA) [2] was proposed to discover
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the relationship between images and annotation modalities,
by assuming each image topic must have a correspond-
ing text topic. Multimodal LDA [5] generalizes Corr-LDA
by learning a regression module relating the topics from
the different modalities. Multimodal Document Random
Field Model (MDRF) [4] was also proposed to deal with
multimodal data, which learns cross-modality similarities
from a document corpus containing multinomial data. Be-
sides the annotation words, the class label modality can
also be embedded into LDA, such as in supervised LDA
(sLDA) [10, 9]. By modeling the image visual words, an-
notation words and their class labels, the discriminative
power of the learned image representations could thus be
improved.

At the heart of most topic models is a generative story
in which the image’s latent representation is generated first
and the visual words are subsequently produced from this
representation. The appeal of this approach is that the task
of extracting the representation from observations is eas-
ily framed as a probabilistic inference problem, for which
many general purpose solutions exist. The disadvantage
however is that as a model becomes more sophisticated, in-
ference becomes less trivial and more computationally ex-
pensive. In LDA for instance, inference of the distribution
over topics does not have a closed-form solution and must
be approximated, either using variational approximate in-
ference or MCMC sampling. Yet, the model is actually
relatively simple, making certain simplifying independence
assumptions such as the conditional independence of the vi-
sual words given the image’s latent distribution over topics.

Recently, an alternative generative modeling approach
for documents was proposed by Larochelle and Lauly [11].
Their model, the Document Neural Autoregressive Distri-
bution Estimator (DocNADE), models directly the joint dis-
tribution of the words in a document, by decomposing it
as a product of conditional distributions (through the prob-
ability chain rule) and modeling each conditional using a
neural network. Hence, DocNADE doesn’t incorporate any
latent random variables over which potentially expensive
inference must be performed. Instead, a document rep-
resentation can be computed efficiently in a simple feed-
forward fashion, using the value of the neural network’s
hidden layer. Larochelle and Lauly [11] also show that Doc-
NADE is a better generative model of text documents and
can extract a useful representation for text information re-
trieval.

In this paper, we consider the application of DocNADE
to deal with multimodal data in computer vision. More
specifically, we propose a supervised variant of DocNADE
(SupDocNADE), which can be used to model the joint dis-
tribution over an image’s visual words, annotation words
and class label. The model is illustrated in Figure 1. We
investigate how to successfully incorporate spatial informa-

tion about the visual words and highlight the importance
of calibrating the generative and discriminative components
of the training objective. Our results confirm that this ap-
proach can outperform other topic models, such as the su-
pervised variant of LDA.

2. Related Work

Multimodal data is often modeled using extensions of
the basic LDA topic model, such as Corr-LDA [2], Multi-
modal LDA [5] and MDRF [4]. In this paper, we focus on
learning a joint representation from three different modal-
ities: image visual words, annotations, and class labels.
The class label describes the image globally with a single
descriptive label (such as coast, outdoor, inside city, etc.),
while the annotation focuses on tagging the local content
within the image. Wang et al. [9] proposed a supervised
LDA formulation to tackle this problem. Wang et al. [12]
opted instead for a maximum margin formulation of LDA
(MMLDA). Our work also belongs to this line of work, ex-
tending topic models to a supervised variant: our contribu-
tion is thus to extend a different topic model, DocNADE, to
this context for multimodal data modeling.

What distinguishes DocNADE from other topic models
is its reliance on an autoregressive neural network architec-
ture. Neural networks are increasingly used for the prob-
abilistic modeling of images (see [13] for a review). In
the realm of document modeling, Salakhutdinov and Hin-
ton [14] proposed a Replicated Softmax model for bags of
words. DocNADE is in fact inspired by that model and was
shown to improve over its performance while being much
more computationally efficient. There are also some other
neural network based approaches for multimodal data mod-
eling, such as [15, 16]. One advantage of DocNADE over
these methods is that it can be trained efficiently without
approximation or sampling.

3. Document NADE

In this section, we describe the original DocNADE
model. In Larochelle and Lauly [11], DocNADE was used
to model documents of real words, belonging to some pre-
defined vocabulary. To model image data, we assume that
images have first been converted into a bag of visual words.
A standard approach is to learn a vocabulary of visual
words by performing K-means clustering on SIFT descrip-
tors densely exacted from all training images. See Sec-
tion 5.2 for more details about this procedure. From that
point on, any image can thus be represented as a bag of vi-
sual words v = [v1, v2, . . . , vD], where each vi is the index
of the closest K-means cluster to the ith SIFT descriptor
extracted from the image and D is the number of extracted
descriptors.

DocNADE models the joint probability of the visual



words p(v) by rewritting it as

p (v) =

D∏
i=1

p (vi|v<i) (1)

and modeling instead each conditional p(vi|v<i), where
v<i is the subvector containing all vj such that j < i. No-
tice that Equation 1 is true for any distribution, based on the
probability chain rule. Hence, the main assumption made
by DocNADE is in the form of the conditionals. Specifi-
cally, DocNADE assumes that each conditional can be mod-
eled and learned by a feedforward neural network.

One possibility would be to model p(vi|v<i) with the
following architecture:

hi (v<i) = g

(
c+

∑
k<i

W:,vk

)
(2)

p (vi = w|v<i) =
exp (bw +Vw,:hi (v<i))∑
w′ exp (bw′ +Vw′,:hi (v<i))

(3)

where g(·) is an element-wise non-linear activation func-
tion, W ∈ RH×K and V ∈ RK×H are the connection
parameter matrices, c ∈ RN and b ∈ RK are bias parame-
ter vectors andH,K are the number of hidden units (topics)
and vocabulary size, respectively.

Computing the distribution p(vi = w|v<i) of Equation 3
requires time linear in K. In practice, this is too expensive,
since it must be computed for each of the D visual words
vi. To address this issue, Larochelle and Lauly [11] propose
to use a balanced binary tree to decompose the computation
of the conditionals and obtain a complexity logarithmic in
K. This is achieved by randomly assigning all visual words
to a different leaf in a binary tree. Given this tree, the prob-
ability of a word is modeled as the probability of reach-
ing its associated leaf from the root. Larochelle and Lauly
[11] model each left/right transition probabilities in the bi-
nary tree using a set of binary logistic regressors taking the
hidden layer hi(v<i) as input. The probability of a given
word can then be obtained by multiplying the probabilities
of each left/right choices of the associated tree path.

Specifically, let l (vi) be the sequence of tree nodes on
the path from the root to the leaf of vi and let π (vi) be the
sequence of binary left/right choices at the internal nodes
along that path. For example, l (vi)1 will always be the root
node of the binary tree, and π (vi)1 will be 0 if the word
leaf vi is in the left subtree or 1 otherwise. Let V ∈ RT×H
now be the matrix containing the logistic regression weights
and b ∈ RT be a vector containing the biases, where T is
the number of inner nodes in the binary tree and H is the
number of hidden units. The probability p(vi = w|v<i) is
now modeled as

p(vi = w|v<i) =
|π(vi)|∏
k=1

p(π (vi)k |v<i) , (4)

where

p(π (vi)k = 1|v<i) = sigm
(
bl(vi)m +Vl(vi)m,:

hi (v<i)
)

(5)
are the internal node logistic regression outputs and
sigm(x) = 1/(1 + exp(−x)) is the sigmoid function. By

using a balanced tree, we are guaranteed that computing
Equation 4 involves only O(logK) logistic regression out-
puts. One could attempt to optimize the organization of the
words within the tree, but a random assignment of the words
to leaves works well in practice [11].

Thus, by combining Equations 2, 4 and 5, we can
compute the probability p (v) =

∏
i=1 p (vi|v<i) for any

document under DocNADE. To train the parameters θ =
{W,V,b, c} of DocNADE, we simply optimize the aver-
age negative log-likelihood of the training set documents
using stochastic gradient descent.

Equations 4,5 indicate that the conditional probability of
each word vi requires computing the position dependent
hidden layer hi (v<i), which extracts a representation out
of the bag of previous visual words v<i. Since computing
hi (v<i) is in O(HD) on average, and there are D hidden
layers hi (v<i) to compute, then a naive procedure for com-
puting all hidden layers would be in O(HD2).

However, noticing that

hi+1 (v<i+1) = g

(
c+

∑
k<i+1

W:,vk

)
(6)

= g

(
W:,vi + c+

∑
k<i

W:,vk

)
(7)

and exploiting that fact that the weight matrix W is the
same across all conditionals, the linear transformation c +∑
k<iW:,vk can be reused from the computation of the

previous hidden layer hi(v<i) to compute hi+1(v<i+1).
With this procedure, computing all hidden layers hi(v<i)
sequentially from i = 1 to i = D becomes in O(HD).

Finally, since the computation complexity of each of
the O(logK) logistic regressions in Equation 4 is O(H),
the total complexity of computing p(vi = w|v<i) is
O(log(K)HD). In practice, the length of document D
and the number of hidden units H tends to be small, while
log(K) will be small even for large vocabularies. Thus
DocNADE can be used and trained efficiently.

Once the model is trained, a latent representation can be
extracted from a new document v∗ as follows:

hy (v
∗) = g

(
c+

D∑
i

W:,v∗i

)
. (8)

This representation could be fed to a standard classifier to
perform any supervised computer vision task. The index
y is used to highlight that it is the representation used to
predict the class label y of the image.



4. SupDocNADE for Multimodal Data

In this section, we describe the approach of this paper,
inspired by DocNADE, to learn jointly from multimodal
data. First, we describe a supervised extension of Doc-
NADE (SupDocNADE), which incorporates the class label
modality into training to learn more discriminative hidden
features for classification. Then we describe how we exploit
the spatial position information of the visual words. Finally,
we describe how to jointly model the text annotation modal-
ity with SupDocNADE.

4.1. Supervised DocNADE

It has been observed that learning image feature repre-
sentations using unsupervised topic models such as LDA
can perform worse than training a classifier directly on the
visual words themselves, using an appropriate kernel such
as a pyramid kernel [17]. One reason is that the unsuper-
vised topic features are trained to explain as much of the
entire statistical structure of images as possible and might
not model well the particular discriminative structure we are
after in our computer vision task. This issue has been ad-
dressed in the literature by devising supervised variants of
LDA, such as Supervised LDA or sLDA [10]. DocNADE
also being an unsupervised topic model, we propose here a
supervised variant of DocNADE, SupDocNADE, in an at-
tempt to make the learned image representation more dis-
criminative for the purpose of image classification.

Specifically, given an image v = [v1, v2, . . . , vD] and its
class label y ∈ {1, . . . , C}, SupDocNADE models the full
joint distribution as

p(v, y) = p(y|v)
D∏
i=1

p (vi|v<i) . (9)

As in DocNADE, each conditional is modeled by a neural
network. We use the same architecture for p (vi|v<i) as in
regular DocNADE. We now only need to define the model
for p(y|v).

Since hy (v) is the image representation that we’ll use
to perform classification, we propose to model p (y|v) as a
multiclass logistic regression output computed from hy (v):

p (y|v) = softmax (d+Uhy (v))y (10)

where softmax(a)i = exp(ai)/
∑C
j=1 exp(aj), d ∈ RC is

the bias parameter vector in the supervised layer and U ∈
RC×H is the connection matrix between hidden layer hy
and the class label.

Put differently, p (y|v) is modeled as a regular multiclass
neural network, taking as input the bag of visual words v.
The crucial difference however with a regular neural net-
work is that some of its parameters (namely the hidden unit

parameters W and c) are also used to model the visual word
conditionals p (vi|v<i).

Maximum likelihood training of this model is performed
by minimizing the negative log-likelihood

− log p (v, y) = − log p (y|v)+
D∑
i=1

− log p(vi|v<i) (11)

averaged over all training images. This is known as gener-
ative learning [18]. The first term is a purely discriminative
term, while the second is unsupervised and can be under-
stood as a regularizer, that encourages a solution which also
explains the unsupervised statistical structure within the vi-
sual words. In practice, this regularizer can bias the solution
too strongly away from a more discriminative solution that
generalizes well. Hence, similarly to previous work on hy-
brid generative/discriminative learning, we propose instead
to weight the importance of the generative term

− log p (v, y) = − log p (y|v) + λ

D∑
i=1

− log p(vi|v<i)

(12)
where λ is treated as a regularization hyper-parameter.

Optimizing the training set average of Equation 12 is
performed by stochastic gradient descent, using backprop-
agation to compute the parameter derivatives. As in reg-
ular DocNADE, computation of the training objective and
its gradient requires that we define an ordering of the vi-
sual words. Though we could have defined an arbitrary path
across the image to order the words (e.g. from left to right,
top to bottom in the image), we follow Larochelle and Lauly
[11] and randomly permute the words before every stochas-
tic gradient update. The implication is that the model is
effectively trained to be a good inference model of any con-
ditional p(vi|v<i), for any ordering of the words in v. This
again helps fighting against overfitting and better regular-
izes our model. One could thus think of SupDocNADE as
learning from a sequence of random fixations performed in
a visual scene.

In our experiments, we used the rectified linear function
as the activation function

g(a) = max(0,a) = [max(0, a1), . . . ,max(0, aH)] (13)

which often outperforms other activation functions [19] and
has been shown to work well for image data [20]. Since
this is a piece-wise linear function, the (sub-)gradient with
respect to its input, needed by backpropagation to compute
the parameter gradients, is simply

1(g(a)>0) = [1(g(a1)>0), . . . , 1(g(aH)>0)] (14)

where 1P is 1 if P is true and 0 otherwise.
Algorithms 1 and 2 give pseudocodes for efficiently

computing the joint distribution p (v, y) and the parameter



Algorithm 1 Computing p (v, y) using SupDocNADE
Input: bag of words representation v, target y
Output: p (v, y)
act← c
p (v)← 1
for i from 1 to D do
hi ← g (act)
p (vi|v<i) = 1
for m from 1 to |π (vi) | do
p (vi|v<i)← p (vi|v<i) p (π (vi)m |v<i)

end for
p (v)← p (v) p (vi|v<i)
act← act+W:,vi

end for
hc (v)← max(0,act)
p (y|v)← softmax (d+Uhc (v)))|y
p (v, y)← p (v) p (y|v)

Algorithm 2 Computing SupDocNADE training gradients
Input: training vector v, target y,

unsupervised learning weight λ
Output: gradients of Equation 12 w.r.t. parameters
f (v)← softmax (d+Uhc (v)))
δd← (f (v)− 1y)
δact← (Uᵀδd) ◦ 1hy>0

δU← δd hc
ᵀ

δc← 0, δb← 0, δV← 0, δW← 0
for i from D to 1 do
δhi ← 0
for m from 1 to |π (vi) | do
δt← λ (p (π (vi)m |v<i)− π (vi)m)
δbl(vi)m ← δbl(vi)m + δt
δVl(vi)m,:

← δVl(vi)m,:
+ δt hᵀ

i

δhi ← δhi + δtVᵀ
l(vi)m,:

end for
δact← δact+ δhi ◦ 1hi>0

δc← δc+ δhi ◦ 1hi>0

δW:,vi ← δW:,vi + δact
end for

gradients of Equation 12 required for stochastic gradient de-
scent training.

4.2. Dealing with Multiple Regions

Spatial information plays an important role for under-
standing an image. For example, the sky will often appear
on the top part of the image, while a car will most often ap-
pear at the bottom. A lot of previous work has exploited this
intuition successfully. For example, in the seminal work on
spatial pyramids [17], it is shown that extracting different
visual word histograms over distinct regions instead of a

single image-wide histogram can yield substantial gains in
performance.

We follow a similar approach, whereby we model
both the presence of the visual words and the identity
of the region they appear in. Specifically, let’s assume
the image is divided into several distinct regions R =
{R1, R2, . . . , RM}, whereM is the number of regions. The
image can now be represented as

vR = [vR1 , v
R
2 , . . . , v

R
D ] (15)

= [(v1, r1) , (v2, r2) , . . . , (vD, rD)]

where ri ∈ R is the region from which the visual
word vi was extracted. To model the joint distribution
over these visual words, we decompose it as p(vR) =∏
i p((vi, ri)|vR<i) and treat each K × M possible visual

word/region pair as a distinct word. One implication of this
is that the binary tree of visual words must be larger so as to
have a leaf for each possible visual word/region pair. For-
tunately, since computations grow logarithmically with the
size of the tree, this is not a problem and we can still deal
with a large number of regions.

4.3. Dealing with Annotations

So far, we’ve described how to model the visual word
and class label modalities. In this section, we now describe
how we also model the annotation word modality with Sup-
DocNADE.

Specifically, let A be the predefined vocabulary of all
annotation words, we will note the annotation of a given
image as a = [a1, a2, . . . , aL] where ai ∈ A, with L being
the number of words in the annotation. Thus, the image
with its annotation can be represented as a mixed bag of
visual and annotation words:

vA = [vA1 , . . . , v
A
D, v

A
D+1, . . . , , v

A
D+L] (16)

= [vR1 , . . . , v
R
D , a1, . . . , aL] .

To embed the annotation words into the SupDocNADE
framework, we treat each annotation word the same way
we deal with visual words. Specifically, we use a joint in-
dexing of all visual and annotation words and use a larger
binary word tree so as to augment it with leaves for the an-
notation words. By training SupDocNADE on this joint
image/annotation representation vA, it can learn the rela-
tionship between the labels, the spatially-embedded visual
words and the annotation words.

At test time, the annotation words are not given and
we wish to predict them. To achieve this, we compute
the document representation hy(v

R) based only on the vi-
sual words and compute for each possible annotation word
a ∈ A the probability that it would be the next observed
word p(vAi = a|vA = vR), based on the tree decomposi-
tion as in Equation 4. In other words, we only compute the



probability of paths that reach a leaf corresponding to an
annotation word (not a visual word). We then rank the an-
notation words in A in decreasing order of their probability
and select the top 5 words as our predicted annotation.

5. Experiments and Results
To test the ability of SupDocNADE to learn from multi-

modal data, we measured its performance under simultane-
ous image classification and annotation tasks. We tested
our model on 2 real-world datasets: a subset of the La-
belMe dataset [21] and the UIUC-Sports dataset [22]. La-
belMe and UIUC-Sports come with annotations and are
popular classification and annotation benchmarks. We
performed extensive quantitative comparisons of SupDoc-
NADE with the original DocNADE model and supervised
LDA (sLDA)1 [10, 9]. We also provide some compar-
isons with MMLDA [12] and a Spatial Pyramid Matching
(SPM) approach [17]. The code to download the datasets
and for SupDocNADE is available at https://sites.
google.com/site/zhengyin1126/.

5.1. Datasets Description

Following Wang et al. [9], we constructed our LabelMe
dataset using the online tool to obtain images of size 256×
256 pixels from the following 8 classes: highway, inside
city, coast, forest, tall building, street, open country and
mountain. For each class, 200 images were randomly se-
lected and split evenly in the training and test sets, yielding
a total of 1600 images.

The UIUC-Sports dataset contains 1792 images, classi-
fied into 8 classes: badminton (313 images), bocce (137
images), croquet (330 images), polo (183 images), rock-
climbing (194 images), rowing (255 images), sailing (190
images), snowboarding (190 images). Following previous
work, the maximum side of each image was resized to 400
pixels, while maintaining the aspect ratio. We randomly
split the images of each class evenly into training and test
sets. For both LabelMe and UIUC-Sports datasets, we re-
moved the annotation words occurring less than 3 times, as
in Wang et al. [9].

5.2. Experimental Setup

Following Wang et al. [9], 128 dimensional, densely ex-
tracted SIFT features were used to extract the visual words.
The step and patch size of the dense SIFT extraction was set
to 8 and 16, respectively. The dense SIFT features from the
training set were quantized into 240 clusters, to construct
our visual word vocabulary, using K-means. We divided

1We mention that [9] has shown that sLDA performs better than Corr-
LDA[2]. Moreover, [4] found that Multimodal LDA [5] did not improve on
the performance of Corr-LDA. Finally, sLDA distinguishes itself from the
other models in the fact that it also supports the class label modality and
has code available online. Hence, we compare directly with sLDA only.
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Figure 2. The confusion matrix for LabelMe (left) and UIUC-
Sports (right) datasets.

each image into a 2 × 2 grid to extract the spatial posi-
tion information, as described in Section 4.2. This produced
2× 2× 240 = 960 different visual word/region pairs.

We use classification accuracy to evaluate the perfor-
mance of image classification and the average F-measure
of the top 5 predicted annotations to evaluate the annota-
tion performance, as in previous work. The F-measure of
an image is defined as

F -measure =
2× Precision× Recall

Precision + Recall
(17)

where recall is the percentage of correctly predicted annota-
tions out of all ground-truth annotations for an image, while
the precision is the percentage of correctly predicted anno-
tations out of all predicted annotations2. We used 5 ran-
dom train/test splits to estimate the average accuracy and
F-measure.

Image classification with SupDocNADE is performed by
feeding the learned document representations to a RBF ker-
nel SVM. In our experiments, all hyper-parameters (learn-
ing rate, unsupervised learning weight λ in SupDocNADE,
C and γ in RBF kernel SVM), were chosen by cross valida-
tion. We emphasize that, again from following Wang et al.
[9], the annotation words are not available at test time and
all methods predict an image’s class based solely on its bag
of visual words, .

5.3. Quantitative Comparison

In this section, we describe our quantitative comparison
between SupDocNADE, DocNADE and sLDA. We used
the implementation of sLDA available at http://www.
cs.cmu.edu/˜chongw/slda/ in our comparison, to
which we fed the same visual (with spatial regions) and an-
notation words as for DocNADE and SupDocNADE.

The classification results are illustrated in Figure 3. Sim-
ilarly, we observe that SupDocNADE outperforms Doc-
NADE and sLDA. Tuning the trade-off between generative

2When there are repeated words in the ground-truth annotations, the
repeated terms were removed to calculate the F-measure.

https://sites.google.com/site/zhengyin1126/
https://sites.google.com/site/zhengyin1126/
http://www.cs.cmu.edu/~chongw/slda/
http://www.cs.cmu.edu/~chongw/slda/
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Figure 3. Classification performance comparison on LabelMe (even) and UIUC-Sports (odd). On the left, we compare the classification
performance of SupDocNADE, DocNADE and sLDA. On the right, we compare the performance between different variants of SupDoc-
NADE. The “λ varies” means the unsupervised weight λ in Equation 12 is chosen by cross-validation.

Table 1. Performance comparison of the different models.

LabelMe UIUC-Sports
Model Accuracy F-measure Accuracy F-measure

SPM [17] 80.88% 43.68% 72.33% 41.78%
MMLDA [12] 81.47%† 46.64%†∗ 74.65%† 44.51%†

sLDA [9] 81.87% 38.7%† 76.87% 35.0%†

DocNADE 81.97% 43.32% 74.23% 46.38%

SupDocNADE 83.43% 43.87% 77.29% 46.95%

†: Taken from the original paper.
∗: MMLDA performs classification and annotation separately and
doesn’t learn jointly from all 3 modalities.

and discriminative learning and exploiting position infor-
mation is usually beneficial. There is just one exception, on
LabelMe, with 200 hidden topic units, where using a 1× 1
grid slightly outperforms a 2× 2 grid.

As for image annotation, we computed the performance
of our model with 200 topics. As shown in Table 1, Sup-
DocNADE obtains anF -measure of 43.87% and 46.95% on
the LabelMe and UIUC-Sports datasets respectively. This is
slightly superior to regular DocNADE. Since code for per-
forming image annotation using sLDA is not publicly avail-
able, we compare directly with the results found in the cor-
responding paper [9]. Wang et al. [9] report F -measures of
38.7% and 35.0% for sLDA, which is below SupDocNADE
by a large margin.

We also compare with MMLDA [12], which has been ap-
plied to image classification and annotation separately. The
reported classification accuracy for MMLDA is less than
SupDocNADE as shown in Table 1. The performance for
annotation reported in [12] is better than SupDocNADE
on LabelMe but worse on UIUC-Sports. We highlight that
MMLDA did not deal with the class label and annota-
tion word modalities jointly, the different modalities being
treated separately.

The spatial pyramid approach of [17] could also be
adapted to perform both image classification and annota-

tion. We used the code from [17] to generate 2 layer-SPM
representations with a vocabulary size of 240, which is the
same configuration as used by the other models. For image
classification, an SVM with Histogram Intersection Kernel
(HIK) is adopted as the classifier, as in Lazebnik et al. [17].
For annotation, we used a k nearest neighbor (KNN) pre-
diction of the annotation words for the test images. Specifi-
cally, the top 5 most frequent annotation words among the k
nearest images (based on the SPM representation with HIK
similarity) in the training set were selected as the prediction
of a test image’s annotation words. The number k was se-
lected by cross validation, for each of the 5 random splits.
As shown in Table 1, SPM achieves a classification accu-
racy of 80.88% and 72.33% for LabelMe and UIUC-Sports,
which is lower than SupDocNADE. As for annotation, the
F -measure of SPM is also lower than SupDocNADE, with
43.68% and 41.78% for LabelMe and UIUC-Sports, respec-
tively.

Figure 4 illustrates examples of correct and incorrect pre-
dictions made by SupDocNADE on the LabelMe dataset.
Figure 2 also provides the classification confusion matrix
on both LabelMe and UIUC-Sports benchmarks.

5.4. Visualization of Learned Representations

Since topic models are often used to interpret and ex-
plore the semantic structure of image data, we looked at
how we could observe the structure learned by SupDoc-
NADE.

We extracted the visual/annotation words that were most
strongly associated with certain class labels within SupDoc-
NADE as follows. Given a class label street, which cor-
responds to a column U:,i in matrix U, we selected the
top 3 topics (hidden units) having the largest connection
weight in U:,i. Then, we averaged the columns of matrix
W corresponding to these 3 hidden topics and selected the
visual/annotation words with largest averaged weight con-
nection. The results of this procedure for classes street, sail-
ing, forest and highway is illustrated in Figure 5. To visual-
ize the visual words, we show 16 image patches belonging
to each visual word’s cluster, as extracted byK-means. The
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Figure 4. Predicted class and annotation by SupDocNADE on
LabelMe dataset. We list some correctly (top row) and incor-
rectly (bottom row) classified images. The predicted (in blue) and
ground-truth (in black) class labels and annotation words are pre-
sented under each image.
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Figure 5. Visualization of learned representations. Class labels
are colored in red. For each class, we list 4 visual words (each
represented by 16 image patches) and 5 annotation words that are
strongly associated with each class. See Sec. 5.4 for more details.

learned associations are intuitive: for example, the class
street is associated with the annotation words “building”,
“buildings”, “window”, “person walking” and “sky”, while
the visual words showcase parts of buildings and windows.

6. Conclusion and Discussion
In this paper, we proposed SupDocNADE, a supervised

extension of DocNADE, which can learn jointly from visual
words, annotations and class label. Like all topic models,
our model is trained to model the distribution of the bag of

words representation of images and can extract a meaning-
ful representation from it. Unlike most topic models how-
ever, the image representation is not modeled as a latent
random variable in a model, but instead as the hidden layer
of a neural autoregressive network. A distinctive advantage
of SupDocNADE is that it does not require any iterative, ap-
proximate inference procedure to compute an image’s rep-
resentation. Our experiments confirm that SupDocNADE is
a competitive approach for multimodal data modeling.
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